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Abstract— The so-called direct SLAM methods
have shown an impressive performance in estimating
a dense 3D reconstruction from RGB sequences in
real-time [1], [2], [3]. They are based on the minimiza-
tion of an error function composed of one or several
terms that account for the photometric consistency
of corresponding pixels and the smoothness and the
planarity priors on the reconstructed surfaces.

In this paper we evaluate several robust error
functions that reduce the influence of large individual
contributions to the total error; that most likely
correspond to outliers. Our experimental results show
that the differences between the robust functions are
considerable, the best of them reducing the estimation
error up to 25%.

I. INTRODUCTION

Direct reconstruction or mapping refers to the
estimation of a scene 3D structure directly from the
photometric RGB pixel values of multiple views.
This is in opposition to the traditional feature-
based techniques that estimate the 3D position of a
sparse set of points by minimizing their geometric
reprojection error. Direct mapping methods have
the key advantage of producing denser maps than
the traditional feature-based ones, that can only
reconstruct salient image points. The minimization
of the photometric error of high-gradient pixels
produces accurate semi-dense reconstructions [4].
The addition of a regularization term that models
scene priors (e.g., smooth surfaces [2], Manhattan
or piecewise-planar structure [5]) produces fully
dense reconstructions.

The aim of this paper is to explore the role
that the error function plays in the accuracy of
direct mapping methods. An error function defines
how the individual data errors influence the total
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error to minimize. Its design has a key importance
in the case of spurious data. For example, in the
standard L2 norm, the error grows quadratically. A
spurious data point that has a large error also has a
large influence in the total cost and can move the
estimation apart from the non-spurious data. Error
functions with subquadratic growth –even saturated
after a certain threshold– can decrease the influence
of such outliers.

In our experimental results section we evaluate
some of the most common error functions used in
the literature. We show that the mean depth error
can be reduced up to 25% with an appropriate se-
lection of the robust cost function. Further, accord-
ing to our experiments, the best error functions are
not the ones most commonly used in the literature.

The rest of the paper is organized as follows.
Section II describes the related work. Section III
details the robust cost functions that we evaluate
and section IV details the variational approach to
mapping using such robust cost functions. Finally,
section V shows the results of our evaluation and
section VI presents the conclusions of the paper.

II. RELATED WORK

The variational approach to the ill-posed problem
of optical flow was first proposed in [10]. The
algorithm we use in this paper, using the robust L1

norm for the photometric term, was first proposed
in [11] and had the key advantage of resulting in
a parallel algorithm suitable for implementation in
modern Graphics Processing Units. Early optical
flow approaches already noticed the negative effect
of outliers and proposed the use of robust cost
functions in the data term [12]. Our contribution
is the evaluation of such robust cost functions in
the 3D mapping problem. Table I references some



[2] [5] [6] [3] [1] [7] [8], [9]
Photometric L1 L1 Huber L1 L1 L2 NCC
Depth Gradient Regularizer Huber Huber Huber L1 L1 Mean Huber
Manhattan / Planar Regularizer – L2 – – – – –

TABLE I: Error functions used in the literature.

of the most relevant works on direct RGB mapping
and details the error functions they use in the pho-
tometric, gradient and Manhattan/piecewise planar
regularizers. Notice that the L1 and Huber norms
are the preferred ones. In our evaluation we show
how other norms can offer better performance.

[13] evaluated with simulated data the effect that
different robust cost functions in the regularization
term. We evaluate, using real images, the effect
of different cost functions in the data term, the
regularization term and the more recent Manhat-
tan/piecewise planar terms (section IV).

III. ROBUST COST FUNCTIONS

A robust estimate of a parameter vector θ is

θ̂ = argmin
θ

n∑
i=1

f(ri(θ)) (1)

Where ri(θ) = zi − gi(θ) is the ith residual
between the data point zi and the data model gi(θ).
Notice that, if f is defined as the square of the
residuals f(ri) = 1

2r
2
i , the formulation is that of

least squares. f is the error function that should
have sub-quadratic growth if we want it to be robust
and assign less importance to high-residual points
–most likely outliers– than least squares.

The gradient of the objective function
n∑
i=1

f(ri(θ)) with respect to the parameter

vector θ is

∂
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=
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∂ri
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∂ri
∂θ
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=
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φ(ri(θ))
∂ri
∂θ

(ri(θ)) (2)

where the derivative φ(ri(θ)) = ∂f
∂ri

(ri(θ)) is
usually called the influence function. If we define a
weight function ω(ri(θ))

ω(ri(θ)) =
φ(ri(θ))

ri
(3)

then equation 2 becomes

∂
n∑
i=1

f(ri(θ))

∂θ
=

n∑
i=1

ω(ri(θ))ri
∂ri
∂θ

(ri(θ)) (4)

Integrating the above equation would give us
again the cost function

n∑
i=1

f(ri(θ)) =

n∑
i=1

∫
Θ

ω(ri(θ))ri
∂ri
∂θ

(ri(θ))∂θ

(5)
In order to solve such integral the standard

assumption is that the weight is not dependent on
the residual and it is assumed constant and taken
from the previous iteration (k − 1) (ω(ri(θ)) =

ω(r
(k−1)
i )).

n∑
i=1

f(ri(θ)) ≈
n∑
i=1

∫
Θ

ω(r
(k−1)
i )ri

∂ri
∂θ

(ri(θ))∂θ =

=

n∑
i=1

ω(r
(k−1)
i )r2

i (θ) (6)

With the approximation above, the minimiza-
tion of equation 1 can be solved as an iteratively
reweighed least squares as follows

θ̂ = argmin
θ

n∑
i=1

ω(r
(k−1)
i ) r2

i (θ) (7)

For the complete details on robust statistics the
reader is referred to any of the standard books on
the topic [14], [15], [16].
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TABLE II: Summary of the robust functions evaluated in this paper.

