
Using Superpixels in Monocular SLAM

Alejo Concha and Javier Civera1

Abstract— Monocular SLAM and Structure from Motion
have been traditionally based on finding point correspondences
in highly-textured image areas. Large textureless regions, usu-
ally found in indoor and urban environments, are difficult to
reconstruct by these systems.

In this paper we augment for the first time the traditional
point-based monocular SLAM maps with superpixels. Super-
pixels are middle-level features consisting of image regions of
homogeneous texture. We propose a novel scheme for superpixel
matching, 3D initialization and optimization that overcomes the
difficulties of salient point-based approaches in these areas of
homogeneous texture.

Our experimental results show the validity of our approach.
First, we compare our proposal with a state-of-the-art multiview
stereo system; being able to reconstruct the textureless regions
that the latest cannot. Secondly, we present experimental results
of our algorithm integrated with the point-based PTAM [1];
estimating, now in real-time, the superpixel textureless areas.
Finally, we show the accuracy of the presented algorithm with
a quantitative analysis of the estimation error.

I. INTRODUCTION

The extense research performed in monocular SLAM [1]
and Structure from Motion (SfM) [2] has produced many ex-
cellent results. Traditionally these methods have used salient
point features extracted in areas with high image gradients –
e.g. SIFT [3] or SURF [4]–; and local descriptors containing
grey-level or gradient information. These methods that use
low-level features are able to reconstruct highly textured
areas; but show a poor performance when the image texture
is low. Recent research has been able to densify traditional
visual 3D reconstructions [5], [6]; but large untextured image
regions are still a challenge.

On the other hand, very recent work has incorporated
the use of high-level features in visual SLAM and SfM.
In these works object categories –car, screen– [7]; object
instances –a particular chair or table model– [8]; or the
room layout [9] are the semantic features that are explicitly
modelled in the estimation. Maps at object or layout level
contributes to densify the model of the scene in SfM and
SLAM. Nevertheless, the use of these features suffer from
the usual low precision-recall rates in the classification of
some objects and layout parts, and an accurate and dense
semantic reconstruction is still far from reach.

In this paper we propose for the first time the use of su-
perpixels as a middle-level feature –between low-level points
and lines and high-level objects and layout– to represent low-
texture areas in monocular SLAM. Such low-texture regions
are difficult to reconstruct with other types of features.
Superpixels are defined as a set of pixels that are close in
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the image and in the color spaces; and are local, coherent
and preserve most of the structure of the image [10].

While the main advantage of the superpixels lies in their
capability of describing poorly-textured areas, they have
several drawbacks that have prevented their use in SfM
and monocular SLAM: First, their repeatability is low and
highly dependent on specularities, camera bright/gain and the
content of the image. Second, due to this low repeatability
and the lack of robust descriptors, the matching is difficult.

The contribution of this paper is the use of the super-
pixel contours as its only descriptor, and the proposal of
a matching and an optimization algorithm to estimate their
position and orientation in 3D. We assume that superpixels
correspond to planar surfaces, use a homography model and
minimize the distance between the contours. Our optimiza-
tion of the superpixel parameters runs in two steps: First,
we use a Monte Carlo approach to initialize new superpixels
in the map. After they are initialized, we actively search for
correspondences in other frames and minimize a robust cost
function of the reprojection error to optimize their geometric
parameters.

We have integrated our superpixel reconstruction algo-
rithm into the SLAM system known as Parallel Tracking
and Mapping (PTAM) [1]. The original PTAM produces a
point-based 3D map and estimates the camera pose in real-
time at 30 frames per second. We experimentally demonstrate
that our proposed scheme is able to augment PTAM map
with superpixels also in real-time. Finally, we have also
performed an error analysis in order to show the accuracy of
our algorithm.

We believe that the interest of using superpixels as mid-
level features in monocular SLAM resides in the following
two points:
• Superpixels allow us to describe textureless regions

for which other representations have some limitations:
Low-level features are usually designed to describe
highly-textured areas. High-level features do not present
yet the robustness of low-level ones.

