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Abstract This paper presents a dense

monocular mapping algorithm that improves

the accuracy of the state-of-the-art variational

and multiview stereo methods by incorporat-

ing scene priors into its formulation. Most of

the improvement of our proposal is in low-

textured image regions and for low-parallax

camera motions; two typical failure cases of

multiview mapping.

The specific priors we model are the pla-

narity of homogeneous color regions, the re-

peating geometric primitives of the scene –that

can be learned from data– and the Manhat-

tan structure of indoor rooms. We evaluate

the performance of our method in our own

sequences and in the publicly available NYU

dataset, emphasizing its strengths and weak-

nesses in different cases.

Keywords Monocular SLAM · 3D Recon-

struction · Structure from Motion

1 Introduction

Estimating a 3D reconstruction of a scene from

2D images has been one of the most studied
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topics in the computer vision community for

the last four decades. As a result the geomet-

ric models for single and multiple views are

currently well-known [19]. The topic also has

a key importance for robotics, as robots need

accurate models of their environment in order

to interact safely with it. The sequential 3D

estimation of the scene and the camera pose

is usually known in the robotics community as

visual SLAM, the latter acronym standing for

Simultaneous Localization and Mapping.

From a geometric point of view, we need

at least two views to estimate the depth of a

general scene. The standard 3D reconstruction

pipeline starts from multiple views of a scene

and uses the well-known geometric models to

minimize an error related with the goodness

of the estimation. The traditional approaches

minimize the geometric reprojection error of

a sparse set of salient points (e.g., [8,23,33])

while more recent ones use the photometric

error [28,10]. These algorithms have two main

limitations that are rarely mentioned in the

literature, failing in the cases of low-texture

scenes and low-parallax camera motions. Both

cases are likely to appear in indoor and man-

made scenes.

Although single-view reconstruction is an

ill-posed problem, meaning that in general

depth cannot be estimated from one view,
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(a) Variational mapping 

(h) Ours: Variational Mapping + 
3DS, DDP and Layout

Monocular sequence (multiple views)

Prior 1: Textureless Regions are planar segments

Prior 3: Rooms are Box-like

Prior 2: Multi-planar patterns 

(b) 2D superpixels (c) 3D superpixels (3DS)

(e) Layout (f) Room Labels (g) Objects

(d) Data-driven Primitives (DDP)

Fig. 1 Incorporating scene priors to dense monocular mapping. (a). Variational mapping fails in textureless
regions (top view). Notice for example the large errors in the walls. We use the following information to fix
this error. Prior 1: Textureless regions are planar segments. We segment the image into superpixels (b)
and triangulate them from multiple views (c). Prior 2: Man-made scene entities have repeating patterns
that can be learned from RGB-D data. (d) shows the detections of such data-driven primitives, capturing
the three normals of the scene. Prior 3: Indoor scenes are box-like. We fit a box to a sparse reconstruction
(e). Given the room layout, we classify the image into the room geometric parts walls-floor-ceiling (f) and
clutter (g). This gives us the prior depth and shape for the pixels classified as room geometric parts in (f).
(h) shows how the 3D reconstruction is improved when the three scene priors are used.

there are solutions based on exploiting non-

geometric cues and assumptions on the scene.

For example, [35] creates a piecewise pla-

nar reconstruction with user interaction. [22],

also using planar assumptions, is able to re-

construct outdoor scenes. [31,9] predict the

depth from a single image by learning models

from training data. Single-view reconstruction

has been proposed for robot navigation and

planning [26,32], but its accuracy is usually

lower than multiview techniques and might fail

catastrophically if the underlying assumptions

are not met or the current image is far from

the training set.

In this paper we propose the combination

of state-of-the-art dense monocular SLAM al-

gorithms (specifically we take [28] as our base-

line) with higher-level features, data-driven

and scene understanding cues to address the

failure cases of low-texture scenes and low-

parallax motions. We use 3D superpixels

(3DS) [3] to model areas of homogeneous color,
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data-driven 3D primitives (DDP) to predict

the depth of repeating scene patterns from a

single view [13] and layout estimation and clas-

sification [20] to predict the depth of the walls

and ceiling, usually textureless. Our experi-

mental results show that our approach out-

performs our baseline [28] in all the cases.

Through several sequences, we illustrates the

weaknesses and strengths of each of our depth

cues.

See figure 1 for an overview of our system.

1(a) shows the 3D reconstruction of a state-

of-the-art dense SLAM method in a bedroom

scene. Notice the errors in the walls. Observe

the scene priors; 3D superpixels (3DS) in (c),

data-driven primitives (DDP) in (d) and Lay-

out and room labels in (e) and (f). (h) shows

the improved reconstruction.

This paper builds on the previous work [6].

The specific contributions of this paper are

– The evaluation of a new single-view depth

prior based on learning geometric primi-

tives from training data.

