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One of the most brilliant quotes attributed to Albert Einstein says that you do not really understand something
unless you can explain it to your grandmother. With that in mind, I could consider myself rather happy, being
able to summarize the main aim of my thesis with a simple and understandable sentence like “making a robot
see”. On the other hand, the lexical simplicity of this objective hides a very complex reality which very often
people are tricked into. Even relevant researchers of the field are said to have fallen into the trap: The anecdote
that Marvin Minsky, Artificial Intelligence pioneer from MIT, assigned to solve the computer vision problem as
a summer project to a degree student back in the sixties is an illustrative and well-known example [26].

The truth behind this apparent simplicity is that, although we all have a clear experience about what “to see”
implies, the biological mechanisms of visual processing are still not fully understood. And even if we knew it,
we could also wonder if a machine needs –or will be able to run– a visual sensing similar to ours. This lack of
a precise definition about what “to see” really means and needs in an algorithmic sense have made of Computer
Vision a diverse and fragmented discipline.

In spite of this, Computer Vision has experienced great advances since its appearance. Computers still cannot
see, but most of them nowadays use visual information in one or another sense. And mainly because of the
richness of the visual information, cameras are nowadays the dominant sensor in the Robotics research. One
of the uses of visual information is the general frame of this thesis, specifically how visual information can be
processed to extract a tridimensional estimation of the imaged scenario and the motion of the camera into it.

The algorithms described in this thesis provide a theoretical framework to perform 3D estimation of a camera
motion and 3D scene from the only input of an image sequence and in real-time up to 30 frames per second.
Compared with the state-of-the-art on the topic, the algorithms described allow for the first time to perform 3D
estimation out-of-the-box; that is, for any sequence and any camera motion, assuming no knowledge over the
scene nor the internal camera calibration parameters.

This comes from the application of solid theoretical concepts, deeply rooted in Projective Geometry and
Probability. As another output of the application of a well-founded theory, the length of the experimental results
greatly increases: state-of-the-art experiments are limited to waggling camera motion in indoors scenarios and
sequences of around a minute. Here, sequences of tens of thousands frames taken by a robot covering trajectories
of hundreds of metres in about half an hour serve as input for highly accurate camera motion estimation.

I. STATE-OF-THE-ART

A. Pairwise Structure from Motion

Inside the Computer Vision field, Structure from Motion (SfM) is the line of research that takes as input the
2D motion from images and seeks to infer in a totally automated manner the 3D structure of the scene viewed
and the camera locations where the images where captured. SfM has been a very active area of research for the
latest three decades, reaching such a state of maturity that some of its algorithms have already climbed to the
commercial application level [1], [2], [33].

SfM origins can be traced back to the so-called Photogrammetry, that since the second half of 19th century
aimed to extract geometric information from images. Starting with a set of features manually identified by the
user, Photogrammetry make use of non-linear optimization techniques known as Bundle Adjustment (BA) [30].
Computer Vision research has been oriented to achieve the complete automation of the problem, producing
remarkable progress in two aspects: first, the constraints imposed on the motion of the features in two images
under the assumption of the rigidity of the scene have been formalized [26]. And second, intense research on
salient feature –points or lines– detection and description [7], [25], [27] and spurious rejection [23] has provided
with an automated way of robustly extracting and matching those salient features along images. Imposing the
algebraic constraints over the matched salient features provides the equations to estimate the camera motion and
3D feature location.

Based on these two achievements, several methods have been proposed that, from the only input of a set
of images from a scene can estimate the tridimensional structure and pairwise relative camera motion up to a
projective transformation in the most general case of uncalibrated cameras. With some extra knowledge about
camera calibration, a solution up to scale can be obtained. In most cases, the SfM pairwise initial estimation is



used as a the initial seed in a global or local Bundle Adjustment [40] –as Photogrammetry does– that refines the
initial estimation into a more accurate and globally consistent one.