• The use of superpixels might help to reduce the cost
of scene mapping from visual sensors. Approaches like
DTAM [6] present dense pixel-wise reconstructions that
might be essential in certain applications –e.g. aug-
mented reality– but come at the price of a large parallel
computation in the GPU. For some other applications,
a higher-level though non-pixel-accurate reconstruction
might be enough. Superpixels group pixels that are
close in the image and color spaces; but still keeps the
essentials of the image.

The structure of the paper is as follows: Section II out-



lines the related work. Section III describes very briefly
the algorithm we use to extract the superpixels. Section
IV details the main contributions of the paper, that is,
the superpixel matching and optimization algorithms. We
show our experimental results in section V; and present our
conclusions and lines for future work in section VI.

II. RELATED WORK

A. Visual SLAM and SfM using low-level features

Low-level local features have been predominantly used in
SLAM and SfM in the latest decades; and hence the literature
corpus is huge. SIFT descriptors have been typically used
in SfM [2], [11]; where wide-baseline views are likely to
appear and invariance is needed. More simple descriptors,
like image templates, have been used in SLAM [12], [1]
where the baseline between video frames is small and the
template warping can be predicted. Line features have been
less used [13], [14] due to the difficulties in the matching.

More recent research has extended 3D reconstruction
beyond salient features. [5] presented a method implemented
as a match, expand, and filter procedure, starting from a set
of salient points, and iteratively expanding them. DTAM [6]
estimates in real-time a dense scene reconstruction using a
smooth regulariser. But still, in both cases, large textureless
areas are a problem. It is this latest problem the one we
address in this paper.

B. Visual SLAM and SfM using high-level features

High-level features have just only been started to be used
in SfM and visual SLAM. [7] jointly optimizes the object
category recognition and registration with the standard SfM
point-based reconstruction and camera pose estimation. The
performance of both processes benefit from the correlation
between them.

In the visual SLAM domain, [15] is able to recognize and
register a set of known objects in a monocular SLAM map
through the local features in them. [8] goes a step further,
and uses known objects directly as the map features.

The layout of a room is used in [16], [9] as a high-level
feature –in the latest work jointly with multiview geometry–;
for which its 3D parameters are estimated from the image
information.

C. Superpixels and SfM

Piecewise-planar 3D reconstructions have been proposed
from different angles in monocular SLAM and SfM [17],
[18]; but they have not used superpixels due to the above
mentioned low repeatability. The use of superpixels in SfM
has only been explored in [19]. This work performs a multi-
view reconstruction of superpixels in a structured Manhattan-
like scene with high texture. In this paper, we are able to
reconstruct superpixels in any direction in non-Manhattan
scene with low texture. Also, we demonstrate the real-
time performance of the algorithm when integrated within
a SLAM system. Differently from [19], we use the contour
of the superpixels as their only descriptor.

III. SUPERPIXELS

We use the algorithm by Felzenszwalb et al. [20] to
segment the PTAM keyframes into superpixels. In this paper,
the image I is modelled as an undirected graph G(V,E)
where the vertices V are the pixels in the image u ∈ V .
For every edge between neighbouring pixels (ui,uj) ∈ E, a
dissimilarity measure is defined based on the color difference
of the two pixels w((ui,uj)) = |I(ui) − I(uj)|. The goal
is to obtain a partition S such that each component C ∈ S
contains similar elements. This basically means that edges
between vertices in the same component should have low
weights and edges between vertices in different components
should have higher weights. The internal difference of a
component Int(C) is defined as the maximum dissimilarity
w between the edges of the minimum spanning tree of the
component C.

The algorithm starts with n vertices and m edges, being
each vertex its own component. E is sorted into (o1, ..., om)
by non-decreasing edge weight and the following step is
repeated m times: If the edge q, where q = 1, ...,m, has
its vertices in different components and w(oq) is small
compared to the internal difference of both components, then
the two components are merged.

