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Abstract—In this paper we present an algorithm that estimates
in real-time a 3D dense reconstruction of an underwater scene
and the vehicle pose, being the only input a monocular image
sequence. Our algorithm selects a set of keyframes from a
seabed sequence and estimates a depth for every pixel from
the information contained in the images using direct mapping
methods. The procedure does not require extra sensing input
or assumptions about the scene. Our experimental results in
a pool and a seabed sequence show that such minimal sensing
configuration can achieve a high degree of accuracy.

I. INTRODUCTION

The accurate tridimensional reconstruction of underwater
scenes is an active area of research having three main impor-
tant areas of application; namely the autonomous navigation
of underwater robots [1], the registration of seabed natural
environments for its posterior study [2], [3], and the inspection
of underwater structures (e.g., marinas, ship hulls or pipelines)
for assessment and maintenance [4], [5]. The basic algorithms
come from the robotic field called SLAM [6], standing for
Simultaneous Localization and Mapping, that aims to estimate
the robot pose and a 3D geometric map of the scene from
sensor data.

The rapid attenuation of the electromagnetic signals in
aquatic medium constraints the sensing possibilities for marine
robots, e.g., neither GPS nor LIDAR can be used. [7], [8] are
two recent surveys on the topic of underwater localization,
mapping and navigation. Sonar has been successfully used in
structured marina-like environments [1], [9]; but it captures
limited information of the environment with low accuracy.

In underwater images, the light suffers absorption and scat-
tering by the medium before reaches the camera. It generated
an effect called haze. Basically, haze becomes a serious issue
since it reduces the overall contrast in images and causes
color shift, directly impacting on the reduction in the visibility.
Besides these limitation, vision stands out as an important
alternative in most applications due to its low cost, rich
information in short range and high frame rate.

The existing research in underwater visual SLAM has used
predominantly stereo cameras; from the early approach of [10]
to more recent ones showing large reconstructions, e.g. [11],
[12], [13]. In most of the cases, visual sensors are fused with
inertial measurements, Doppler velocities or depth pressure
sensors [14], [15]. Such requirement limits the applicability

of the algorithms, as all of these sensors are only available in
large and expensive vehicles.

Another key limitation of these traditional methods is
that they use feature-based reconstruction methods [16], [17],
meaning that they can only reconstruct a sparse set of salient
image points. These methods are able to estimate the camera
pose very accurately; but the sparseness of the estimated maps
make them inappropriate for autonomous robotic navigation.

Dense reconstructions can be built on top of these sparse
point clouds via triangulation [13]. The assumption there is that
low-gradient areas between salient points are planar; leading to
inaccurate results if the density of salient points in the image
is low. The recent work [18] uses a region-growing algorithm
to expand a feature-based reconstruction into a more dense
one. Typically both methods are computationally expensive,
making them unsuitable for online robot navigation.

Our main contribution is the use of direct monocular
SLAM methods [19], [20] that achieve real-time and dense
–one point per image pixel– 3D reconstructions from the
only input of a monocular sequence. Notice that our proposal
overcomes the two limitations mentioned in the above para-
graphs. We use a minimal low-cost sensor configuration of one
camera, suitable for small vehicles. And we achieve dense,
one-point-per-pixel 3D reconstructions without relying on any
extra assumptions. This technique opens new opportunities to
exploration of the benthic areas using cheap and small vehicles.

The rest of the paper is organized as follows. Section II
describes a classification algorithm that rejects hazy image
regions. Section III describes the direct SLAM algorithm.
Section IV shows the experimental results and section V gives
the conclusions.

II. HAZE CLASSIFICATION

As we use a forward-looking camera that might be imaging
scenes at a large depth, part of the image might be hazy
and useless for a reconstruction algorithm. We use a SVM-
classification scheme in order to identify such hazy areas.

First, we segment the image I into a set of superpixels
Ω = {S1, . . . ,Si, . . .}. Superpixels are image regions of
homogeneous color. In this work, we use the superpixel
segmentation proposed in [21]. See figures 1(a) and 1(b) for
an example of an underwater image and its segmentation into
superpixels.



(a) Underwater image (b) Superpixels

(c) Haze removed

Fig. 1: Haze classification example. (a) shows an underwater
image taken by a robot with a frontal camera. Notice the
haze effect in the upper part of the image. (b) shows the

superpixel segmentation. Notice how the segmentation
captures the main areas of the image. (c) shows the results of

the SVM-based haze classification. Notice how the upper
superpixel, containing the haze, has been correctly classified
and will not be used for the reconstruction. Figure best seen

in color.

For every superpixel Si we extract a feature vector com-
posed of six parameters. The first three parameters refer to the
color of the superpixel, and are specifically the median of each
color channel in the superpixel minus the median of the color
channel in the entire image. The fourth and fifth parameters
are the image coordinates of the superpixel centroid. The
sixth parameter is the superpixel size. We normalized all the
features.

As the two classes, haze and non-haze, are clearly sepa-
rable, we obtained perfect classification results in all of our
images. In our example, notice in figure 1(c) how the hazy
area has been correctly classified. Image pixels classified as
haze will not be used for localization and mapping.