– The fusion of the three priors. Notice that

[6] just evaluated two of the priors sepa-

rately.

– An extended experimental evaluation of

the proposed algorithm, including several

sequences from the publicly available NYU

dataset.

The rest of the paper is organized as fol-

lows. Section 2 describes the related work. Sec-

tion 3 gives the details of our proposal. Section

4 presents the experimental results and section

5 concludes.

2 Related Work

2.1 Dense Monocular Mapping

Real-time and dense 3D reconstructions of

small-size environments from monocular se-

quences were first achieved in [17,28,34]. The

problem is formulated as the minimization of

an energy composed of a photometric and a

regularization term; the first one modeling the

photometric consistency of corresponding pix-

els and the second one the smoothness of re-

gions with low image gradients. A typical lim-

itation of standard regularizers based on the

Total Variation or the Huber norm is that they

have high errors in large low-textured image

regions. [10] estimates the depth only for high-

gradient pixels, producing semidense maps. In

contrast, our proposal produces fully dense

maps. [30] uses a non-local regularizer, able to

propagate information from distant pixels and

obtain more accurate reconstructions. Instead

of relying in the regularizer, our proposal in-

troduces new features (3D superpixels [3]), 3D

primitives learned from data and floor-ceiling-

walls-clutter classification to the formulation.

Our proposal improves over the state of the

art in the case of textureless regions. But it

also improves in the low-parallax case, as our

two latest cues use single view –zero-parallax–

information.

2.2 Data-Driven Depth Cues

There are several works that use machine

learning and high-level cues to improve mul-

tiview reconstructions. [1] jointly optimize 3D

objects and sparse keypoints achieving a bet-

ter performance in both tasks than the per-

formance achieved optimizing them separately.

[29] detects patches based on gradients in the

images and looks for them in a RGB-D dataset

to infer depth information and use it to fill

low texture areas in keypoint-based Structure

from Motion. Differently from them we esti-

mate fully dense 3D reconstructions. [2] and

[7] use object constraints to improve 3D dense

reconstructions. Our approach aims to recon-

struct scenes instead of objects.

2.3 Manhattan And Piece-Wise Planar

Models

[14,16,37] used the Manhattan assumption to

fill textureless gaps in sparse 3D reconstruc-

tions. [25,3,4] and [12,36] have used super-
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pixels and indoor scene understanding respec-

tively to fill textureless gaps in sparse 3D re-

constructions. Our contribution is to fuse the

previously mentioned cues and a new one –

data-driven primitives– in a dense variational

formulation. Our main advantages over them

are the estimation of pixelwise reconstructions

–the previously referred ones are not fully

dense.

3 Dense Mapping Using Scene Priors

3.1 Problem Formulation

Our aim is to estimate the inverse depth ρ(u)

for every pixel u of a reference keyframe Ir us-

ing a set of overlapping views {I1, . . . , Ij , . . .}.
In order to do that we minimize a global en-

ergy function Eρ; which is the weighted sum

of a photometric error data term C(u,ρ(u)), a

regularization term R(u,ρ(u)) and our newly

proposed term which is a summation of the

three scene priors ρ1, ρ2 and ρ3

Eρ =

∫
(λ0C(u,ρ(u)) + R(u,ρ(u)) + (1)

+

3∑
π=1

λπ
2

P(u,ρ(u),ρπ(u))∂u

λ0 and λπ are the weighting factor that ac-

count for the relative importance of the energy

terms.

3.2 The Scene Priors

To extract our three scene priors we need

two preprocessing steps. We extract first

a set of salient points u∗ ∈ u in every

keyframe of the sequence, compute corre-

spondences and estimate the salient points’

3D positions which we defined as p =(
p>1 . . . p>i . . . p>n

)>
and camera poses c =(

c>1 . . . c>r . . . c>j . . . c>m
)>

using a stan-

dard Bundle Adjustment optimization [33].

In the second preprocessing step, we seg-

ment every reference keyframe Ir into a set of

superpixels Sr = {sr1, . . . , srl , . . . , srt} using the

algorithm by Felzenszwalb et al. [11].

3.2.1 3D Superpixels ( 3DS)

We assume that the superpixels Sr = {sr1, . . . ,
srl , . . . , s

r
t} correspond to approximately pla-

nar areas in the scene. We will estimate their

3D parameters using [3], which we will sum-

marize here for completeness.

We can estimate the geometric parame-

ters Π =
(
π>1 . . . π>k . . . π>q

)>
for the q pla-

nar superpixels {s1, . . . , sk, . . . , sq} that were

matched in two or more keyframes with the

following optimization

Π̂ = arg min
Π

m∑
r=1

q∑
k=1

F (εrsk) . (2)

εrsk = ursk − h
(
uj
shk
, πhk , cr, cj

)
stands for

the reprojection error of the superpixel sk con-

tours in the keyframe Ir. As we are approx-

imating the superpixels by planar surfaces,

h stands for a homography model. We use

a robust function of the error F (∗) to avoid

the influence of outliers. Superpixels πk are

parametrized by its plane normal nk and dis-

tance to the origin dk.

