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Fig. 1: Illustrative results for our approach. (a) shows a semidense map estimated from a monocular sequence in a desktop
environment. Notice that it only contains high-gradient areas. (b) shows a map of the low-gradient areas, under the planar

assumption. (c) is the dense map of the scene, built from the two previous contributions.

Abstract— This paper proposes a direct monocular SLAM
algorithm that estimates a dense reconstruction of a scene
in real-time on a CPU. Highly textured image areas are
mapped using standard direct mapping techniques [1], that
minimize the photometric error across different views. We
make the assumption that homogeneous-color regions belong
to approximately planar areas. Our contribution is a new
algorithm for the estimation of such planar areas, based on the
information of a superpixel segmentation and the semidense
map from highly textured areas.

We compare our approach against several alternatives using
the public TUM dataset [2] and additional live experiments
with a hand-held camera. We demonstrate that our proposal for
piecewise planar monocular SLAM is faster, more accurate and
more robust than the piecewise planar baseline [3]. In addition,
our experimental results show how the depth regularization of
monocular maps can damage its accuracy, being the piecewise
planar assumption a reasonable option in indoor scenarios.

I. INTRODUCTION

SLAM, standing for Simultaneous Localization and Map-
ping, aims to estimate the pose of a mobile sensor and a
map of its surrounding environment in real-time. Monocular
SLAM, relying on a single camera as the only input, has
become a particularly valuable research topic during the last
decade. The small size, low weight and low consumption
of a monocular camera make it an excellent sensor for
autonomous robots –Micro Aerial Vehicles (MAVs) [4],
driverless cars [5] or underwater vehicles [6]–, augmented
reality demos [7] and 3D scanners [8].

One of the hardest challenges in monocular SLAM is the
estimation of a fully dense map of the imaged scene. A
monocular camera is a bearing-only sensor; and its pixel
depths are estimated from their correspondences in other

views. These correspondences are found by comparing the
photometric patterns in the candidate pixel neighborhoods.
As a result pixels in textureless areas cannot be reliably
matched across views and accurate 3D reconstructions are
usually limited to areas of high image gradients.

In this paper we follow the line initiated in [3], [9] and
model the environment with 3D points for high-gradient
areas and 3D planes for low-gradient areas. The assumption
made is that image areas with low photometric gradients
are mostly planar; which is met in most indoors and man-
made scenes. Low-gradient image areas are segmented using
superpixels [10]. Our experiments, using standard public
datasets, show that this assumption allows to estimate dense
and accurate indoor maps using a monocular camera. See an
illustrative result of our approach in figure 1.

The contribution of this paper is a new initialization
scheme for the piecewise planar areas that is more efficient,
robust and accurate than the baseline used in [3]. We compare
several monocular SLAM alternatives including semidense,
piecewise planar and dense; and discuss their performance.
We show that our piecewise planar monocular SLAM im-
proves the accuracy and density of a semidense algorithm
with a lower computational cost than a dense one.

The rest of the paper is organized as follows. Next section
describes the related work. Section III gives an overview of
our system. Section IV details the direct-based methods that
we use to estimate semidense maps and track the camera
pose. Section V details our proposal for piecewise planar
reconstructions. Finally, section VI shows our experimental
results and section VII concludes.



II. RELATED WORK

A. Direct SLAM

Direct visual SLAM [1] refers to a class of SLAM algo-
rithms, recently appeared, that uses the raw pixel intensity
values to estimate a map of the environment and the camera
motion. This is in contrast to the more traditional feature-
based methods [11], [12] that used the image coordinates of
a set of salient point correspondences. In principle, direct
methods are not limited to salient points and hence can
exploit the information from every pixel of the image –
with some limitations we discuss below. We can classify
such methods as semidense and dense. Note that some of
the systems presented below also use features for camera
localization.

1) Semidense SLAM: Semidense visual SLAM only
makes use of the high-gradient image pixels, as those are
the only ones producing reliable matches.

SVO [13] –standing for semidirect visual odometry–
uses feature correspondences as an implicit result of direct
motion estimation instead of an explicit feature extraction
and matching. The direct tracking is refined with bundle
adjustment.

LSD-SLAM [1] –standing for Large Scale Direct Monoc-
ular SLAM– performs a probabilistic filtering-based depth
map estimation which is tracked using direct image align-
ment. LSD-SLAM includes a pose graph optimization and
loop closure to extend the algorithm to large scale scenarios.
As it main weakness, the low textured areas are not recon-
structed.