We use this specific superpixel method because it adapts
to the image contours accurately and the superpixels size is
irregular. They are as large as they need to in order to occupy
the homogeneous colour region and does not have a prefixed
regular size like, for example, [21]. There are 3 configuration
parameters: the threshold function, the minimum component
size enforced by post-processing, and the standard deviation
used to smooth the input image before segmentation. These
are respectively set to 200, 20 and 1 in our paper.

Figure 1 shows an illustrative example of the superpixel
segmentation of two SLAM keyframes using [20], the re-
sults of our 3D reconstruction algorithm and the associated
challenges. Figures 1(a) and 1(b) show the two frames of
a sequence that have been selected as keyframes by PTAM.
Figures 1(c) and 1(d) show the resulting superpixels for these
two keyframes. Notice how the pixels have been clustered
in larger entities; but the structure of the scene is mostly
captured. Observe superpixels s11 and s21 in Figures 1(c) and
1(d): Notice how they accurately capture the same untextured
area of the scene, that is the top of the box. Now look at
superpixels s12 and s22. While they also both capture the
keyboard, their repeatability is lower: In Figure 1(c) the
superpixel is extended to the left into the mouse (red square
in the figure). Notice also that this superpixel is partially
occluded, and the occlusion is different in both keyframes
due to the different viewpoint. In Figure 1(e) we show that
our algorithm is able to reconstruct both superpixels in spite
of the challenges mentioned for superpixel s2. Finally, look
at superpixels s13 and s24 as an example of an even lower
repeatability of the superpixels: Due to the reflection on the
table, both superpixels correspond to the same area but the
overlap is small. Our algorithm correctly considers that these
two superpixels do not match.



(a) Keyframe #1 (b) Keyframe #2

(c) Keyframe #1 superpixels. (d) Keyframe #2 superpixels.

(e) 3D reconstruction of superpixels s1 and s2 from
keyframes #1 and #2.

Fig. 1. Superpixels example. Figures 1(a) and 1(b) show two PTAM
keyframes of a sequence. Figures 1(c) and 1(d) show the superpixel
segmentation. Notice that the superpixel s1 is imaged in both keyframes (s11
and s21) quite accurately. The superpixel s2, though seen in both keyframes
(s12 and s22), presents a low repeatability: observe in a red square in Figure
1(c) that s12 is extended outside the keyboard, while s22 is not. Note also that
the occlusion is different due to the different viewpoint of both superpixels.
The algorithm we propose is able to reconstruct correctly the superpixels s1
and s2, see Figure 1(e). Superpixels s3 and s4 are in the same region, but
they are so different that our algorithm does not consider them to match.

IV. MAPPING POINTS AND SUPERPIXELS

A. Map State Vector

We define the state of our map as x =
(
x>C x>M

)>
;

where xC corresponds to camera states and xM is the map
model. The camera state vector xC stores the camera state of
m selected keyframes that summarize the geometry of the
scene xC =

(
c>1 . . . c>j . . . c>l . . . c>m

)
. The state

vector cj for each camera j is composed by its position
tj and orientation rj in a common reference frame cj =(
r>j t>j

)>
.

The map model contains n point features and q superpixel
features (see Fig 2)

xM =
(
p>1 . . . p>i . . . p>n s>1 . . . s>k . . . s>q

)>
(1)

Every point pi is modelled with its Euclidean coordinates
in a common reference frame pi =

(
XW

i YW
i ZW

i

)>
.

We make the assumption that every superpixel corre-
sponds to an approximately planar surface; and we store
in the state vector the azimuth-elevation angles of its nor-
mal and its distance to the origin sk = (θk φk dk)

>.
The plane normal nk can be computed as nk =
(cos(θk)sin(φk) sin(θk)sin(φk) cos(φk))

>.

Fig. 2. Notation convention for the main concepts discussed in the paper.