B. Filtering-Based Structure from Motion

The key difference of filtering methods from the pairwise ones describe above is that they do not operate
in a relative manner –estimating motion from one image with respect to another one– nor do they pile up
correspondences waiting for a local BA optimization. Instead of that, the overall state of the system is summarized
into a multidimensional probability distribution, and measurements are processed and their information integrated
in this probability distribution sequentially as they are gathered. Therefore, its computational complexity scales
with the size of the state and not with the number of frames, being naturally suited for the processing of video
sequences.

Filtering methods for visual 3D estimation has been a classical line of research within the Computer Vision
community. Early work began to appear in the 90s [28], [5] using an Extended Kalman Filter to estimate 3D
structure and camera motion from the correspondences in a monocular sequence. Results from this early research
were far from satisfactory due to a deficient modeling of the problem, that has been refined up to the present: In
[3], [35] partial self-calibration was included and in [10] observability was analyzed and occlusions were better
modeled.

Filtering methods for 3D estimation from sensor information have been extensively used and developed in the
robotic SLAM (Simultaneous Localization and Mapping). The main reason for that is the need for sequential
algorithms in robotic applications. The main objective of Computer Vision is to produce the best possible results
from a set of images without time constraints. The control loop in robotic systems need sequential and efficient
online estimation that provides the estimation results up to the present step with minimum delay.

In general terms, SLAM seeks to estimate a map of the environment and the location of the robot inside of
it from the information gathered by sensors attached to the robot. In the most typical SLAM problem, sensory
information comes from proprioceptive sensors –odometry or inertial measurement units– and exteroceptive
sensors, that measure entities external to the robot. Traditionally, laser has been the predominant exteroceptive
sensor used in SLAM, although other sensors, like sonars, have also been used. The Extended Kalman Filter
may be the most popular algorithm and the first one to provide a sequential solution to the problem [37], [21],
[8], [39].

Andrew Davison’s seminal work [18], [19] represents the state of the art at the beginning of this thesis and the
meeting point where Computer Vision and Robotics research converge being cameras adopted as the main sensor
in SLAM. Its main contributions are a better model for an image sequence and an efficient correspondence search
algorithm. As a result, in this work real-time visual estimation at 30 frames per second is achieved, but still with
severe constraints: it is required an indoors environment and initial camera translation, small sequences of around
a minute long can only be processed as a result of not considering spurious measurements and camera has to be
precalibrated. Taking Davison research as starting point, this thesis achieves a total relaxation of the constraints
over filter-based visual estimation and a great improvement over previous results. The specific contributions of
the thesis are briefly detailed in next section.

II. CONTRIBUTIONS OF THIS THESIS

The main aim of this thesis can be summarized as “to develop models and methods fitting the projective nature
of the camera and a Bayesian filtering framework”. Specifically, the contributions in this thesis are:

A. Inverse Depth Parameterization for Point Features [31], [14], [15].

This point model definitely closes a large stream of research going from early research within the computer
vision community [3] on how to represent point features in filtering-based visual estimation; up to the very
recent efforts, mainly from the robotics community, to solve the initialization problem [4], [38], [22]. The two
key contributions in this parametrization are: First, and differently from Euclidean, it is a projective model able to
deal with distant –even infinite– and close points in a unified manner. And second, differently from Homogeneous,
it is linear enough to hold the tight linearity constraints of EKF filtering.
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• Camera is a bearing-only sensor: it only measures angles
• Depth can be estimated by triangulation
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(a) Point Initialization from a Monocular Camera. From
a single image (C1), only the ray where the point feature
lives can be recovered, being the depth unknown. Only
when camera translates up to C2 and enough parallax is
gathered, the point depth can be estimated by triangulation.
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(b) Point initialization algorithms. In the first row, point ini-
tialization is delayed until enough translation is performed,
which causes information loss and inability to model distant
point features [4]. In the second row, several hypothesis are
deployed along the ray to achieve undelayed initialization
[38]. Finally, our proposed inverse depth [15] is able to
code in a single hypothesis the uncertainty along the ray
up to infinity in a unified and undelayed manner.