[14] also builds a probabilistic semidense approach. Dif-
ferently from [1] it is built on top of a feature based SLAM
and again low textured areas are not reconstructed.

2) Dense SLAM: Differently from the above ones, dense
visual SLAM methods aim to estimate a depth for every pixel
both high and low-gradient ones. [7], [15] where the first
ones presenting dense results in real-time using a monocular
camera. They not only minimize the difference between
image intensities, but include a regularization term enforcing
smooth solutions. This latest term is crucial for reconstruct-
ing low-gradient pixels. GPU processing is usually required
to achieve real-time.

REMODE [16] (standing for Regularized Monocular
Dense reconstruction) propose to integrate a Bayesian es-
timation of the inverse depth into the variational formula-
tion. Uncertainty of the inverse depth is used to decrease
the regularization in those areas with a low inverse depth
uncertainty. Bayesian estimation offers a natural way to reject
unreliable measurements in an on-line fashion. The camera
pose optimization is based on features, similarly to [14].

B. Piecewise Planar Models from Visual Data

Piecewise planar and Manhattan models are a popular
choice to obtain offline dense reconstructions in man-made
environments. [17] achieves impressive results from a stereo
sequence. [18] hypothesizes planes based on a sparse 3D
reconstruction and tests their photometric compatibility in

several views. [19] uses the Manhattan assumption –three
dominant perpendicular directions– and superpixel classifi-
cation to extract a room layout from a single view. [20],
[21] use a multiview sparse feature map to estimate a more
robust layout.

[3] assumes that the homogeneous-color regions from a
superpixel segmentation are planar, and estimates a map
composed of such planar areas and salient points. Planar
areas are initialized by superpixel triangulation. Our con-
tribution is an initialization based on superpixels and a
semidense map that is faster and more accurate. [9] uses
multiview superpixels and layout to estimate an accurate
dense map using direct methods.

III. OVERVIEW

Figure 2 shows a simplified scheme of our algorithm.
The computation is divided into three threads. The first one
tracks the camera pose for every sequence frame In using
a semidense map (section IV-A). The semidense map is the
output of the second thread, that estimates the inverse depth
ρu for the high-gradient pixels of a keyframe Ik (section IV-
B). The keyframes are selected from the sequence frames
using certain heuristics. Finally, the third thread estimates
at a lower frame rate a dense map of the scene using the
piecewise planar assumption and regularization (section V).

1st thread 

2nd thread 

3rd thread 

CameraTracking 

Keyframe extraction Semidense mapping 

3D Superpixels (3DS) Dense mapping 

In Tn 

Ik ρu 

ρ 𝜋 

Fig. 2: Overview of our approach.

IV. TRACKING AND MAPPING HIGH-GRADIENT PIXELS

A. Tracking High-Gradient Pixels

The transformation from the current camera frame to the
global frame Tn is estimated based on the photometric repro-
jection error rpu using the inverse compositional approach
[22]. The photometric error for the ith pixel pi

u is defined as

rpi
u = (Ik(F(TkT̂ pi

u))− In(F(Tn pi
u))) (1)

where F is the pinhole camera model. In pi
u the subindex

u stands for points of high gradient, to differentiate it
from a general point pi. The tracking thread only uses a
subset of image points, composed of high-gradient points
and superpixel contours. Sections IV-B and V-A detail how
the 3D position for those is obtained.

We seek to estimate the transformation T̂ from the closest
keyframe Ik to the current frame In. Tk is the transforma-
tion from the last keyframe to the global reference frame.
The seed for the transformation Tn comes from a constant
velocity motion model –although this step is ignored if the
photometric reprojection error is higher after applying it.



The tracking minimization is as follows

T̂ = argmin
T

rpu . (2)

rpu =
n

∑
i=1

wi(rpi
u)2. (3)

The residuals are reweighted (wi) with a robust cost
function to remove the influence of outliers –in particular,
occlusions.

For the optimization we use a minimal parametrization of
the camera pose. The rigid body transformation T is mapped
to the tangent space se(3) of the euclidean space SE(3)
at the identity. The tangent space is also named the twist
coordinates ε = (w,v)t ∈ R6, where w ∈ R3 is the angular
velocity and v ∈ R3 is the linear velocity. ε is mapped into
SE(3) by the exponential map T = expse(3)(ε) and the inverse
is done by the logarithmic map ε = logSE(3)(T ) .