B. Projection Model

We use the FOV projection model of [1]. Every point pi =(
XW

i YW
i ZW

i

)>
is imaged in the camera cj at coordinates

uj
i =

(
xji
yji

)
= g (pi, cj) following the equations
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Where (fx fy)> is the focal length at horizontal and
vertical direction, (x0 y0)> the principal point and w the
distortion coefficient.

(
X

cj
i Y

cj
i Z

cj
i

)>
are the Euclidean

coordinates of the point pi in the reference frame of the
camera cj . See Figure 2 for an illustrative scheme of the
model.

C. Homography Model

We will assume that image superpixels correspond to
planar areas in the scene; and hence will use the homography
model for their optimization. We believe that this is a
reasonable assumption in man-made environments. In any
case, notice that every superpixel that does not hold this
assumption will be rejected in our initialization step by the
robust cost function and will not be added to the map.

Every pixel uj
sk

belonging to the superpixel sk in image
j is mapped into the image coordinates in ul

sk
in image l

via the homography model Hsk



ul
sk

= h
(
uj
sk
, sk, cj , cl

)
= Hsku

j
sk

(4)

where the homography matrix Hsk is computed as

Hsk = Kl

(
R + tnT

k /dk
)
K−1j (5)

Where R and t are the relative rotation and translation
between cameras j and l. nk and dk are the estimated normal
and distance of the superpixel sk in the reference frame of
the camera j. See Figure 2 for an illustrative scheme of the
model.

D. Superpixel Initialization

Superpixels are initialized from two keyframes cj and cl
for which we have their poses from the PTAM estimation.
As the first step, we extract all the superpixels Sj and Sl
from the two keyframes using the code from [20]. We use
a Monte Carlo approach for the correspondence search: For
every superpixel sk in Sj we create several hypotheses shk
spread over the possible configurations (see section IV-G
for practical details). The superpixel hypotheses are ranked
according to the reprojection error of the superpixel contours

εshk,c
= ||ul

shk,c
− h

(
uj

shk,c

, sk, tj , tl

)
|| (6)

The superpixel hypothesis shk with the smallest error εshk,c

is taken as the initial seed for the map optimization if it is
below a certain threshold.

E. Superpixel Optimization

As in [19], we make the assumption that the camera
poses computed from a point-based Bundle Adjustment are
accurate enough and optimize separately the components of
our state vector. First, we estimate the camera poses and point
positions by minimising the standard Bundle Adjustment cost
function

{x̂C , p̂1, . . . , p̂n} = arg min
xC ,p1,...,pn

m∑
j=1

n∑
i=1

ρ(εji ) , (7)

where εji the reprojection error of every map point pi in
a camera cj

εji = uj
i − g (pi, cj) . (8)

After that, we estimate the superpixel parameters assuming
that the camera poses are known

{ŝ1, . . . , ŝq} = arg min
s1,...,sq

q∑
k=1

∑
c

ρ(εsk,c
) , (9)

where εsk,c
is the reprojection error of the superpixel

contours

εsk,c
= ul

sk,c
− h

(
uj
sk,c

, sk, cj , cl

)
. (10)

In the above equation, ul
sk,c

refers to the pixels u that
belong to the contour c of the superpixel sk in the image l.

Instead of minimizing directly both errors, we minimize
a robust function of them ρ(ε). Specifically, we use the t-
distribution [22] and hence our robust error function is

ρ(ε) = ε2
Γ(v+1

2 )

Γ(v
2 )
√
πvσ2

(
1 +

1

v

(ε− µ)2

σ2

)(− v+1
2 )

(11)

Where v corresponds to the degrees of freedom and is set
to 5, Γ is the gamma function and µ and σ are the mean and
the standard deviation of the error ε.

Using a robust cost function is of key importance for the
reconstruction of 3D superpixels; as their repeatability is low
and the contours might slightly vary from one keyframe to
the next one.