Fig. 1. Point Initialization and Inverse Depth Coding. (a) illustrates the need of at least two images to estimate the depth of a point
from a monocular camera. (b) shows the inverse depth coding proposed in this thesis.

The proposed parametrization can be better understood looking at figure 1. Figure 1(a) illustrates the
initialization problem for bearing-only sensors like a monocular camera: If a point feature has to be estimated
from a single image C1, the image point can be back projected and the ray where the point lives can be
accurately determined. The depth of the point along the ray remains unknown until the camera translates enough
to triangulate.

Figure 1(b) illustrates the previous work on point feature initialization within EKF monocular SLAM. The
first method used [4] consisted on delay the initialization until an accurate depth could be estimated, resulting
in a loss of information and distant –low parallax– features that could never be estimated. An improvement over
that was to consider several hypothesis –green ellipses in figure 1(b)– along the ray [38]; allowing undelayed
initialization but still not being able to adequately represent distant features. Finally, the explicit estimation of
the inverse of the depth along the ray proposed in this thesis allowed to code in a single hypothesis the unknown
depth along the ray.

Figure 2 details a real image experiment illustrating the benefit in our proposal. In subfigure 2(a) it is seen an
image of the processed sequence and 3D estimation plots at three different scales. Notice the two selected features
named 3 and 11: they have recently been initialized and, as a result, do not have an accurate depth estimation:
the uncertainty regions, plotted as red lines, expands along the ray. Look now at subfigure 2(b): the camera has
translated some metres and now an accurate depth has been estimated for feature 3 –red ellipse represents the
estimation uncertainty–, located in a close car. For feature 11, located in a distant tree, the location of the ray is
accurately estimated, being a rich source for estimating camera orientation, but depth still cannot be estimated.

B. Efficient 1-Point RANSAC EKF for visual estimation [16], [17].

In any visual algorithm, spurious correspondences are likely to appear and only one of them can spoil the
estimation. The proposed 1-point RANSAC EKF is an novel filtering scheme able to detect those spurious
matches with a slight cost overhead always lower than 10%. This algorithm has been proved to overcome the
Joint Compatibility Branch and Bound [32], gold-standard technique for spuriuos rejection in filtering, both in
performance and cost.
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(a) Early frame in the sequence: Camera have not translated
enough; features 3 and 11 have been initialized without
delay and then offer valuable information –mainly about
camera rotation– to the estimation. As they have been re-
cently initialized, depth estimation is still rather inaccurate.

(a)

(b)

(b) Late frame in the sequence: Camera have translated
some metres; feature 3 has an accurate estimated depth,
feature 11 keeps a consistent large uncertainty in its depth
as camera still has not translated enough –but its direction
is accurately estimated.

Fig. 2. Inverse Depth EKF Estimation from a Monocular Sequence.

The combination of this spurious rejection, the inverse depth described before and robocentric filtering [9]
–used here for the first time in visual estimation– rises two orders of magnitude the allowable camera motion
using plain visual filtering: from the waggling camera motion in the seminal paper [19] and predecessors to
hundreds of metres trajectories.

Figure 3 shows the achievable accuracy using the proposed algorithm. In this experiment, a mobile robot
equipped with a monocular camera covered an outdoors trajectory of around 650 metres, while recording an
image sequence of around 24, 000 frames. This image sequence served as only input to the proposed EKF filter.
The estimation accuracy can be visually assessed from the figure. The estimation error remains at 1% of the
trajectory.

