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Figure 1: Acoustic echoes serve as a cue for single view geometry.

Abstract

Extracting the 3D geometry plays an important part in
scene understanding. Recently, robust visual descriptors
are proposed for extracting the indoor scene layout from
a passive agent’s perspective, specifically from a single
image. Their robustness is mainly due to modelling the
physical interaction of the underlying room geometry
with the objects and the humans present in the room. In
this work we add the physical constraints coming from
acoustic echoes, generated by an audio source, to this
visual model. Our audio-visual 3D geometry descriptor
improves over the state of the art in passive perception
models as we show in our experiments.

1 Introduction
In order to interact with its surrounding environment, an
agent needs first to understand it. Estimating the 3D geome-
try of the scene forms an important component of this scene
understanding. Neverthless, the most studied and used meth-
ods for extracting such 3D scene models from visual data are
based on the motion of the agent (Simultaneous Localization
and Mapping –SLAM– and Structure from Motion –SfM–
(Hartley and Zisserman 2000)). This forms a chicken-and-
egg problem. Extracting the 3D geometry requires motion,
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i.e., interaction. And, in order to actively interact with the
scene, one needs to understand it first.

Recently, robust learning-based visual descriptors have
been proposed for extracting the 3D geometric layout of a
scene from a passive agent’s perspective, i.e., single image
(Hoiem et al. 2009, Saxena et al. 2009). Figure 1d shows
the estimated layout geometry of an indoor scene, consist-
ing of the fundamental planes constituting the scene –walls,
floor and ceiling. The fact that the majority of the scenes can
be simplified into a few fundamental planes (Nedovic et al.
2010) is the motivation for such geometric models.

Furthermore, these data driven approaches can also han-
dle complex scenes with major clutter and active humans.
The reconstruction challenge in these complex scenes is
two-fold. Firstly, the objects and the humans occlude the
geometry. Secondly, a high degree of non-rigid elements –
like humans– in the scene is still a challenge for the tra-
ditional multi-view geometry approaches. These learning-
based approaches utilize the physical constraints offered by
the objects and the humans to improve the room geometry.
For example, no detected object can exist outside the room
walls. These are termed as volumetric constraints (Lee et al.
2010). Similarly, a detected human pose, e.g., sitting, indi-
cates a supporting surface, e.g., chair, occluded by the per-
son. These are affordance constraints (Fouhey et al. 2012).
Grounding these volumetric and affordance constraints in



the room geometry estimation has shown exciting progress.
In addition to these physical constraints, 3D sound is an

additional cue informing about room geometry (Dokmanić
et al. 2013; Antonacci et al. 2012). For example, sound echo-
ing in large halls is a common experience. This echoing
phenomena exists even in smaller rooms, although not al-
ways human-perceivable. In this paper we add 3D sound as
a cue for room layout estimation. Our research is motivated
by several existing devices that present the combination of
audio and visual sensors: mobile phones, laptops, and RGB-
D sensors like Kinect.

Look at Figure 1a to see an example illustrating the ben-
efits of our approach. The sound generated by the audio
source travels different paths before reaching the listener. A
few of these paths are shown as rays in Figure 1a. These
paths include the direct path, paths with one bounce (1st or-
der) and paths with more than one bounce (higher order).
Copies of the same audio signal, or echoes, reach the lis-
tener at different times. The 1st order echoes inform us about
the location of the fundamental planes in the scene. Look at
Figure 1b. Three candidates out of the possible left wall hy-
potheses are shown. By estimating the path travelled by the
sound echo which reflected from the left wall, we can local-
ize the left wall as shown in Figure 1c.

Utilizing acoustic echoes in this manner involves two
challenges. Firstly, the 1st order echoes have to be sepa-
rated form the higher-order ones (Dokmanić et al. 2013).
Secondly, each one of the echoes has to be associated with
the correct wall. Only with the correct echo selection and
labelling the 3D geometry of the scene can be estimated.

Our main contribution is then grounding these acoustic
constraints in the structured prediction-based 3D geometry
estimation techniques. Our model jointly estimates the 3D
geometry of the scene, selects and labels the acoustic echoes.
The input to our method is the single image and the esti-
mated acoustic echoes. Through an extensive evaluation of
this algorithm we show that the fusion of audio and visual
cues outperform the estimation based on only images.