F. Active Matching

Once a superpixel is initialized from two keyframes, as
described in section IV-D, we search for it in the next
keyframes actively. We project the superpixel contours in
the new keyframe and we search for the closest superpixel
within a neighboring area. If the reprojection error is under a
threshold, we consider it as the match of the initialized one.

The reprojection error for a 3D contour point psk,c
of a

superpixel sk in a camera cj is computed using the FOV
model g from section IV-B.

εj = uj
sk,c
− g(psk,c

, cj) ; (12)

Where uj
sk,c

stands for the closest point to g(psk,c
, cj) in

contour of superpixel sk in camera j.

G. Practical Considerations

In the superpixel initialization step (section IV-D) we
use a hierarchichal Monte Carlo approach to estimate the
normal and distance to the origin. In a first step, θ is in
the range [0, π], φ is in the range [0, π] and d is a distance
in the range [0.66dmin, 1.5dmax]. The 3D points which
reprojection lie in the cameras we want to reconstruct are
selected to calculate dmin and dmax which are the minimum
and maximum distance respectively from the 3D points to the
camera origin. We use 500 superpixel hypotheses. After that,
in a second step we take as seed the best hypothesis until
the current iteration (lower reprojection error in equation 6)
and test a new set of hypotheses with the angle θ in the
range [θbest − 0.25, θbest + 0.25], the angle φ in the range
[φbest − 0.25, φbest + 0.25] and d in the range [dbest −
(dmax−dmin)/50), dbest+(dmax−dmin)/50]. In this second
step we test 350 hypotheses. In a third step we test 150
hypotheses within the intervals [θbest−0.125, θbest+0.125] ,
[φbest−0.125, φbest+0.125] and [dbest−(dmax−dmin)/25),
dbest + (dmax − dmin)/25] for θ, φ and d respectively.
The threshold for the superpixel correspondences used in
the initialization and active matching (sections IV-D and IV-
F) is the following: With the best matching hypothesis, we
compute the left-right and right-left reprojection error (from



image j to image l and from image l to image j) and we
count the percentage of contour points which error is under
a threshold of 4.5 pixels. If this percentage is higher than
66% we consider that the superpixels match.

After initialization, every time a new keyframe is added
we project all the superpixels in the map and apply the
active matching algorithm in section IV-F. We use the same
matching threshold defined in the previous paragraph; if a
correspondence is found we add it as a constraint to the
optimization described in secion IV-E. If there is a superpixel
without matches, we try to initizalize it with the previous
keyframes and the algorithm in section IV-D.

PTAM adds a new keyframe when the camera is a min-
imum distance away from the nearest keyframe already in
the map. This minimum distance depends on the depths of
observed features, so it will be bigger when we are far from
the keypoints. For our purposes the keyframes added by
PTAM are sometimes too close to each other; and we need
more parallax for our superpixels estimation. For this reason,
we did a relatively large displacement in initialization and we
only add a PTAM keyframe if the camera translation is close
to the initialization motion.

V. EXPERIMENTAL RESULTS

A. Comparison against Multiview Stereo

The aim of this first experiment is to compare our recon-
struction algorithm with a state-of-the-art point-based one
oriented to create dense reconstructions. We have chosen the
multiview stereo called PMVS [5], due to the availability
of the code. PMVS usually receives as input a set of wide-
baseline images, their poses being estimated by the Bundle
Adjustment optimization of the software package Bundler
[11]. In order to make a fair comparison, we run both PMVS
and our superpixel SLAM algorithm on a set of 752 × 480
images with pose information from Bundler. Notice that this
working mode should be similar to operating in the mapping
thread of PTAM; as this latest one also operates on a set of
frames with a seed pose information. The only difference is
that PTAM selects automatically the keyframe set; but we
think this does not influence our algorithm. In any case, in
section V-B we also present experimental results inside a
PTAM framework.