C. Visual Filtering from Uncalibrated Sequences [11].

Camera self-calibration is the process of estimating the internal parameters of a camera from a set of arbitrary
uncalibrated images of a general scene. Self-calibration is always preferable and sometimes essential when visual
estimation faces real world applications. First, it avoids the onerous task of taking pictures of the calibration
object and using a calibration software. Such a task may be difficult for an unexperienced end-user and may be
impossible in certain robotic applications; for example if a camera on a robotic arm is not accessible. Second,
internal parameters of a camera may change either unintentionally (e.g. due to vibrations, thermical or mechanical
shocks) or even intentionally in the case of a zooming camera. 3D estimation in this latter case could only be
performed via self-calibration. Finally, inaccurate calibration (coming either from a poor calibration process or
from changed calibration parameters) produces the undesirable effect of introducing bias in the estimation.

SfM methods in the decade of the 90’s were developed to estimate 3D structure from uncalibrated images, that
is, images taken from cameras with unknown and possibly varying calibration parameters. It was also theoretically
formalized under what conditions uncalibrated parameters could be estimated, stating the basis for camera self-
calibration. Literature over self-calibration using filtering is rather long (e.g. [3], [29], [34]), but any of the
presented approaches achieves a complete calibration without prior knowledge. A filtering algorithm is proposed
in this thesis that, for the first time, achieves a complete camera calibration from scratch.

Figure 4 details the results offered by the proposed algorithm applied over an uncalibrated sequence. Figure



Fig. 3. Estimation results for a robot trajectory of 650 metres from the only input of a monocular sequence taken by a camera mounted
in the robot. Red line stands for GPS, the black line is the EKF estimation result. The estimation error is less than 1% of the trajectory.

4(a) details the camera motion and 3D scene estimation results for an early and a late frame of the sequence.
Figure 4(b) shows the estimated calibration parameters compared with the ground truth values.

D. Visual Filtering from Degenerate Camera Motion [13].

Degenerate camera motions have a capital importance from a practical point of view of implementing real
systems. If the camera is attached to a mobile robot, there will occur frequently that the robot is going to be
stopped. Pure rotation motion is also very frequent in industrial robotic arms. Any estimation algorithm modeling
a general camera motion in any of these situations will fail. In this thesis, it is proposed a model selection scheme
well-suited to Bayesian filtering able to produce an accurate and consistent estimation under degenerate motion
and seamlessly cope with motion transitions.

The proposed algorithm was tested using real imagery. Figure 5 shows three frames of a sequence performing
stationary-rotating-general motion, respectively. At each step, the real motion model was correctly selected: the
stationary camera model, represented by a blue square, in (a); the rotating model, represented by a circular arrow
in (b); and the general motion, represented by a blue triangle, in (c). The appropriate camera motion model was
then applied at each step of the sequence, keeping a consistent estimation of the 3D motion and point features.

E. Drift-Free Real-Time Mosaicing [12].

Mosaicing is a usual application in Computer Vision consisting of stitching together data from a number of
images, from a rotating camera or from a translating camera observing a plane, in order to create a composite
image which covers a larger field of view than the individual views. Traditional mosaicing algorithms, like [6],
based on the application of pairwise SfM algorithms described in section I-A are usually limited in computational
time or accuracy. If real-time performance is pursued, then a global optimization cannot be applied and drift
accumulates. When drift is to be minimized, an expensive Bundle Adjustment is needed and real-time is lost.

An EKF-based mosaicing algorithm has been developed in this thesis that stitches image textures over the
map of feature directions. This mosaicing algorithm directly inherits the EKF advantages of summing up the
measurements up to the current step in a state vector, being its cost independent of the number of images.The
presented algorithm is the first mosaicing technique that presents real-time drift-free spherical mosaics of 360◦.
A spherical mosaic constructed in real-time from a sequence gathered by a rotating camera is shown in figure 6.
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Fig. 4. Self-calibration, camera trajectory and 3D scene estimation from an uncalibrated image sequence. (a) shows the amera trajectory
and 3D point estimation. (b) shows the estimation results for the calibration parameters. Black lines are the known ground truth values,
blue thick lines are the estimated self-calibration parameters and red thin lines the estimated uncertainty. Notice that at the beginning
of the sequence uncertainty is large, as we do not have prior knowledge about the parameters. As the estimation evolves, the estimated
values (in thick blue) become close to the ground truth values (in black) and uncertainty (thin red) sharply decrease.