The superpixel correspondences between

several views are computed as follows. We first

search for pairwise correspondences between

two keyframes Ir and Ij using a Monte Carlo

approach. For every superpixel sk in Ir we cre-

ate several plane hypotheses πhk . The plane hy-

pothesis are ranked according to the reprojec-

tion error of the superpixel contours in image

Ij

εshk = ||uj
shk
− h

(
urshk

, πhk , cr, cj

)
|| (3)

The planar superpixel hypotheses πhk with

the smallest error εshk are taken as the initial

seed for the optimization of equation 2.
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The scene prior inverse depth ρ1(u) for ev-

ery pixel u ∈ sk is computed as the intersec-

tion of its backprojected ray and the plane πk

ρ1(u) = || − uK−1r Rrnk

dkK
−1
r u

|| . (4)

Where Rr is the rotation matrix of the

keyframe Ir and Kr is its internal calibration

matrix.

3.2.2 Data-Driven Primitives (DDP)

A data-driven primitive is a repetitive and dis-

tinctive image gradient pattern with an associ-

ated 3D pattern. The models for such patterns

can be learned from RGB-D training data. At

test time, and from a single view, the gradient

patterns can be detected and their depth can

be predicted. Imagine, for example, the case of

a room corner. It is a primitive that appears

frequently indoors, it has a clear 3D pattern

and several associated image patterns depend-

ing on the viewpoint.

Specifically, we use the approach of [13].

Each primitive is defined by < w,N,y >;

where w is the weight of an SVM classifier,

N = {n(u)} is the set of normals for each pixel

u of the primitive patch, and y = {0, 1}m is

an indicator vector where yi = 1 if the train-

ing patch xi is an instance of such primitive.

Each patch has a geometric component xGi and

an appearance component xAi (HOG). In order

to build the SVM classifiers w the following

objective function is minimized on m training

images

arg min
y,w

R(w)+

m∑
i=1

(
∆(N,xGi ) + c2L(w,xAi , yi)

)
(5)

Where R is the classifier regularizer, each

ci trades off between terms, and L is the loss

function. Notice that the above classifiers will

provide a set of sparse detections of some ge-

ometric primitives in the test images. Dense

results can be achieved by the propagation of

these sparse detections to the entire image.

But we have observed that such propagation

might be innacurate if only a small number of

primitives is detected. In order to keep the ge-

ometric primitives as accurate as possible, we

only consider the sparse detections.

Similarly to section 3.2.1 we extract su-

perpixels and assume that they correspond to

approximately planar areas in the scene. For

every superpixel πk its plane normal nk and

distance to the origin dk are estimated. For

each superpixel, the common normal direc-

tion is the most voted one from the geometric

primitives. The distance dk is estimated using

the approach of section 3.2.3; and the inverse

depth prior ρ2(u) for every pixel u ∈ sk is

computed as the intersection of its backpro-

jected ray and the plane πk (equation 4).

3.2.3 Layout

One of the goals of indoor scene understand-

ing is the estimation of the rough geometry of

a room –its layout– and the classification of

every image pixel u into the wall, floor, ceiling

or clutter classes. In this paper we basically

use the algorithm of [20] and extend it to a

multiview case. For an overview of the layout

and the labelling algorithm see figure 2.

The main assumption is that we are in

a cuboid room. The geometric model of the
room layout L will be composed of six planes

L = {π1, π2, π3, π4, π5, π6}. Every plane πk will

be parametrized by its plane normal nk and

distance to the origin dk. We first estimate

the plane normals nk by extracting the van-

ishing points vrk from the dominant directions

of the room in every keyframe Ir [24]. These

vanishing points are estimated by clustering

the detected 2D line segments in the keyframe

in three dominant clusters. Figure 2 b shows

the vanishing points as red, green and blue

circles. We backproject them to the 3D world

Vr
k = K−1r vrk (Kr standing for the calibration

matrix), group them into three clusters, and

take their centroids.
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(a) Sparse Reconstruction

(b) Manhattan World

Manhattan World

 Multi-view 3D Box Layout Scene Labels

(e) Room Geometry

(f) Room Objects

1

2
3

(c)

(d)

Fig. 2 Overview of the layout and the labelling algorithm. See section 3.2.3 for details.