Figure 3 summarizes the result of this experiment. Figures
3(a), 3(b) and 3(c) show 3 of the images of the scene we
chose for our experiment. Notice that the scene is mostly
composed of two untextured walls in a lab. Figure 3(d)
shows a 3D reconstruction of salient points, estimated using
Bundler [11]. Only the few textured areas of the scene, corre-
sponding to the posters and the backpack, are reconstructed.
Multiview stereo approaches [5] are able to produce a more
dense reconstruction from an initial Bundle Adjustment one.
But, as shown in Figure 3(e), the large and untextured wall
regions are still a challenge for these techniques. Figure
3(f) shows the 3D estimation of image superpixels, using
the algorithm proposed in this paper. Large and untextured
areas can be correctly modelled as superpixels; and hence
reconstructed. Finally, Figures 3(g) and 3(h) show a joint

reconstruction of points and superpixels. Observe that the
combination of the two features is able to produce an
accurate and almost dense model of the imaged scene.

TABLE I
COMPUTATIONAL COST

Computational Cost [seconds]
Image pair Superpixels Extraction Initialization Optimization

1 2 0.3758 0.7003 0.0055
2 2 0.3553 1.5447 0.0036
3 2 0.3603 3.0382 0.0056

Table I details the cost of our superpixel reconstruction
algorithm for 3 different image pairs in the above experiment.
For each experiment, 2 superpixels per image pair were
matched, initialized and reconstructed. This computational
cost was measured in a computer with a 3.5 GHz Intel Core
i7-3770K processor and 8.0 GB of RAM memory. Superpixel
extraction using the algorithm in [20] takes around 0.18
seconds per image.

The superpixel initialization is the more expensive step
and its cost is highly variable, depending on the specific
superpixels to match. This large cost is due to the high
number of superpixel hypotheses. In our experiments it took
from 0.7 seconds in the first experiment and up to 3 seconds
in the third one. Though this latest cost might seem high, it
is worth noticing several factors. Firstly, the initialization
is only made once per superpixel. Once a superpixel is
initialized, the following optimizations described in secion
IV-E only take some milliseconds. And secondly, this cost
might be easily optimized either by introducing stronger
priors on the superpixel parameters –and hence reducing the
number of hypotheses–, or by a parallel evaluation of such
hypotheses in the GPU.

Looking at this costs, we consider reasonable the use
of this algorithm in the mapping thread of the real-time
Parallel Tracking and Mapping system of [1]. This is what
we evaluate in the next section.

B. Using Superpixels in Monocular Parallel Tracking and
Mapping

The aim of this experiment is to demonstrate real-time
performance of the proposed superpixel reconstruction al-
gorithm within a point-based SLAM system (PTAM [1]).
We run our system in 3 live image sequences, taken by a
VGA camera in a desktop scene. In the desktop, we deployed
several textureless boxes in an unorganized setting, in order
to demonstrate that our system can reconstruct superpixels
in any orientation.

In Figures 4 and 5 we show the results of two of the exper-
iments. In both figures the top image shows the reprojection
of the reconstructed 3D points, the middle figure shows
the reprojection of the reconstructed superpixels, and the
third image shows a 3D view of the estimated superpixels.
Notice the accuracy of the reconstruction in both cases,
and how the use of superpixels allow to reconstruct the



(a) Image 1 of a low-textured lab scene. (b) Image 2 of a low-textured lab scene. (c) Image 3 of a low-textured lab scene.

(d) Point-based reconstruction using Bundle Ad-
justment [11]. Notice the sparsity of the reconstruc-
tion.

(e) Point-based reconstruction using Multiview
Stereo [5]. The reconstruction has been extended,
but still the large untextured walls cannot be recon-
structed.

(f) 3D reconstruction of the largest superpixels,
corresponding to the large untextured areas of
the walls.

(g) Side view of the 3D reconstruction of points and
superpixels

(h) Top view of the 3D reconstruction of points and
superpixels

Fig. 3. Comparison of the proposed algorithm with a Bundle Adjustment and a Multiview Stereo reconstructions.

textureless boxes and the table. As in the previous section,
the reconstruction is much more dense than using point
features alone. Both experiments were done in real-time. The
video accompanying the paper1 shows a real-time experiment
in the same scene.