In the inverse compositional approach the update for the
current camera pose Tn is calculated as

Tn = TnT̂−1 (4)

T̂ is calculated applying the Gauss-Newton update in the
energy functional of equation 3

δ ε̂ =−(JTWJ)−1JTWr (5)

T̂ = expse(3)(δ ε̂) (6)

Where W and r are the matrix for the weights of the
Tukey’s robust cost function and the residuals vector respec-
tively. J is the jacobian of the residual J = ∂ r

∂ε
. To obtain it

we use the chain rule:

J =
∂ r
∂ε

= Jr
F JF

Tk
JTk

ε (7)

Where Jr
F are the gradients of the residual reference

keyframe, JF
Tk

is the derivative of the projection model with
respect to the transformationTk and JTk

ε is the derivative of
the transformation Tk with respect to the motion ε .

Note that using the inverse compositional approach the
Jacobians are always calculated in the last keyframe, and
there is no need to update them until a new frame becomes
a keyframe since the transformation Tk, the points pu and
the gradients of the keyframe Jr

F are constant during the op-
timization. This approach significantly accelerates the motion
estimation.

To bootstrap our system we follow a similar approach to
[1], assigning as the depth map for the first frame a plane
parallel to the image plane at random depth. The depth map
converges to the ground truth after a few keyframes in most
of the cases.

B. Mapping High-Gradient Pixels

Rapid camera motions require high-frequency map up-
dates for the camera pose not to lose track. Similarly to
[1], our system maintains a semidense map of high-gradient
points that can be quickly updated and serves for camera
tracking as described in section IV-A. This semidense map
is not only used for tracking, but also for the estimation of
the planar surfaces described in section V.

For each high-gradient pixel u, its inverse depth ρu is
estimated by minimizing the photometric error ro

ph for several
overlapping views.

ρ̂u = argmin
ρu

ro
ph (8)

ro
ph = ||(Ik(sk

u)− Io(so
u)|| (9)

so
u = G(sk

u,Tk,To,ρu) (10)

sk
u are the pixel coordinates of a template around the pixel

u in the image Ik. G is the function that backprojects the
template sk

u from the keyframe Ik at a distance ρu and then
projects it to the overlapping image Io.

For the first overlapping image we perform and exhaustive
search in the epipolar line. In the rest of the images the search
space is constrained by the current depth estimation and its
uncertainty.

The optimization is performed using pixel coordinates and
the optimal pixel coordinate ŝo

u is then transformed into
its corresponding optimal inverse depth ρ̂u(ŝo

u). We repeat
this process in 10 overlapping images yielding 10 inverse
depth hypotheses ρ̂u[1−10]for every high-gradient pixel in the
reference keyframe. σρ̂u [1−10] is approximated assuming an
uncertainty of one pixel in the overlapping image:

σρ̂u [1−10] = (ρ̂u[1−10](ŝ
o
u[1−10])− ρ̂u[1−10](ŝ

o
u[1−10]+1)) (11)

We perform three additional procedures to remove poten-
tial outliers from our estimation and regularize the solution.
• Gradient direction. The inverse depth of the pixels

whose epipolar line is perpendicular to the gradient
direction cannot be reliably estimated from stereo [1].
We only estimate the depth for pixels having gradi-
ents around the epipolar direction and within a certain
threshold.

• Temporal consistency. An estimated inverse depth is
likely to be an inlier if the inverse depth hypotheses
from several image pairs are similar. If the inverse depth
hypotheses span over the epipolar line, the estimated
inverse depth might be an outlier [23]. Inverse depths
are sorted and we look for compatible values between at
least 5 out of the 10 hypotheses. We calculate the ratio
between the difference of the maximum and minimum
optimal inverse depths (5 at least) and their global
standard deviation σρ̂u .

(ρ̂max
u [i,i+n]− ρ̂

min
u [i,i+n])/σρ̂u < 2 (12)



σρ̂u =

√√√√(i+n

∑
k=i

1
σρ̂u

2
[k]

)−1

(13)

The test is therefore repeated for n = [4, ...,9] and
for i = [1, ...,10− n] spanning all different hypotheses
combinations. The final optimal inverse depth ρ̂u is the
average of the temporally consistent hypotheses.