In order to estimate the room layout box,

we will fit planes to the sparse reconstruction

p =
(
p>1 . . . p>i . . . p>n

)>
of figure 2. For this

plane fitting, we start from the 3 dominant

orientations of the room; the Manhattan di-

rections provided by the vanishing points. For

each orientation, we hypothesize Nhyp planes

at different distances. Specifically, Nhyp = 25

in our experiments. A plane hypothesis is con-

sidered valid if it is supported by a minimum

number of points (6 in our experiments). A

point supports the hypothesis if it is within a

predefined threshold. Finally, out of the win-

ning planes, we select 6 extremal planes con-

sisting the 3D box layout (figure 2 c)

Next, leveraging this 3D box layout, we

label every superpixel from the segmenta-
tion Sr = {sr1, . . . , srl , . . . , srt} into 4 different

classes {W,F,C,Cl} –wall, floor, ceiling and

clutter respectively. See [21] for details on the

superpixel features and the classification algo-

rithm. One of the most informative features

for this classification is the interposition fea-

ture. The superpixels belonging to the room

geometry must be totally contained in one of

the projected box polygons. The superpixels

belonging to the object clutter can cross the

boundary between two polygons of the project

layout box. For example, in figure 2 d, super-

pixels numbered 1 and 3 are totally contained

in the wall and the floor polygon. Hence, they

get the room geometry labels (figure 2 e). The

superpixel numbered 2 is crossing the red line

of the projected box layout. Only 3D objects

have this physical property and hence it is la-

belled as clutter (figure 2 f). For more details

see [20]. Notice that this method only tells us

where the objects are but it does not give us

the orientation nor the depth prior for the clut-

ter (object) region. Therefore, we will not con-

straint the depth of the pixels u ∈ Cl that

are labeled as clutter. For the rest of the pix-

els u ∈ {W,F,C} we will compute an a pri-

ori inverse depth ρ3(u) from the intersection

between the backprojected ray K−1r u and the

layout plane πk ∈ L where it has been classi-

fied using equation 4.

3.3 The Photometric Cost (C(u,ρ(u))).

As in [28], our photometric error is based on

color difference between the reference image

and the set of short-baseline images. Every

pixel u of the reference image Ir is first back-

projected at an inverse distance ρ and pro-

jected again in every close image Ij .

uj = Trj(u,ρ) = KR>

((
K−1u
||K−1u||

ρ

)
− t

)
(6)

Where T,R and t and respectively the rel-

ative transformation, rotation and translation
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between keyframe r and frame j. The photo-

metric error is the summation of the color er-

ror between every pixel in the reference image

and its corresponding in every other image at

an hypothesized inverse distance ρ.

C(u,ρ(u)) =
1

|Is|

m∑
j=1,j 6=r

f (ε(Ij , Ir,u,ρ)) (7)

ε(Ij , Ir,u,ρ) = Ir(u)− Ij(Trj(u,ρ)) (8)

Where Is is the number of images used in

the reconstruction, used for normalization of

the photometric term. Differently from [6] we

use a robust cost function –Tukey’s cost func-

tion f– in the photometric term instead of L1

norm, which improves the accuracy of the re-

construction in depth discontinuities due to

the influence of outliers in occlusions [5].

3.4 The Gradient Regularizer (R(u,ρ(u))).

The gradient regularizer is the Huber norm of

the weighted gradient of the inverse depth map

||∇ρ(u)||ε

R(u,ρ(u)) = g(u)||∇ρ(u)||ε (9)

Depth discontinuities often coincides with

contours. g(u) is a per-pixel weight that de-

creases the regularization strength for high-

gradient pixels.

g(u) = e−α||∇Ir(u)||2 (10)

Where α is a constant.

3.5 The terms associated with the scene

priors (P(u,ρ(u),ρπ(u))).

The scene prior terms model the distance

from every point to its estimated planar prior

(or priors) ρπ detailed in section 3.2. Differ-

ently from [6] we use iterative reweighted least

squares to be robust against outliers [5]. This

is of key importance to deal with classification

or segmentation errors. In those cases the cost

function of the error should saturate for large

values and have a limited influence on the so-

lution.

P(u,ρ(u),ρπ(u)) = wπ (ρ(u)− ρπ(u))
2

(11)

wπ is the Tukey’s cost function weight. In

the areas of the image where we do not have

a planar constraint (areas classified as clutter

in the Manhattan layout, small and textured

superpixels and areas where we did not detect

any geometric primitive) we set λπ = 0. We

set the lambda of 3D superpixels λ1 = 10 and

we set a smaller lambda for the other two pri-

ors λ2 = 5 and λ3 = 5. The reason is that

superpixels are based on multiview geometry

whereas layout and geometric primitives use

learning which is more prone to large errors.