Figure 6 shows an image from our third real-time SLAM
experiment. In this case, we focus on showing the reprojec-
tion error in the Figure 6(e). Notice how the contour points
of the superpixel in the top of the box overlap with the
reprojected contour points of the corresponding superpixel
in the second keyframe.

C. Quantitative Analysis with Ground Truth Depth

The goal of this section is to provide a quantitative analysis
of the achievable accuracy of our algorithm. In order to do
that, we recorded several image sequences with a RGB-D
camera, used the depth channel D as the ground truth depth,
and estimated 3D superpixel reconstructions using the RGB
data. A first thing to notice is that the superpixel estimation
error will be highly dependant on the image parallax [2]. We

1The video is also available at http://youtu.be/Cv7PeXGfU_E

evaluated the errors in two different experimental settings:
A low-parallax one in the lab environment of section V-A,
and several high-parallax ones in the desktop environment
with sequences similar to section V-B. In the lab –low-
parallax– sequence, our algorithm estimated 12 superpixels.
In the desktop –high-parallax– sequences, we estimated 5
superpixels.

Before computing the error, we have to normalise the scale
s of our monocular 3D superpixel reconstruction. We do that
by minimizing, for every keyframe j and every pixel uj that
was reconstructed, a robust cost function ρ the depth error
between the D channel D(uj) and the estimated depth d(uj)
multiplied by the scale factor s.

ŝ = arg min
s

∑
j

ρ(D(uj)− s× d(uj)) . (13)

We can extract the ground truth parameters for the super-
pixel sGT

k = (θGT
k φGT

k dGT
k )> from the RGB-D data, by a

least-squares optimization. We define the superpixel error as
(∆θk ∆φk ∆dk)> = (θGT

k − θk φGT
k − φk dGT

k − sdk)>.
We can also compute the error of each point ∆P = ||PGT

k −
sPk|| belonging to a superpixel k. The ground truth value

http://youtu.be/Cv7PeXGfU_E


(a) Keyframe

(b) Reprojected superpixels

(c) 3D reconstruction

Fig. 4. Fig 4(a) is a PTAM keyframe of a sequence. Fig 4(b) shows the
projection of the of the reconstructed superpixels and Fig 4(c) is the 3D
view of the estimated superpixels.

PGT
k is extracted from the RGB-D keyframe. The estimated

value Pk is extracted from the intersection of the superpixel
plane sk and the backprojected ray from the keyframe.
Table II shows the median errors for the plane parameters
(∆θk ∆φk ∆dk)> and the points ∆P belonging to the
superpixels.

Notice first the large difference in the metric parameters
(∆d and ∆P ) between the low-parallax and high-parallax se-
quences. Such values will be highly affected by the parallax.
The error for the d parameter will depend on the normal, so
we find more relevant the error ∆P of the points belonging
to the superpixel. In any case, notice the high accuracy of
the reconstruction. Angular errors are around 2◦, and the
median point error can be lower than 2cm for high-parallax
sequences of desktop scenarios –with typical distances of
1m– and around 8cm for low-parallax sequences of a room
environment –with typical distances of 10m.

(a) Keyframe

(b) Reprojected superpixels

(c) 3D reconstruction

Fig. 5. Fig 5(a) is a PTAM keyframe of a sequence. Fig 5(b) shows the
reprojection of the of the reconstructed superpixels and Fig 5(c) is the 3D
view of the estimated superpixels.

VI. CONCLUSIONS

In this paper, we have explored for the first time the
use of superpixels in monocular SLAM. We have proposed
algorithms for superpixel contour-based matching, 3D initial-
ization, active matching and optimization. Our experimental
results show that the use of superpixels allow to reconstruct
scene areas where the texture is low. We have compared our
algorithm against the state-of-the-art multiview stereo code
PMVS [5], and demonstrated that using superpixels allow
to reconstruct large and untextured areas that PMVS cannot.
We have integrated our contributions in a point-based Parallel
Tracking and Mapping system [1] and we have shown that
our algorithm can work as a parallel thread in a real-time
SLAM system, allowing to fill in areas with low texture.