• Spatial consistency. Applying the smooth world as-
sumption, neighboring pixels should have similar in-
verse depths. We run a test for the spatial similarity
of the contiguous pixels inverse depths. The equations
12 and 13 are also applied for this test. Instead of
computing them using the inverse depth hypotheses
for every pixel, they are computed using the optimal
inverse depths values of the pixel and its neighbors. n =
max(#neighbors−1,1) and i = 1 in this case, therefore
we require at least one match between the pixel and
its neighbors. Again, we perform the average of the
spatially consistent optimal inverse depths to smooth
the final depth map.

Finally, the inverse depth estimation is scaled against the
previous map. This helps to keep the scale in sequences with
large changes in depth.

The 3D points with less uncertainty will be used for robust
tracking –section IV-A– , reliable 3D superpixel estimation
–section V-A– and variational mapping –section V-B.

V. MAPPING LOW-GRADIENT PIXELS

A. 3D superpixels

The accurate semidense mapping from section IV-B and
the 2D superpixels are used to efficiently estimate 3D planar
superpixels.

First, each keyframe Ik is segmented into a set of super-
pixels Sk = {s1, . . . ,si, . . . ,sm} using the algorithm of [10].
Each 3D point pu from the semidense map is then projected
on the keyframe u = F(Tk pu). The 3D points pu are assigned
to the superpixels if their projections u lie within a threshold
ξ –see algorithm 1.

Algorithm 1 Point to Superpixel Contour Assignment
1: procedure POINT SUPERPIXEL MATCHING(M,S )
2: for pu ∈M do . For every point in the map
3: pu ∈∅
4: for si ∈S do . For every superpixel
5: u = F(Tk pu) . Point’s projection
6: if distance(u,C (si))< ξ then . If the

point’s projection is within a distance to the superpixel
contour

7: pu ∈ C (si) . The point belongs to the
contour

8: end if
9: end for

10: end for
11: end procedure

The 3D points associated to the contour of every super-
pixel pu ∈ C (si) are used to robustly fit a plane πi using
singular value decomposition. We use RANSAC [24] for
outlier rejection and consider three additional metrics to
evaluate the quality of the estimated plane.
• Normalized residuals test. We calculate the ratio be-

tween the distances of the 3D points to the plane and
the distances between the 3D points to themselves. If
this ratio is less than a threshold –0.05 in this paper–
the match is accepted.

• Degenerated cases. We look for degenerated cases
where multiple solutions occur. For example, some
contours might be close to a 3D line and have one
dominant dimension. We avoid this cases by seeking for
degenerate rank in the singular value decomposition.

• Active search, temporal consistency. Following a similar
approach than [3], we actively search the 3D superpixels
in the superpixels of neighboring frames by calculating
the error between the reprojected contour and the con-
tours of the potential matches in the neighbors frames.
The reprojection error for a 3D contour point pu ∈C (si)
of a superpixel si in a camera Tj is computed using the
standard pinhole model F .

ε j = u j
si
−F(Tj pu) (14)

Where u j
si stands for the closest point to F(Tj pu) in

contour of superpixel si in camera j. If enough overlap-
ping in the reprojection is achieved for superpixel si in
camera j, the match is accepted. If at least two matches
are achieved for si, the 3D superpixel is accepted.

This active search of superpixels is of key importance,
as it can reject the erroneous data association between 2D
superpixels and 3D contours. This erroneous data association
comes from the fact that a contour is surrounded by at least 2
superpixels and it is not possible to discern what superpixel
corresponds to the contour using only one view. The active
search seeks for consistency between multiple views and it
helps mitigate the problem.

The whole pipeline of plane estimation from planes and
superpixels is summarized in algorithm 2. We have observed
three main advantages of this approach over the baseline [3].
• Map completeness. [3] needs relatively large parallax to

initialize a superpixel by triangulation. Superpixels on
high-parallax views might be quite different and hence
difficult to match. We overcome these limitations by
initializing directly in the reference keyframe using the
existing 3D semidense map. As a result, we are able to
initialize a higher number of superpixels.

• Higher Accuracy. In [3] the triangulation was done from
two views. In this paper we incorporate the 3D informa-
tion of a very accurate semidense map, estimated from
more than two views.