3.6 Solution.

The energy is composed of two convex terms

g(u)||∇ρ(u)||ε +
3∑

π=1

1
2λπwπ (ρ(u)− ρπ(u))

2
and a non-convex

term λ0C(u,ρ(u)). The convex terms and the

non-convex term are optimized differently and

an auxiliary variable a is used to couple these

two terms:

Eρ,a =

∫ (
λ0C(u,a(u))+g(u)||∇ρ(u)||ε

+

3∑
π=1

1

2
λπwπ (ρ(u)− ρπ(u))

2
+

1

2θ
(ρ(u)− a(u))2

)
∂u

(12)

The coupling term 1
2θ (ρ(u) − a(u))2 will

enforce ρ and a to become the same as the

parameter θ is initialized in 0.2 and it is de-

rived to 0 iteratively. Therefore, equation 12

will result in the original energy 1.
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The non-convex term will be optimized

by sampling and the convex terms will be

efficiently optimized using a primal-dual ap-

proach.

The convex terms are converted to their

primal-dual formulation using the Legendre-

Fenchel transformation (details and proofs in

[18]). The energy in the equation 12 is then

minimized as follows

ρ̂ = arg max
q,||q||2≤1

{
arg min

ρ,a
E(ρ,a,q)

}
(13)

E(ρ,a,q) =
{〈

gAρ,q
〉
− δq(q)− ε

2
||q||22+

3∑
π=1

1

2
λπwπ (ρ− ρπ)

2
+

1

2θ
(ρ− a)2+

λ0C(a)
}
(14)

Where q is the dual variable, Aρ stands for the

gradient of ρ, ε is the threshold of the Huber

norm which determines when L1 or L2 norm

are used [28] and δq is an indicator function

[18].

For the dual variable q the energy has to

be maximized, therefore a gradient ascent step
∂E(ρ,a,q)

∂q = ∇(q) is computed:

∂E(ρ,a,q)

∂q
= gAρ− εq (15)

Discretizing ∇(q) = q(n+1)−qn

σq
and rearrang-

ing terms:

q(n+1) − qn

σq
= gAρn − εq(n+1) (16)

Where σq is the differentiation step.

q(n+1) = (qn + σqgAρn) / (1 + σqε) (17)

q(n+1) = q(n+1)/max(1, ||q(n+1)||1) (18)

In the case of the variable ρ, the energy

is minimized, therefore a gradient descent step

∂E(ρ,a,q)
∂ρ = ∇(ρ) is computed. Using the di-

vergence theorem
∂
〈
Aρ,q

〉
∂ρ = −div(q) = ATq,

where ATq forms the negative divergence of

q:

∂E(ρ,a, q)

∂ρ
= gATq +

1

θ
(ρ− a)+

3∑
π=1

λπwπ (ρ− ρπ)

(19)

Discretizing ∇(ρ) = ρ(n+1)−ρn
σρ

and rear-

ranging terms:

ρ(n+1) − ρn

σρ
= −gATq(n+1)

− 1

θn
(ρ(n+1) − an)

−
3∑

π=1

λπwπ

(
ρ(n+1) − ρπ

) (20)

Where σρ is the differentiation step.

ρ(n+1) =(
ρn + σρ

(
−gATq(n+1) + an

θn +
3∑

π=1
λπwπρπ

))
(1 +

σρ
θn +

3∑
π=1

λπwπσρ)

(21)

The remaining non-convex function is min-

imized using a point-wise search for each a in

the range a = [ρmin,ρmax]:

â = arg min
a

Eaux(ρ,a) (22)

Eaux(ρ,a) =
1

2θ
(ρ− a)2 + λ0C(a))) (23)

Finally, we use the acceleration of the non-

convex solution recommended in [28] and also

we achieve sub-sample accuracy by performing
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a single Newton step using numerical deriva-

tive in the discrete variable a:

â(n+1) = â(n+1) − ∇E
aux

∇2Eaux
(24)

Equations 17, 18, 21, 22 and 24 are com-

puted iteratively while θ(n+1) = θn(1− 0.001 ∗
n) is higher than 0.0001.

For the initialization of the iterative opti-

mization we will use the photometric depth in

the high-gradient image regions and the aver-

age of the depths of the scene priors for tex-

tureless areas. We have observed that this ini-

tialization has better convergence than a pho-

tometric one.

4 Experimental Results

We have evaluated different aspects of our

proposal in indoor and outdoor sequences of

small and middle-size scenes. For every in-

door experiment we have a RGB-D sequence.

We used the D channel as the ground truth

depth for the scene and our algorithm used the

RGB data. We used our own sequences and

sequences from the public NYU dataset [27].

In both cases the camera used was the Mi-

crosoft Kinect. The outdoor experiments were

recorded with a RGB camera and we only show

qualitative results, due to the limitations of

RGB-D sensors under direct sunlight.

We divided our results on two subsets. Sec-

tion 4.1 presents results on low texture scenes.

Section 4.2 presents results on low parallax

camera motions using the sequences from the

NYU dataset.