In the experimental results of this paper, we have ob-



(a) Keyframe #1 (b) Keyframe #2

(c) Keyframe #1 superpixels. (d) Keyframe #2 superpixels.

(e) Keyframe #1 reprojection error. In blue
the predicted superpixel contour, in green the
extracted superpixel.

Fig. 6. Superpixel reprojection error.

TABLE II
MEDIAN ERRORS FOR THE SUPERPIXEL 3D PARAMETERS

Low Parallax (Lab) High Parallax (Desktop)
∆θ[◦] 2.3 1.1
∆φ[◦] 2.2 3.4

∆d[cm] 9.7 2.6
∆P [cm] 7.8 1.7

served some topics that we would like to address as future
work. Firstly, as already commented, we believe that the
key advantage of the superpixels lies in their capacity for
representing low-textured areas. On the other hand, state-of-
the-art superpixels tend to be unstable and difficult to match.
We would like to explore if superpixels could be made more
stable; either learning over past data or using the 3D prior
information extracted from the SLAM estimation. We are
also interested on making an exhaustive comparison of the
superpixel features against local point features and object
features regarding repeatability, accuracy and descriptive
power.

ACKNOWLEDGMENT

The research here was funded by the Spanish govern-
ment (Ministerio de Economı́a y Competitividad) through
the projects with references IPT-2012-1309-430000 and
DPI2012-32168. We would like to thank the anonymous

reviewers of this paper for their insightful comments; that
helped to improve the paper.

REFERENCES

[1] G. Klein and D. Murray, “Parallel tracking and mapping for small
AR workspaces,” in Sixth IEEE and ACM International Symposium
on Mixed and Augmented Reality, 2007.

[2] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge University Press, ISBN: 0521540518, 2004.

[3] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International Journal of Computer Vision, vol. 60, no. 2, pp.
91–110, 2004.

[4] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “SURF: Speeded up
robust features,” Computer Vision and Image Understanding, vol. 110,
no. 3, pp. 346–359, 2008.

[5] Y. Furukawa and J. Ponce, “Accurate, dense, and robust multiview
stereopsis,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 32, no. 8, pp. 1362–1376, 2010.

[6] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “DTAM:
Dense tracking and mapping in real-time,” in 2011 IEEE International
Conference on Computer Vision (ICCV), 2011, pp. 2320–2327.

[7] S. Y. Bao and S. Savarese, “Semantic structure from motion,” in
2011 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2011, pp. 2025–2032.

[8] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. Kelly, and
A. J. Davison, “SLAM++: Simultaneous localisation and mapping at
the level of objects,” in 2013 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2013.

[9] A. Flint, D. Murray, and I. Reid, “Manhattan scene understanding
using monocular, stereo, and 3d features,” in 2011 IEEE International
Conference on Computer Vision (ICCV), 2011, pp. 2228–2235.

[10] X. Ren and J. Malik, “Learning a classification model for segmen-
tation,” in Ninth IEEE International Conference on Computer Vision,
2003, pp. 10–17.

[11] N. Snavely, S. Seitz, and R. Szeliski, “Modeling the world from
internet photo collections,” International Journal of Computer Vision,
vol. 80, no. 2, pp. 189–210, 2008.

[12] A. J. Davison, N. D. Molton, I. D. Reid, and O. Stasse, “MonoSLAM:
Real-time single camera SLAM,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. June, pp. 1052–1067, 2007.

[13] G. Klein and D. Murray, “Improving the Agility of Keyframe-Based
SLAM,” in Proceedings of the 10th European Conference on Com-
puter Vision: Part II. Springer, 2008, pp. 802–815.
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