• Lower cost. The initialization of [3] is very expensive
due to a Montecarlo search over the space of plane con-
figurations. Our initialization is a least-squares plane-
fitting problem with closed form solution. See table I



Algorithm 2 Plane from Points
1: procedure PLANE FROM POINTS(pu ∈ C (si))
2: d = f1(pu) . Average distance between the points
3: emin = ∞ . Minimum error
4: emax = 0.05 . Maximum normalized error allowed.
5: πi . Optimal plane
6: p = 0.99 . Probability for selecting only inliers
7: w = 0.5 . Inliers ratio
8: nhyp =

log1−p
log(1−w)4 . Number of hypotheses

9: for n ∈ nhyp do . For number of hypotheses
10: p∗u ∈ pu . 4 random points ∈ pu
11: [U,S,V,π] = svd(p∗u) . SVD for p∗u
12: e = f2(π pu)/d . Normalized (d) Robust ( f2)

error (π pu )
13: matchings = M(pu,R, t) . Matchings

in active search. Temporal consistency, Equation 14. It
depends on the pose of the neighboring cameras and the
superpixel extraction in them.

14:
15: inlier = T RUE
16: if e > emax then . Plane bad fitted.
17: inlier = FALSE
18: end if
19:
20: if rank(p∗u)< 3 then . Degenerated case.
21: inlier = FALSE
22: end if
23:
24: if matchings < 2 then
25: inlier = FALSE
26: end if
27:
28: if inlier == T RUE ∩ e < emin then
29: πi = π

30: emin = e
31: update(w) . Update inlier ratio
32: nhyp =

log1−p
log(1−w)4 . Update hypotheses

33: end if
34: end for

return πi
35: end procedure

for a time comparison.

B. Dense Mapping

A fully dense reconstruction –one depth for each pixel–
can be estimated using a similar approach to [9]. The
functional to minimize is a sum of three terms over the image
domain Ω.

Eρ =
∫

Ω

(λ1C(su,ρ(su))+G(u,ρ(u))+ (15)

+
λ2

2
M(u,ρ(u),ρp(u))∂u

The first term C(su,ρ(su)) is based on color difference
between the reference image and the set of short-baseline

Method Computational cost [ms]
Contour extraction Init. Opt.

This paper ∼90 ms ∼20 ms ∼5 ms
[3] ∼180 ms ∼370 ms ∼5 ms

TABLE I: Cost comparison between [3] and this paper.

images. Every patch su of the reference image Ir is first
backprojected at an inverse distance ρ and projected again
in every close image I j.

ε(I j, Ir,u,ρ) = Ir(u)− I j(Tr j(u,ρ)) (16)

λ1 is a weighting factor that accounts for the relative
importance of the photometric and gradient regularization
terms.

G(ur,ρ(u)) regularizes the solution. The specific form of
this cost is

G(ur,ρ(u)) = g(ur)||∇ρ(u)||ε (17)

where ||∇ρ(u)||ε is the Huber norm of the gradient of
the inverse depth map and g(u) is a per-pixel weight that
decreases the regularization strength across image contours:

g(u) = e−α||∇Ir(u)||2 (18)

Where α is a constant. The third term measures how far is
the estimated depth from a piecewise planar reconstruction
based on superpixels

M(u,ρ(u),ρp(u)) = w||ρ(u)−ρp(u)||22 (19)

ρp is the inverse depth prior coming from 3D superpixels
(see section V-A).

w the weight of Tukey’s cost function. Finally, we use the
sub-sample accuracy method and the acceleration of the non-
convex solution, both recommended in [7]. The functional
is minimized following the primal-dual approach. For the
details see [9].

We also propose to discard areas that are estimated with
a large error. These areas mostly correspond to far areas
due to low parallax, textureless areas not reconstructed with
superpixels, and areas in the borders of the image. We detect
these uninformative areas using the map superpixels and
semidense points. We classify every superpixel as a high
informative area or a poor informative area. We differentiate
between large superpixels –low texture areas– and small
superpixels – high texture areas. We only classify large
superpixels as a high informative area if we have found a 3D
superpixel in the reference image or in the neighbors images.
For the rest of the superpixels, we will classify them as a
high-informative area if most of the contour of the superpixel
is already estimated by the accurate semidense approach.
The rest of the superpixels will be ignored and then will
not be reconstructed. Our results applying this technique are
denoted as Semidense mapping filtered in the experimental
section VI.