4.1 Low Texture Scenes

4.1.1 Indoors

We have evaluated the performance of 3D su-

perpixels (3DS) as a prior for direct map-

ping with 5 indoor sequences (Bookshelf, Desk-

top, Corner1, Corner2 and Wall). The experi-

ments in this section deviate from the assump-

tions of the other two priors–layout and geo-

metric primitives–, as most of them are close

ups. We will only evaluate the improvement

obtained using 3DS. 3DS is a more general

prior than Layout and data-driven primitives

(DDP), as it can be applied in any scene. DDP

requires scenes similar to the training set and

Layout requires a global view of the indoor

scene. On the other hand, the triangulation

of superpixels require a high-parallax camera

motion while the other two perform reasonably

even for the single-view case.

Sequence
Mean Error [cm]

DTAM Ours (3DS)

Bookshelf (3DS) 2.9 2.7
Desktop (3DS) 4.4 2.9
Corner1 (3DS) 6.6 3.2
Corner2 (3DS) 18.5 13.7
Wall (3DS) 30.4 10.3
Lab (3DS)

28.2
10.2

Lab (Layout) 15.5
Lab (3DS + Layout) 10.5

Table 1 Mean of the estimated depth error for the
standard DTAM and our approach using 3DS.

Figure 3 and table 1 show the qualita-

tive and quantitative results for these exper-

iments. The so-called –Bookshelf experiment

is a clear textured scenario where the photo-

metric term is already very informative and

the reconstruction is quite accurate with stan-

dard dense mapping. But even in this case,

3DS improves the mean error 6%. In the other

four sequences there are larger textureless ar-

eas and the gradient-based regularization pro-

duces larger errors. In these latest cases, 3DS

improves the 3D reconstructions significantly.

We have used a larger sequence recorded

in our Lab to compare 3DS and Layout. Find

a qualitative summary of the results in figure

4, the 3D maps obtained in figure 5 and the

quantitative results in table 1. 3DS and Lay-

out mean errors are 10.2 cm and 15.5 cm re-

spectively, both smaller than the DTAM base-

line error (28.2 cm). 3DS outperforms Layout

in this case because the sequence was recorded

with large camera translations ?and hence high
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Ref. Image 3DS GT Depth DTAM Ours (3DS)

B
o
o
k
sh

e
lf

D
e
sk

to
p

C
o
rn

e
r1

C
o
rn

e
r2

W
a
ll

Fig. 3 Indoor experiments, high-parallax camera motion, close-ups. 1st column: Reference image. 2nd

column: 3D superpixels. 3rd column: ground truth depth –red stands for no-depth-data. 4th column:
DTAM depth. 5th column: Ours, using 3DS. Notice how this latest column is visually closer to the ground
truth than the DTAM one.

parallax. This is the best configuration for

3DS. You can observe a large error in the lay-

out in the last row of figure 4. The red line

standing for a corner is wrongly estimated at

the middle of a wall. Our approach using Lay-

out, in the last column, has a high depth error.

Notice in the last row of table 1 that the

combination of 3DS and Layout is worse than

3DS alone. The reason is that the different en-

ergy terms in the optimization are weighted

with the parameters λπ, that we learn from

training data.

Finally, we have used three more sequences

(Bedroom1, Bedroom2 and Kitchen) to further

evaluate the performance of our algorithm in a

high-parallax low-texture case, this time using

the three scene priors and comparing against

the baseline DTAM and also against the state-

of-the-art batch approach PMVS [15]. See fig-

ure 7 and table 3 to observe the distribution of

the errors in these experiments. Note that in

the Bedroom2 and the Kitchen experiment the

solution for standard DTAM is already quite

accurate and we only slightly outperform it.

For the case of Bedroom1 the baseline DTAM

leads to big errors because of the large un-

textured wall. This error is fixed by Layout

and DDP but the algorithm did not find a

3D Superpixel for the large wall, so the er-

ror is close to the DTAM baseline. Notice that

we obtained competitive results in the com-

parison against PMVS. Note also in figure 11

that PMVS creates semidense maps and leaves

holes in low textured areas, whereas we achieve

fully dense reconstructions..

4.1.2 Outdoors

We have performed two outdoor experiments

–in a building corner and a façade– to evalu-

ate 3D superpixels in outdoor scenes. Figure 8

summarizes the results. Observe how in both

cases the low texture walls are not planar for

the DTAM baseline. 3D superpixels are able

to improve the results and estimate the cor-

rect planar surfaces.
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Fig. 4 Lab experiment. Each row shows the results for a reference image. 1st column: RGB image. 2nd

column: 3D superpixels. 3rd column: Room layout and labels. Red lines stand for the projected box.
Magenta stands for clutter, green for floor and dark blue for ceiling. Other colors stand for walls. 4th

column: ground truth depth –red stands for no-depth-data. 5th: column DTAM depth. 6th column: Our
approach, using 3DS. 7th column: Our approach, using Layout. The improvement of the depth maps of
DTAM with planarity constraints against the standard DTAM is visually noticeable.