2 Background
The pioneering work for recovering the geometric layout
from a single image was from Hoiem et al. (2007). Hoiem
et al. divided the scene into 5 dominant planes –floor, sky,
left, right and middle walls–; a valid model in most scenar-
ios, both indoors and outdoors. Low-level visual cues such
as color, texture and shade were used to train geometric clas-
sifiers. The abstract geometry provided by this method is ac-
curate enough to improve the state of the art object detectors
(Hoiem, Efros, and Hebert 2008). The grounding of physi-
cal rules –e.g., cars need to be supported by the floor below–,
helped in removing false detections.

Indoor scenes are more structured than outdoor scenes.
This structured nature of the indoor scenes, combined with
the low-level visual cues, improved the geometry estimation
(Hedau, Hoiem, and Forsyth 2009). Lee et al. (2010) intro-
duced the physcial interaction of the room geometry with
the detected objects (Lee et al. 2010). Humans existing and
acting in the scene occlude the underlying geometry. Fouhey

et al., (2012) transformed the detected human pose into an
affordance cue.

3D sound is an addional cue that informs about the vol-
ume of the room. Larger halls sound different to smaller
rooms. Recently, several algorithms have been proposed
for inferring room geometrics from acoustic cues only
(Dokmanić et al. 2013; Antonacci et al. 2012; Tervo and
Tossavainen 2012). These algorithms do not include neither
clutter nor humans in their model. The constraints generated
by the objects, detected in the image, are seamlessly incor-
porated into our audio-visual model. Futhermore, visual data
provides a prior on the scene shape which reduces the corre-
spondence search space.

3 Overview
Our goal is to ground the physical constraints offered by the
acoustic echoes in the passive perception visual model. An
overview of the whole algorithm is shown in Figure 2. The
inputs of our approach are the image (Figure 2b) and the
relative arrival times of the echoed sound signals ∆ti at the
listener position L (Figure 2c).

Firstly, the image data is used to generate plausible room
geometry hypotheses. Indoor scenes usually follow the Man-
hattan world assumption, meaning that the dominant planes
in the scene are aligned along one of three orthogonal di-
rections. These orthogonal directions are given by the van-
ishing points, which are estimated from the lines in the im-
age (Rother 2002). Given the vanishing points, multiple up-
to-scale hypotheses for the room geometry are generated,
as shown in Figure 2d. Given the camera height above the
ground, the metric parameters of the ground plane can be
estimated (Tsai et al. 2011). Having the metric reconstruc-
tion of the ground plane, the remaining planes of the room
geometry can also be metrically reconstructed.

Learning-based techniques assign a goodness score to
these hypotheses. Low-level visual cues based on texture
and color, object volumetric cues and human affordance
cues are used to calculate this score. The aim of the paper
is to improve the ranking of the hypotheses by adding the
acoustic constraints to the image information.

In a 3D scene, the audio signal generated by the source
S travels different paths before reaching the listener L (Fig-
ure 1a). As shown in Figure 1c, the paths with one bounce
(1st order) help in localizing the fundamental planes in the
scene. In practice, we do not have these 3D path rays. What
we have is the arrival times ∆ti of the i echoes travelling
these ≥1 bounce paths (Figure 2c). For a known audio sig-
nal, these arrival times of echoes can be estimated reliably
as shown by (Dokmanić et al. 2013). Solutions also exist
where the sound signal is unknown (Gunther and Swindle-
hurst 1996). Given the source S and the listener L position,
the relative arrival time ∆ti constraints the layout plane to
be tangent to a 3D ellipsoid (Figure 2e), as will be detailed in
section 4. Look at Figure 2f. Ideally each plane of the correct
hypothesis is the supporting plane of an ellipsoid, i.e., tan-
gent to the ellipsoid in the absence of noise. In Figure 2f, the
third hypothesis finds the best support as each of its plane is
tangent to an ellipsoid. The remaining room hypotheses are
penalized according to their acoustic support. The ellipsoids
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Figure 2: Our approach of grounding acoustic cues in indoor scene geometry estimation. (e) Each wall of the ground truth room
is the support plane (tangent plane) of 1st order echo ellipsoid. (f) Only the right most room hypothesis satisfies this constraint.

corresponding to higher order echoes, i.e.,> 1 bounce paths,
do not satisfy this tangent condition, e.g., dashed ellipsoid in
Figure 2e. They act as the noise. Our proposal, fusing visual
and acoustic data, is able to filter such noise.