VI. EXPERIMENTS

We have used the public TUM dataset [2] to evaluate
the accuracy and computational cost of our algorithm. Also,
we tested our system online with a hand-held camera. An
illustrative video of such experiments can be found in the
video accompanying the paper 1.

A. Comparison against [3]

Seq. Keyfr. Error ratio, [3]
ours Compl. ratio, ours

[3]

fr
3

st
r

te
x

fa
r 1 6.24 1.75

2 1.17 1.16
3 0.42 6.78
4 0.78 1.76
5 1.61 1.01
6 0.55 1.23

fr
2

xy
z

1 0.59 1.05
2 2.23 1.00
3 1.08 4.42
4 13.4 1.46
5 11.3 1.48
6 1.71 1.12
7 34.5 0.76

fr
3

ns
tr

te
x

ne
ar

1 1.13 7.56
2 0.98 18.70
3 1.452 1.53
4 3.02 1.41
5 1.87 4.40
6 1.42 0.86
7 5.95 3.66
8 2.20 10.10
9 2.84 2.64

10 1.03 2.77
11 1.13 6.74
12 4.31 8.54
13 3.97 10.49
14 1.18 1.46
15 0.20 2.86
16 0.24 2.10
17 1.84 1.59

TABLE II: Error and completeness ratios between us and
[3]. Numbers higher than 1 means us outperforming.

Tables II shows a quantitative comparison of our approach
against the superpixel initialization of [3]. We report the
error ratio defined as the mean reconstruction error of [3]
over our mean reconstruction error; and the completeness
ratio defined as our percentage of reconstructed pixels (over
the total image pixels) over the percentage of reconstructed
pixels of [3]. These ratios are defined so that numbers higher
than 1 denote that we are outperforming [3]. For absolute
accuracy and completeness results, the reader is referred to
table III.

Notice that we are more accurate than [3] in most of the
keyframes. There are two main reasons for that. The first
one is the use of the semidense map for the initialization,
that filters out most of the superpixel segmentation noise. In
[3] we triangulated directly from the superpixel correspon-
dences. The second one is the three rejection tests defined
in section section V-A. We have observed that ratios greater

1The video is also available online at https://youtu.be/SY_
bBx7Ut-4.

than 3 correspond to estimation failures of our previous work
[3] that are now correctly rejected by our three tests.

Notice also how we are able to reconstruct more su-
perpixels than [3] (completeness ratio higher than one for
most of the keyframes in table II). Again, the use of the
semidense map makes our approach more resilient to the
low repeatability of superpixels.

B. Comparison of direct mapping alternatives

This section compares several alternatives for direct
monocular SLAM in real time in terms of depth accuracy,
cost and map completeness. The approaches considered are
semidense mapping, 3D superpixels mapping (3DS), dense
mapping, semidense mapping filtered (see section V-B for
the difference between dense mapping and dense mapping
filtered) and several combinations of them.

Table III shows the quantitative results of the comparison.
We report the mean and median errors over all the keyframes
of the sequence for every mapping alternative; and the
completeness of the map over the total number of image
pixels. Table IV shows their mean computational cost.

Error [cm]
Seq. Mapping approach Mean Median Compl.

fr
3

st
r

te
x

fa
r

Semidense 5.49 3.93 0.37
3DS [3] 6.17 4.65 0.17
3DS (ours) 4.14 3.61 0.25
Semidense + 3DS (ours) 4.20 3.43 0.45
Dense 25.12 6.18 1.00
Dense + 3DS (ours) 23.96 4.98 1.00
Semidense filtered 6.78 4.57 0.62
Semidense filtered + 3DS (ours) 5.52 3.71 0.62

fr
2

xy
z

Semidense 6.35 2.50 0.16
3DS [3] 14.87 3.19 0.11
3DS (ours) 1.94 1.86 0.12
Semidense + 3DS (ours) 3.13 2.01 0.23
Dense 31.86 9.26 1.00
Dense + 3DS (ours) 29.30 6.57 1.00
Semidense filtered 12.03 5.38 0.29
Semidense filtered + 3DS (ours) 6.76 2.74 0.29

fr
3

ns
tr

te
x

ne
ar

Semidense 3.03 2.46 0.25
3DS [3] 2.97 2.70 0.45
3DS (ours) 2.78 1.96 0.41
Semidense + 3DS (ours) 2.84 2.49 0.50
Dense 27.16 11.22 1.00
Dense + 3DS (ours) 23.18 6.31 1.00
Semidense filtered 8.48 4.41 0.55
Semidense filtered + 3DS (ours) 3.04 2.32 0.55

TABLE III: Mean and median depth errors and map
completeness for several mapping alternatives in 3

sequences of the TUM dataset.