(a) DTAM.
Top view

(b) Ours (3DS).
Top view

(c) Ours (Lay-
out). Top view

(d) Ours (3DS). Side view

Fig. 5 3D maps for the Lab experiment. Notice the large DTAM errors in 5(a) and the more accurate
reconstructions in 5(b) –using the layout– and 5(c) –using 3D superpixels. Notice the differences: 5(b) shows
small misalignments, while 5(c) is globally consistent but with large errors in the objects and final parts of
two walls due to wrong labels and layout errors. 5(d) shows a side view of DTAM using 3D superpixels.
Quantitative results are in table 1.

4.2 Low Parallax Camera Motion

We have used the NYU dataset [27] to evalu-

ate the performance of our algorithm in low-

parallax camera motion sequences. The first

thing to remark is that 3D superpixels will per-

form badly for this case. In our experience, in

order to have an accurate estimation of the 3D

superpixel the baseline has to be greater than

0.2 times the average depth of the keyframe.

This constraint does not hold for the sequences

tested in this dataset, so the results for 3DS
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Fig. 6 Results from the Bedroom1, Bedroom2 and Kitchen sequence.

DTAMPMVS LAY. 3DS DDP ALL
0

10

20

30

40

50

E
R

R
O

R
 (c

m
)

 

 

Median
Mean
25%−75%
9%−91%

(a) Bedroom1

DTAMPMVS LAY. 3DS DPP ALL
0

2

4

6

8

10

12

14

16

18

E
R

R
O

R
 (c

m
)

 

 

(b) Bedroom2

DTAMPMVS LAY. 3DS DDP ALL
0

5

10

15

20

25

E
R

R
O

R
 (c

m
)

 

 

(c) Kitchen

Fig. 7 Box and Whiskers plots showing the depth error distribution for the indoor high-parallax sequences.

RGB Image 3DS Ours (3DS) DTAM Ours (3DS)

C
o
rn

e
r

Fa
ca

d
e

DTAM

Fig. 8 Outdoor results, in a Corner and a Façade. The improvement of 3DS can be noticed visually.

are the same than the baseline DTAM and we

only present results for DDP and Layout. As

previously said, this is a clear limitation of 3DS

–and in general of multiview geometry– and an

advantage of DDP and Layout, that give rea-

sonable results even in the single-view case.

We have performed 4 reconstructions of the

NYU dataset, that we will denote as NYU #1,

#2, #3 and #4 and that corresponds to the se-

quences printer room 0001 rect (#1 and #2),

bedroom 0106 rect (#3) and bedroom 0110 rect

(#4) of the dataset. Figure 9 shows the Box-
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Sequence
Mean Error[cm]

DTAM PMVS (%) Ours

Bedroom1 (3DS)

15.8 7.0 (18%)

15.0
Bedroom1 (DDS) 4.2
Bedroom1 (Lay.) 7.9
Bedroom1 (All) 5.9

Bedroom2 (3DS)

7.1 5.7 (22%)

6.7
Bedroom2 (DDP) 7.6
Bedroom2 (Lay.) 7.7
Bedroom2 (All) 6.8

Kitchen (3DS)

7.2 5.5 (20%)

5.6
Kitchen (DDP) 7.7
Kitchen (Lay.) 5.7
Kitchen (All) 5.2

Table 2 Mean of the estimated depth error for
DTAM, PMVS and ours in high-parallax low-
texture sequences. (%) is the percentage of pixels
reconstructed by PMVS, notice that PMVS only
reconstruct high texture pixels.

and-Whiskers plot of the depth error in this

sequences for the baselines DTAM and PMVS

and our dense mapping algorithm using Lay-

out, DDP and both. Notice first the huge er-

ror of PMVS compared with the rest of the

approaches. The reason is, being a multiview

stereo algorithm, it is very affected by low-

parallax measurements. The magnitude of the

error –one order of magnitude higher than the

others– can be seen in table 3, that shows the

mean error values. DTAM is less affected by

the low parallax; but still the use of scene pri-

ors improves its accuracy. See the mean values

in table 3.

Sequence
Mean Error[cm]

DTAM PMVS (%) Ours

#1 (Lay.)

9.7 157.5 (3%)

10.4
#1 (DDP) 7.9
#1 (All) 9.0

#2 (Lay.)

21.2 43.8 (8%)

8.4
#2 (DDP) 9.2
#2 (All) 7.6

#3 (Lay.)

22.2 246.0 (2%)

12.5
#3 (DDP) 19.4
#3 (All) 14.5

#4 (Lay.)

42.3 288.4 (9%)

23.8
#4 (DDP) 39.1
#4 (All) 20.9

Table 3 Mean of the estimated depth error for
DTAM, PMVS and ours in low-parallax sequences.
(%) is the percentage of pixels reconstructed by
PMVS, notice that PMVS only reconstruct high
texture pixels.