III. DIRECT LOCALIZATION AND MAPPING

A. Overview

Direct mapping uses the photometric intensity I(u) of a
pixel u in a frame I to estimate its inverse depth ρ –better con-
ditioned that the depth. The dense reconstruction is composed
of one point X(u, ρ,T) per pixel, that can be extracted from
its image coordinates u, inverse depth ρ and the camera pose
transformation T for the image I. Camera pose transformations

T =

[
R t
0 1

]
are composed of a rotation matrix R and a

translation vector t. As the frames are highly overlapping,
only a subset of reference keyframes Ir summarizing the
sequence are used for mapping. The camera internal calibration
is represented with the matrix K. In order to reduce the effects
of the refraction, the camera was calibrated in the underwater

medium (i.e. the images of the classic chessboard are acquired
in the underwater environment).

Our algorithm is divided into three separate threads. Al-
though our aim is to produce a dense reconstruction M =
{X1,X2, . . .}, the first two threads operate with a semidense
reconstruction M∗ ∈ M of high-gradient image pixels u∗ ∈
u. Low-gradient image pixels produce noisy reconstructions
that are regularized under the assumption that real surfaces
are smooth. Regularizing is the most demanding process in
our SLAM pipeline and might compromise the real-time
constraints of the camera pose tracking thread.

Our approach overcomes this problem estimating first a
semidense map M∗ of high-gradient pixels u∗ from a set of
keyframes Ir of the image sequence (see the details on section
III-C). This semidense map is very accurate without the regu-
larization step and hence will need a low computational cost.
The camera pose Tk at time k is tracked using this semidense
low-delay map (section III-B). The dense reconstruction M
is estimated in a third lower-frequency thread not used by the
tracking thread (section III-D).

B. Semidense Tracking

The current camera pose Tk at time k is estimated by
minimizing the photometric reprojection error ΔI∗k using the
inverse compositional approach [22]. Such approach estimates
an incremental transformation ΔTk with respect to a seed
transformation Tk,s, which has some computational advan-
tages over a more straightforward optimization:

ˆΔTk = argmin
ΔTk

ΔI∗k. (1)

The photometric error ΔI∗k is as follows:

ΔI∗k = Ir(π(M∗,TrΔTk)− Ik(π(M∗,Tk,s)), (2)

where u∗ = π(M∗,T) stands for the projection model of a set
of high gradient 3D points M∗ in an image whose camera pose
is T. Tr refers to the transformation of the closest reference
frame.

The current camera pose is related to the previous estimate
as follows Tk = Tk,sΔT−1

k . For the optimization procedure,
we adopted a minimal parametrization of the camera pose.
The rigid body transformation T is mapped to the tangent
space se(3) of the euclidean space SE(3) at the identity. The
tangent space is named the twist coordinates ε and we denote
it with ε = (w, v)

t ∈ R
6. w ∈ R

3 is the angular velocity and
v ∈ R

3 is the linear velocity. ε is mapped into SE(3) by the
exponential map T = expse(3)(ε) and the inverse is done by
the logarithmic map ε = logSE(3)(T).

C. Semidense Mapping

For each high-gradient pixel u∗ in a reference keyframe Ir,
its inverse depth ρ is estimated by minimizing the photometric
error in m overlapping views {I1, . . . , Io, . . . , Im}.

ρ̂ = argmin
ρ

ΔI∗r , (3)



ΔI∗r =
m∑

o=1,o �=r

||(Ir(u∗)− Io(π(To, π
−1(u∗,Tr, ρ)))||, (4)

where M∗ = π−1(u∗,Tr, ρ) stands for the function that
backprojects the pixels u∗ from each reference image Ir to
a semidense map M∗ at inverse depth ρ. This map is again
projected on the overlapping images Io; and the photometric
difference of the semidense map between Ir and Io is mini-
mized.

For the first overlapping view we perform an exhaustive
search in the epipolar line for every possible inverse depth.
In the rest of them, the search space is limited by the inverse
depth ρ and an estimated variance σρ from the first view.

Here and in the dense mapping of next section III-D we
only optimize the scene depth ρ and assume that we have
accurate enough camera poses from the semidense tracking
described in section III-B. That makes our approach only valid
for local mapping; and a pose graph optimization similarly to
[23] would be needed for mapping large areas.

D. Dense Mapping

Finally, our dense mapping algorithm estimate the depth ρ
of every pixel u in every reference image Ir. The error function
ΔE to minimize is now composed of two terms, ΔIr and R,
with a relative weight λ

ΔE = λΔIr +R (5)

The first term ΔIr stands for the photometric error between
the reference image and a set of highly overlapping views. This
term is similar to the one defined in equation 4; but this time
for every pixel u instead of high-gradient ones

ΔIr =

m∑
o=1,o �=r

||(Ir(u)− Io(π(To, π
−1(u,Tr, ρ)))||, (6)

The second term R is a regularization term that favours
3D reconstructions of low depth variations. This second term
is of key importance to produce accurate and dense maps from
visual sensors. The underlying assumption is that most of the
surfaces in 3D scenes are smooth, which is quite reasonable in
a wide array of cases. The depth of homogeneous-color image
regions, difficult to estimate based on their photometric infor-
mation, is then additionally constrained by this assumption and
their neighboring highly-textured pixels.