4 Physically Grounded Scene Geometry
Given an image I , a set of room geometry hypotheses
{r1, r2, ..., rl} is generated. Each room hypothesis r is a
set of planes {p1, p2, ..., pX}, where 1 ≤ X ≤ 5 (in
a single perpective image at most 5 walls of the room
are visible at a time). In the presence of objects or hu-
mans, the visual input I also provides a set of detections
{o1, o2, ..., oM}. The acoustic echoes provide a set of 3D
ellipsoids {e1, e2, ..., eN}. We can represent our scene as
an indicator vector s = (sr, so, se), where sr= (s1r, s

2
r, ..., s

l
r),

so= (s1o, s
2
o, ..., s

M
o ), se= (s1e, s

2
e, ..., s

N
e ). siη = 1 if ηi is the se-

lected item, i.e., room hypothesis, object or ellipsoid, other-
wise it is 0. We have to evaluate all the possible instances of
the scene configuration s in order to find the valid one. Each
instance of s contains one room geometry hypothesis, i.e.,
Σis

i
r = 1. The selected room ri is tested for object contain-

ment and acoustic violations. Similar to Fouhey et al. (2012),
we assume that all the object detections are correct, hence
Σis

i
o = M . Similar to Dokmanic et al. (2013) we assume

loudness, meaning that the sound reaches the receiver L af-
ter reflecting from all the fundamental planes in the room.
Hence, Σis

i
e = X , whereX is number of faces of the selected

room geometry ri. The total search space for the scene con-
figuration s is l × X × N × 1. There are l room geometry
hypotheses. Each room has X planes. Each plane is tested
for tangency against N ellipsoids. All the object detections
are valid and considered for each scene configuration.

Our evaluating function is f(I, s) as given in equation 1.

f(I, s) = ωT f1(I, sr) + αof2(sr, so) + αef3(sr, se) (1)

where f1 measures the fit of the room geometry with re-
spect to the low-level visual features, f2 checks the com-
patibility of room geometry with the detected objects and
humans, and f3 penalizes the room hypothesis not finding
support from acoustic echoes. f1 and f2 involve visual data,
so their contribution can be summarized in a single function
fv . The acoustic contribution of f3 can be summarized in a
function fa. ω, αo and αe are training parameters.

fv = ωT f1 + αof2 , fa = αef3

For each scene configuration s, this function returns a
score. The best scene configuration s∗ is the one with the
maximum score.

s∗ = argmax
s

f(I, s) (2)



Figure 3: Room geometry labeling error against the acoustic
training parameter αe for several of the cases in our evalu-
ation. Notice that the range of the parameter for which the
audiovisual combination improves over only visual data –
horizontal red line– is wide and comparable for all the cases.
We chose a value of 10. All plots are generated with noisy
echoes. Noisy sound source position (10 cm error) is used
for last 3 options.

Scoring Room Geometry with Visual Data
The visual scoring function is given in equation 3.

fv = ωTΨ(I, sr) + αoφ(sr, so) (3)
where Ψ(I, sr) is the feature vector corresponding to the

room hypothesis r. Each room hypothesis r is a set of planes,
i.e., floor, middle wall, right wall, left wall and ceiling. For
each plane, visual features are extracted from its image pro-
jected area. These features include color, shade, texture, total
lines count, line count ‖ to plane etc. The first term in equa-
tion 3 assigns a score to the room hypothesis r using these
low level features. φ(sr, so) measures the compatibility of
the room hypothesis r with the detected objects in image
space. The rooms not containing the entire object volume
are penalized. Look at Figure 6b. The cuboid object is out-
side the walls of the incorrect room hypothesis (red geom-
etry). ωT and αo are obtained using supervised structured
learning. For details check Hedau et al. (2009) and Lee et al.
(2010).

Interaction of Room Geometry with Echoes
Our main contribution is the embedding of acoustic con-
straints in the visual geometry estimation model of the pre-
vious section. The acoustic data consists of the estimated
arrival times of 1st and higher order echoes. Look at Figure
2c. For each echo we have the time delay ∆ti in its arrival
after the first copy. Given the relative motion between the
source S and the listener L position, the set of these delays
{∆t1,∆t2, ...,∆tN} is converted into a set of 3D ellipsoids
{e1, e2, ..., eN}. For details on audio source S localization
and echo estimation from microphone signals see Antonacci
et al. (2012) and Tervo et al. (2012).
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Figure 4: Converting acoustic echo information into a 3D
ellipsoid. The Source S and the Listener L form the focal
points of ellipsoid. The echo arrival delay time is used to
estimate the length of major axis (a) and minor axes (b, c).