III. DISCUSSION

In their short life, the algorithms proposed in this thesis have already reached the status of “standard” and
have produced a qualitative jump in visual filtering: Using the state-of-the-art before this research, it could only
be estimate waggling camera motion within strongly constrained scenes –containing only close points or needing
known objects to initialize–, non-degenerate camera motions and pre-calibrated cameras. In this thesis, visual
estimation is performed out-of-the-box, for any scene containing close and distant points and for any sequence,
that means any camera motion and unknown camera calibration.

The algorithms proposed in this thesis are widely used throughout the world. The publications of this thesis
have already received more than 250 references from academic documents, according to GoogleScholar. Some
of those publications are among the most referenced papers in their respective years, not only in Robotics but in
the whole Computer Science area according to Citeseer. Demonstrative code released for testing purposes, either
[36] or the most recent one [20] under GNU GPL License, are accessed and downloaded several times per day.

The degree of maturity of this research –and geometric vision in general– and the development of demonstrative
real-time software offers, apart from interesting research lines, exciting opportunities for technological transfer.
Among the research lines opened by the presented research, two of them stand out as greatly beneficial:

• Surgeon assistance via augmented reality in endoscopic operations. Being able to construct a 3D model
of an imaged scene implies being able to make measurements of the scene and make virtual insertions. Both
capabilities are seen as extremely useful by endoscopic surgeons. First, making measurements allow to know
the size of certain body structures, detecting anomalies and re-planning the surgery. Currently, endoscopic
measurements are performed by introducing a metric tape inside the body. And second, inserting virtual
objects allow to easily limit safe operation areas. Figure 7 shows some preliminary results of this research.

• Visual sensing for service robots. My research group is currently involved in the RoboEarth project [41],
funded by the EU. The aim of the project is to construct a web-like database for robots to share knowledge: a
robot that successfully performs a task can upload a “recipe” to the database that another robot can download
and use when required to perform the same action. The group is required to construct the shareable visual
sensing capabilities of the robots accessing the database.
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Fig. 5. Model Selection Results: When a degenerate camera motion –as stationary camera in (a) or rotating camera in (b)–, the stationary
model and rotating model are correctly detected and estimation evolves assuming degenerate models. When the camera finally translates

Algorithms developed in this thesis are essential in the above described lines: the highest degree of robustness
and real-time are critic for endoscopic surgery. Self-calibration is also needed to alleviate the time needed to
prepare the system. Real-time and robust operation are also a must for real robots. Both lines involve challenging
research: highly dynamic and non-rigid environments in the endoscopic case and recognition capabilities for
service robots.

Regarding technological transfer, the presented research is currently being implemented for commercial use and
protected via patents in three different applications with three different companies: 1) a robust indoor localization
software; 2) a grasping system for a robotic arm; and 3) real-time virtual insertions for broadcasting of sports
events.
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Fig. 6. Drift-Free Real-Time Online Mosaicing Results. (a) shows an early frame of the sequence and the initial mosaic. (b) shows a
180◦ mosaic in a more advanced frame of the sequence. (c) shows the recognition of the starting point and 360◦ loop closing. (d) shows
the final mosaic. All the processing was done in real-time at 30 frames per second.



Fig. 7. New research in visual 3D estimation applied to endoscopic surgery. This early work has been published in [24]. (a) shows
several frames taken by an endoscopic camera. The real-time demonstrative software developed in this thesis is applied over the sequence
(b), producing the 3D models shown in (c), (d) and (e). Such 3D models are used to help the surgeons with measurement capabilities
and augmented reality insertions –like the yellow cylinder in the figures– to delimit safe areas.