The performance of the different scene pri-

ors on these 4 NYU scenes can be better appre-

ciated in figure 10. Observe that in the exper-

iment NYU #1 the Layout is wrongly labeled

(some cupboards are labeled as walls). This is

the reason for the Layout algorithm perform-

ing slightly worse than DTAM in this sequence

(see the mean values in table 3). The labeling

has also big errors in NYU #4, where part of

the floor is labeled as clutter. But in this case

the texture in the floor allows to reconstruct it

more accurately than DTAM. In any case, this

is precisely the limitation of DDP and Lay-

out. As they rely on data-driven models, their

accuracy can be low if the test image is very

different than the training ones.

Finally, figure 11 shows the comparison

of our approach against PMVS in our high-

parallax sequences and the low-parallax NYU

ones. Notice first in the high-parallax se-

quences that PMVS is a semidense approach

that only reconstructs high-gradient pixels.

Our approach has the fundamental advantage

over PMVS of doing a full 3D reconstruction,

as seen in the figure.

Secondly, observe the bad results of PMVS

in the low-parallax sequences of figure 11. Our

approach, leveraging the single-view cues given

by the Data-Driven Primitives and the Layout

of the room, is able to reconstruct the scene

with high accuracy even if the geometric con-

straints are weak.

5 Conclusion

In this paper we have presented an algorithm

that fuses several scene priors and depth cues

in a dense mapping algorithm based on vari-

ational methods. Although the multiview ge-

ometric constraints stand out as the preferred

ones for monocular map building, their results

are poor in low-textured areas and for low-

parallax motions. We show how the use of

1) Superpixels as mid-level features, 2) Data-

Driven Primitives that appear frequently and

can be discovered from training samples, and

3) the rough room Layout estimation and pixel



14 Alejo Concha et al.

DTAMPMVS LAY. DDP ALL
0

5

10

15

20

25
E

R
R

O
R

 (
cm

)

 

 

(a) NYU #1

DTAMPMVS LAY. DDP ALL
0

10

20

30

40

50

60

E
R

R
O

R
 (

cm
)

 

 

Median
Mean
25%−75%
9%−91%

(b) NYU #2

DTAMPMVS LAY. DDP ALL
0

10

20

30

40

50

60

E
R

R
O

R
 (

cm
)

 

 

(c) NYU #3

DTAMPMVS LAY. DDP ALL
0

20

40

60

80

100

120

E
R

R
O

R
 (

cm
)

 

 

(d) NYU #4

Fig. 9 Box and Whiskers plots showing the depth error distribution for 4 indoor low-parallax sequences
of the NYU dataset.
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Fig. 10 Overview of the DDP and Layout results, the Ground Truth depth and our estimated depth in the
NYU dataset sequences. We are able to estimate accurate reconstructions for these low-parallax sequences.

labeling can improve the 3D reconstructions in

the two failure cases mentioned before.

Our experimental results show that 3D

superpixels offer the highest accuracy, but

they suffer from the multiview geometry lim-

itations. Firstly, their accuracy decreases if

the parallax is low. And secondly, superpixel

matching can be difficult in certain cases.

Their use as mid-level features is then recom-

mended only with strict thresholds in the par-

allax angle and descriptor distances. We think

that superpixels can be an excellent mid-level

feature for mapping low texture regions if mid-

baseline correspondences can be found.

Data-Driven Primitives and Layout esti-

mation and labeling are techniques designed

for the single-view case, hence being more ro-

bust to low-parallax motions. In this paper we

use a multiview version of the second one for

robustness, but it works reasonably well for

single images. Both cues improve the recon-

struction if the camera motion is small, and

also in low-textured areas. The reason for the

latest is 1) data-driven primitives capture non-

local primitives and hence cover some texture-

less areas, and 2) the Layout is a global scene

model. As their main limitation, their data-

based nature makes them inaccurate as the im-
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Fig. 11 Qualitative comparison of our approach against PMVS in our high-parallax sequences (left) and
the NYU low-parallax sequences (right). Notice the sparsity of PMVS in textureless areas and our dense
results. Also notice the bad 3D maps produced by PMVS in the low-parallax cases and how our algorithm
produces reasonable results.

age differs from the training samples. In this

case, more training data or more sophisticated

learning techniques could alleviate this prob-

lem.

For future work, we would like to study

the potential of this research for a robust and

real-time implementation. Regarding robust-

ness, our main concern is that data-driven

techniques can give large errors that are dif-

ficult to predict. Regarding real-time, we are

quite confident that the techniques we used

are low-cost. [3] already demonstrated that

3D superpixels can be reconstructed in real-

time. [12,36] estimated a multiview layout –

without labeling the image– in real-time. Fi-

nally, although there is no experimental evi-

dence of real-time for Data-Driven Primitives,

it consists of HOG features extraction and

SVM classification. Both algorithms require

low computation.
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