The 3D ellipsoid model has 5 parameters (a, b, c, f1, f2)
as shown in Figure 4. f1 and f2 are the focal points. a, b and
c are the lengths of the major and minor axes respectively.
These parameters are calculated using equations 4, 5 and 6.

t =
d

v
(4)

where t is the time in which the direct copy of the audio
signal reached L from S, d is the distance between S and L,
v = 343ms−1 is the speed of sound.

ai =
v(t+ ∆ti)

2
, bi =

√
a2i −

d

2

2

, ci = bi (5)

f2 = [
d

2
, 0, 0] , f1 = −f2 (6)

The ellipsoids generated with equations 5 and 6 are in a
local frame. They are transformed into the observer coordi-
nate frame using two transformations Tm and Tc. Tm is the
motion from the local frame to the observer’s microphone
one. Tm is given by equations 7 to 9 .

Tm = [Rm, tm] (7)
Rm = AlignVectors([1, 0, 0], [S − L]) (8)

tm =
S + L

2
(9)

where Rm is the 3x3 rotation matrix, tm is the 3x1 trans-
lation vector. In local coordinates, the major axis of the el-
lispoid is along X axis, i.e., [1,0,0] (Figure 4). In microphone
coordinates, the major axis of the ellipsoid is along the axis
pointing from L to S (dir = [S−L]). Rm aligns [1,0,0] with
dir. tm sets S and L as the focal points of ellipsoid instead
of [±d2 , 0, 0]. Tc is the calibration between the observer’s mi-
crophone and the camera (Legg and Bradley 2013).

Now that we have the set of ellipsoids se, we can measure
the acoustic support fa = αeχ(sr, se) for each room hy-
pothesis using algorithm 1. The value of the acoustic weight
is set αe = 10. Figure 3 shows the insensitivity of geometric
labelling error to this parameter. Notice the logarithmic scale
in the αe axis and the wide range where the fusion improves
over the image-only understanding.



Algorithm 1 Acoustic Penalty Algorithm

1: INPUT: sr {room hypotheses}, se {acoustic ellipsoids},
vp {vanishing points}, h {camera height}
K {camera intrinsics}

2: OUTPUT: χ(sr, se) {rooms acoustic penalty},
s′e {selected ellipsoids}

3:

4: R = [vpx, vpy, vpz]
5: for i = 1 to l do
6: [χ(sir, se), s′ie ] = min

R
AcousticPenalty(sir, se,R, h)

7: end for
8:

9: FUNCTION AcousticPenalty(sir, se,R, h)
10: {p1, p2, ..., pX} = get room planes(ri,R, h,K)
{See Tsai et al. (2011)}

11: s′ie = ∅
12: for j = 1 to X do
13: {k1, .., kN} = get se support planes(se, pj)

{See Figure 5 for support planes.}
14: {u1, .., uN} = get distance({k1, .., kN}, pj)
15: u∗ = minimum({u1, u2, ..., uN})
16: dj = u∗
17: s′ie = s′ie ∪ s∗e
18: se = se \ s′ie
19: end for
20: χ(sir, se) = Σada
21: return χ(sir, se), s′ie

Acoustic Penalty Algorithm
The single bounce echoes are reflected from the planes of
the room. Therefore, all the planes of the correct room hy-
pothesis must support (tangent to) the one bounce path rays
(Figure 1c) and the corresponding ellipsoids (Figure 2f). In
practice, due to noise in the estimated parameters, e.g., room
orientation coming from vanishing points (vp), sound source
localization etc., the planes are not exactly tangent. Look at
Figure 5. Dashed ellipsoid corresponds to the echo reflected
from the right wall. This rightwall-ellipsoid correspondence
is performed by finding the closest ellipsoid. The right wall
is moved so that it becomes tangent to the closest ellipsoid.
The vertical dashed lines in Figure 5 show the amount of
displacement of the right wall for each ellipsoid. The ellip-
soid which requires minimum right wall displacement d is
selected. This displacement is the acoustic penalty for the
right wall, i.e., d = u5 (Figure 5). Similarly, the penalties
for the remaining planes of the room hypothesis are esti-
mated. The cumulative penalty for a given room hypothesis
is Σada. Intuitively, this acoustic penalty should be less for
the correct room hypthesis as compared to any random room
hypothesis.