Observe how the 3D superpixels improve the accuracy
of semidense and dense maps by comparing Semidense vs.
Semidense + 3DS (ours) and Dense vs. Dense + 3DS (ours)
in the three sequences. If the piecewise planar assumption
holds in the current scene, which is usually the case in
man-made ones, this will always be the case. Notice that
the superpixel initialization proposed in this paper 3DS
(ours) always outperform the baseline initialization 3DS [3].
Notice also how, in the semidense case, the addition of
3D superpixels increases the density of the map (in table

https://youtu.be/SY_bBx7Ut-4
https://youtu.be/SY_bBx7Ut-4


III, Semidense + 3DS (ours) has higher completeness than
Semidense).

Table III shows that the accuracy of dense mapping is
still limited. In our results, the dense mapping errors are 5
times bigger than the semidense mapping ones. Although
3DS improves the accuracy of dense maps, it is still much
lower than the semidense one. Notice that the mean of the
dense mapping error is always much larger than its median,
suggesting that the depth error distribution has a long tail.
Our approach Semidense filtered is able to eliminate such
large depth errors by filtering out uninformative pixels (see
section V-B for details). But the map completeness is reduced
to values similar to Semidense + 3DS approaches, with
similar accuracy and at a higher cost caused by regularizing
the dense reconstruction (see the costs at table IV). Semi-
dense filtered does not offer then a significant improvement
over Semidense + 3DS, confirming that 3DS can have an
important role in dense monocular mapping indoors.

Figures 3 shows the 3D reconstruction of our proposal in
two of the sequences of the TUM dataset. The 3D superpixels
are in red. Notice the completeness and accuracy of the
maps, and how the 3D superpixels (in red in the figure)
play a key role in achieving a high completeness. Figure
4 shows a visual comparison between a semidense, dense
and semidense + 3DS map.

(a) Keyframe (b) Semidense + 3DS (red)

(c) Keyframe (d) Semidense + 3DS (red)

Fig. 3: Mapping results of our proposal (Semidense + 3DS
(ours)). (a) and (c) are selected keyframes of two

sequences, (b) and (d) are the estimated maps.

Table IV shows the computational cost results for the
mapping alternatives of this section, measured in a 3.5 GHz
Intel Core i7-3770K processor with 8.0 GB of RAM memory.
Notice first here that our approach has a computational cost 5
times lower than the baseline. Also observe that the low cost
of semidense mapping and 3DS makes their combination an
interesting alternative to dense variational mapping.

(a) Keyframe (b) Semidense map

(c) Dense map (d) Semidense +3DS (red)

Fig. 4: Mapping Results. (a) is a selected keyframe. (b) is
the semidense map. (c) is the dense map. (d) is the

semidense map using our approach (Semidense + 3DS
(ours)).

Mapping approach Computational cost [ms]
Semidense ∼350
3DS [3] ∼555
3DS (ours) ∼115
Semidense + 3D Sup(ours) ∼465
Dense ∼1800
Dense + 3DS (ours) ∼1965
Semidense filtered ∼1800
Semidense filtered + 3DS (ours) ∼1965

TABLE IV: Average computational cost for the direct
monocular mapping alternatives.

VII. CONCLUSIONS

We have presented in this paper a direct SLAM algorithm
for dense tracking and mapping using a monocular camera.
Our approach leverages the piecewise planar assumption in
indoor scenes to estimate accurate maps in real-time in a
CPU. We think this is an interesting alternative to dense
monocular SLAM, producing denser maps than standard
semidense approaches with a small overload.

The specific contribution of this paper is a novel ap-
proach to estimate planar 3D superpixels based on the image
segmentation and also on the estimated semidense map of
high-gradient points. We have validated this approach in
standard datasets and performed live experiments with a
hand-held camera. Our algorithm has shown to outperform
the baseline for superpixel initialization, both in accuracy
and computational cost. The full pipeline runs in real-time
in a standard CPU.
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