The specific form of this term is

R = g(u)||∇ρ||ε (7)

where ∇ρ is the depth gradients and g(u) a weighting term
that allows larger depth gradients in regions of higher color
gradients. This models the reasonable assumption that depth
discontinuities are usually associated with high color gradients.

The global energy can be minimized very efficiently by
decoupling its two terms and converting them to their primal-
dual formulation via the Legendre-Fenchel transform. The

Fig. 2: Experimental platform used for the image sequence
acquisition: an underwater vehicle Seabotix LBV300-5

equipped with a color camera.

reader is referred to [19], [20] for the specific details of this
minimization and more information about direct monocular
SLAM methods.

IV. EXPERIMENTAL RESULTS

We evaluated our system in two monocular sequences
acquired from an underwater robot. The camera was posi-
tioned forward looking and calibrated underwater. The image
sequences were obtained with an underwater vehicle, the
Seabotix LBV300-5, equipped with a color camera (Fig. 2).
Two sequences are presented here. Firstly, images were ac-
quired in a pool whose floor simulates a rocky marine seafloor.
The second sequence of images were acquired in Brazil’s
Southeast Coast (approximately 17 nmi from the coast) with
depths ranging from 12m to 20m. The imaged area is known
as Parcel do Carpinteiro – a reef which of irregular bottom
topography formed by beach rocks, gravel and sand.

Figure 3 summarizes the results of the pool experiment.
Figure 3(a) shows an illustrative keyframe of the sequence.
Figure 3(b) shows in red the image area that has been classified
as hazy. The bottom part shows the estimated depths of the
pixels, where darker grey means larger depths. Notice how the
closest scene parts, corresponding to the bottom of the image,
are correctly estimated at small depths. Finally, figure 3(c)
shows the estimated scene map, composed of the point clouds
of every keyframe. Notice the accuracy of the reconstruction.

Figure 4 shows the results of the seafloor sequence. Figure
4(a) shows a sample frame of the sequence. Figure 4(b) shows
in red the image area that has been classified as hazy. Figure
4(c) shows the estimated scene map from the whole sequence.

Method Average cost [ms] Average # points
Semidense mapping 449 24000
Dense mapping 3174 76000

TABLE I: Average computational cost for semidense and
dense mapping.

Figure 5 shows the cost of the semidirect tracking process,
as a function of the number of tracked points. The mean
computational cost for our experiments was 19 milliseconds.
Table I shows the cost of semidense and dense mapping
process. Notice the high dense mapping cost, the average being
higher than 3 seconds. This high cost might produce a tracking



(a) Sample image, pool sequence (b) Estimated depth (c) Dense 3D reconstruction

Fig. 3: Pool sequence results. (a) shows a sample image from the sequence. (b) shows the estimated depths (the darker the
further). Red stands for regions classified as haze. (c) shows the reconstructed 3D map of the scene from a slightly different

viewpoint of the sample image. Figure best seen in color.

(a) Sample image, seafloor sequence (b) Estimated depth (c) Dense 3D reconstruction

Fig. 4: Seafloor sequence results. (a) shows a sample image of the sequence. (b) shows the estimated depths (the darker the
further). Red stands for regions classified as haze. (c) shows the reconstructed 3D map of the scene from a slightly different

viewpoint of the sample image. Figure best seen in color.
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Fig. 5: The computational cost of the semidense tracking is
linear with the number of tracked points. In our experiments

the mean cost was 19 milliseconds.

failure if the vehicle moves fast; being a faster semidense
mapping needed.

We run our experiments in a computer with a a 3.5 GHz
Intel Core i7-3770K CPU and 8.0 GB of RAM memory. It is
worth remarking that, as reported in [19], [20], dense mapping
can be greatly speeded up with GPU programming.

V. CONCLUSION

In this paper we have presented a SLAM framework
for the real-time estimation of the pose of an underwater
vehicle/camera and a dense reconstruction of the seafloor. We
address the challenging case of a forward looking monocular
camera as the only sensor. We believe that this minimal setting

is essential for the development of low-cost underwater robots
able to navigate autonomously without collision.

Our method starts by classifying the image regions into
hazy and non-hazy. Non-hazy image regions are used in
a direct mapping framework that estimates in real-time the
camera pose and a dense map of the scene. The processing is
divided into three threads. A first thread estimates a semidense
map of high-gradient pixels from a set of keyframes of the
sequence. The goal is to produce a low-cost map to track the
camera pose. The tracking thread estimates the pose for each
frame assuming a semidense map. Finally, a dense mapping
thread estimates a dense map by minimizing a photometric cost
–the photometric difference between corresponding points in
several views– and a regularization cost that favors smooth
solutions. The experimental results show that our pipeline
produces accurate and real-time reconstructions from the only
input of a monocular sequence. Our future work will be
focused in use of the information from hazy regions in order
to improve the multiview reconstruction.
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