Experiments have shown that this wall-ellipsoid corre-
spondence and the acoustic penalty computation is sensitive
to the errors in the estimated parameters, e.g., room orienta-
tion, sound source localization (which affects the 3D ellip-

soids parameters). We use particle optimization (Birge 2003)
to overcome this problem. Starting with the intial room ori-
entation R, we generate multiple particles for room orienta-
tion within ± 5° along each axis. The ellipsoid correspon-
dence and the acoustic penalty is computed for each orien-
tation particle using the alogrithm 1. The orientation parti-
cle with minimum acoustic penalty at step t, is selected as
initial seed for step t + 1. The process is repeated until no
significant change in penalty occurs. For a given orientation
particle, a wrong wall-ellipsoid correspondence may reduce
the penalty. However, it is unlikely that the same orientation
generates low penalty, incorrect correspondences for the re-
maining walls of the room. Our experiments show that this
algorithm can handle noisy vanishing points, noisy higher
order echoes and the sound source localization error (up to
10 cm).
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Figure 5: Solving right wall-ellipsoid correspondence. Step
1, move the rigth-wall to make it supporting plane for each
ellipsoid (dashed lines). Step 2, select ellipsoid which re-
quires minimum motion. Dashed ellipsoid is the right corre-
spondence. u5 is the penalty for this correspondence.

5 Experimental Evaluation

Clean echoes Noisy Echoes
No pert. Pert. No pert. Pert.

Pi
xe

lE
rr

. I 14.8 14.8 14.8 14.8
I+S 17 12.4 14.5 10.6
I+O 11.5 11.5 11.5 11.5

I+O+S 17 8.7 14.3 9.1

L
ab

el
E

rr
. I 65 65 68 68

I+S 57 42 65 55
I+O 60 60 67 67

I+O+S 60 35 67 51

Table 1: Experimental results for the fusion of images and
single sound source. Pixel Err. is % of incorrect pixel la-
bels. Label Err. is the % echo-wall correspondence error. I
is Hedau et al. (2009). I+O is Lee et al. (2010).

The input to our algorithm is a single image and the esti-
mated acoustic echoes inside a 3D scene. There is no bench-
mark dataset available in this regard. In order to generate
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Figure 6: Qualitative Results. Image-only (Hedau, Hoiem, and Forsyth 2009) (red dashed line). Image + echoes (solid blue
line). The sound source is shown as a green circle. Notice how the addition of acoustic contraints improves the wall boundaries.

the test data, we used the publicly available GSound sys-
tem (Schissler and Manocha 2011). GSound is a realistic
sound rendering system in a 3D environment. We used the
3D scene models to render sound as shown in Figure 1a.
The 3D models contained objects (cuboids) in addition to
sound source and the room geometry. Realistic rendering us-
ing GSound generated the observer perspective image (Fig-
ure 1b) and the room impulse response (RIR) at observer’s
position. The peaks in RIR represent the acoustic echoes in
a 3D scene (Figure 2c). As Tervo et al. (2012), we have 27
echoes from each RIR. 21 out of these 27 echoes are higher-
order noisy echoes. Our test set contains 17 scene render-
ings.

Table 1 shows the quantitative results of our evaluation
of the fusion algorithm. For evaluating our geometry esti-
mation, we use the standard metric of incorrect pixel label
percentage (Pixel Err. in the tables), e.g., floor pixels la-
belled as middle wall or ceiling pixels labelled as left wall
etc. We also provide the percentage of erroneous correspon-
dences between the sound ellipsoids and the walls (Label
Err in the tables). For both, the lower the better. The results
are the average numbers over the total number of scenes in
our dataset. In this table we report results for the cases of
clean, 1st order sound echoes, and noisy, 1st + higher or-
der echoes, separately. We also compare the results with and
without the perturbation model from algorithm 1. For each
of this situations, we evaluate 4 different algorithms for the
data, shown as rows in the table: I standing for visual input
only, I+S standing for visual and acoustic data, I+O stand-
ing for visual input only but with object information, and
I+O+S standing for the fusion of visual data, objects and
sound.

Our results show that the perturbation model in the algo-
rithm 1 (Pert.) is essential to obtain accurate results from the
sensor fusion. Notice the improvement when a perturbation
model is applied in the rows where the sensor fusion is in-
volved (I+S and I+O+S); when compared to a more naive
estimation without such optimization (No Pert.). Secondly,
with this perturbation model the fusion of the two modalities
improves over the state of the art results using single image.
The best results are boldfaced.

Figure 6 shows some qualitative results from our experi-
ments. The green dot is the source position, the red dashed
line stands for the single image layout results, and the solid

blue line is the result after the inclusion of the audio cues.
Notice the improvement, and the high accuracy of the blue
layout estimation.

We have evaluated our algorithm in a large number of
cases and configurations (look at Figure 7). Table 2 presents
a summary of the results of this extensive evaluation.

Specifically, we evaluated the cases of multiple sources
–second row in the table, as 4S– and multiple microphones
in two different configurations: in a wide-baseline configu-
ration, distributed within the room –4M (dist.) in the table,
3rd row–; and in a short-baseline configuration as in Kinect-
like devices – 4M (short-b.) in the table, 4th row. It can be
seen that, in general, the results of the cases with multiple
sources and multiple receivers outperform the single-source
single-receiver one.

For each of those configurations, we show in columns the
results of clean 1st order echoes (F) and noisy echoes, i.e.,
1st + higher order echoes (H). The third column, titled as
O+H, shows the results when object reasoning is fused with
the sound case. The fourth column, titled as N+H, summa-
rizes our analysis of the performance of the algorithm with
noise. Specifically, we added a noise of 10cm in the relative
position of the source and the receiver. Notice that the per-
formance of the algorithm is only slightly degraded. Finally,
the last column, –O+N+H–, the combined case of the lat-
est two columns. Notice that, even for this noisy case, our
algorithm improves over the single image case by 4%.

4 m

22 cm

Top View Front View

Multiple 
Speakers

Multiple 
Listeners

Short-baseline 
Multiple 
Listeners

(a) (b)
(c)

4 m

3 m

8 m

Figure 7: Schematic view of the geometric configuration of
the multisource and multisensor experiments.

6 Conclusion & Future Work
In this paper we present a model that adds the informa-
tion coming from acoustic echoes to passive perception vi-
sual models. Our proposal is based on the ranking of sev-



F H. O+H N+H O+N+H
Pi

xe
lE

rr
. 1S+1M 12.4 10.6 9.1 – –

4S 5.9 8.8 8.7 11 10.4
4M (dist.) 5.8 7.6 7.6 8.6 8.6

4M (short-b) 11.9 11.7 7.8 9 8.4

L
ab

el
E

rr
. 1S+1M 42 56 51 – –

4S 5 21 21 – –
4M (dist.) 9 19 19 – –

4M (short-b) 19 20 19 – –

Table 2: Summary of the evaluation in different cases. S:
sound source, M: mic, F: 1st order echoes, H: 1st + higher
order echoes, O: object, N: noise of 10 cm in sound source
position. Pixel Err. is % of incorrect pixel labels. Label Err.
is the % echo-wall correspondence error.

eral room hypotheses. The scoring function is the weighted
sum of an image-based and a sound-based term. We have
performed an extensive evaluation of the algorithm in sev-
eral cases: single-sensor single-source, multi-sensor single-
source, single-sensor multi-source, and erroneous source po-
sition. The results show that the combination of the two in-
puts consistently outperforms the results of the state-of-the-
art vision-only approaches.

Up to our knowledge, this paper is the first one address-
ing scene understanding from audiovisual cues. Future work
includes extending this model to absorbent scenes where the
walls absorb the sound. There, the visual texture of these
absorbing walls can act as a cue.

We believe that the fusion of acoustic and visual data can
lead to a wide array of long-term research lines, including

• Overcoming Range Limitations of Depth Sensors Ac-
tive sensors like Kinect are usually limited in the range
they can measure. Our audiovisual model, making use of
RGB data, does not have such range limitation and hence
could be used in large rooms without degradation.

• Audiovisual Cocktail Party Problem The geometric
contraints provided by our method can be used to separate
multiple speakers which are active simultaneously. This
would improve automatic speech recognition in crowded
environments.

• Audio Augmentation Our model can be extended for
augmenting a scene with the audio, e.g., talking character
in augmented reality games etc., or removing the audio-
visual print (diminished reality) in case of phobia or dis-
like, e.g., removing the image and the sound of a barking
pet dog etc.
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