In this work we have evaluated the performance
of the most common robust functions in the lit-
erature. A summary can be observed in table II.
We will take as baselines the norm L2 –resulting
in standard least-squares– and the more robust L1

and Huber –the most standard ones in state-of-the-
art direct mapping.

The truncated L1 and L2 norms (in the table
as L1

trunc and L2
trunc) are the result of saturating

the value of f(r) for values of |r| < k. We
chose the saturation value k = 2σ, being σ the
standard deviation of the error. Due to the presence
of gross outliers, we estimated the value of σ
robustly from the median value of the distribution
σ = 1.482×median{median{r} − ri}.

The Tukey and Geman-McClure functions are
very similar to the truncated L2, as they behave
almost quadratically for small values and saturate
for large ones. The Tukey threshold is chosen as
k = 4.6851, the value that achieves 95% rate in
the outlier rejection assuming a Gaussian error.

The Huber function is quadratic for small values

and linear for large ones. The limit between the two
is k = 1.345; again calculated based on a 95% rate
spurious rejection for a Gaussian error.

The Cauchy distribution differs from the previous
ones in that it has a certain degree of sensitivity
to outliers, i.e, the function is not “flat” for large
values. The constant is also selected based on a
95% rate spurious rejection (k = 2.3849).

IV. DIRECT MAPPING

Direct mapping estimates the inverse depth ρ(u)
of every pixel u in a reference image Ir using the
information of such image and several other views
Ij . The solution comes from the minimization of
an energy Eρ composed of three terms, a data
cost C(u, ρ(u)) based on the photometric error
between corresponding pixels, a regularization term
R(u, ρ(u)) that models scene priors and a Man-
hattan term imposing planarity in large untextured
areas M(u, ρ(u), ρp(u)).



Eρ =

∫
C(u, ρ(u)) + λ1R(u, ρ(u))+

+λ2M(u, ρ(u), ρp(u))

(8)

The photometric error is based on the color
difference between the reference image Ir and m
other short-baseline views. Every pixel u in Ir is
backprojected at an inverse distance ρ and projected
again in every close image Ij .

uj = Trj(u, ρ) = KR>

((
K−1u
||K−1u||
ρ

)
− t

)
(9)

The photometric error C(u, ρ(u)) is the summa-
tion of the color error ε(Ij , Ir,u, ρ) between every
pixel in the reference image and its corresponding
in every other image at an hypothesized inverse
distance ρ

C(u, ρ(u)) =
1

|Is|

m∑
j=1,j 6=r

f(ε(Ij , Ir,u, ρ)) (10)

ε(Ij , Ir,u, ρ) = Ir(u)− Ij(Trj(u, ρ)) (11)

Notice that we are minimizing a robust function
f() of the error ε, as defined in section III. We use
the robust cost function f() instead of the weights
w due to the non-convexity of the photometric term
–that is minimized by sampling in the literature.

The standard regularizer R(u, ρ(u)) is the Huber
norm of the gradient of the inverse depth map
||∇ρ(u)||ε and a per-pixel weight g(u) favoring
higher depth gradients for higher color gradients

R(u, ρ(u)) = g(u)||∇ρ(u)||ε (12)

We observed that, in this formulation, there is no
gain on using robust functions in the regularization.
The role of the regularizer is smoothing the large
depth gradients that result from a noisy photometric
reconstruction. A robust cost function would not
reduce the noise. The depth discontinuities that
exist in the scene and should be preserved in the
estimation are already modeled by the weight g(u).

In our experiments we use the Huber norm for the
regularizer and compare different alternatives only
for the photometric and Manhattan terms.

For man-made scenes, a Manhattan regularizer
M(u, ρ(u), ρp(u)) can be added to the gradient-
based one G(u, ρ(u)) modeling how far is the
estimated inverse depth ρ(u) from the inverse
depth prior ρp(u) coming from the Manhattan or
piecewise-planar assumption

M(u, ρ(u), ρp(u)) = w (ρ(u)− ρp(u))2 (13)

In this case the error is convex and the gradient of
the function is required, therefore we use Iterative
Reweighted Least Squares (w). The inverse depth
prior ρp(u) can be estimated from a region-based
multiview reconstruction [17] or from multiview
layout estimation in indoor environments [5].

For more details on the energy function Eρ and
its minimization the reader is referred to [5]. For
the initialization of the iterative optimization we
will use the photometric depth in the high-gradient
image regions and the Manhattan prior for texture-
less areas. We have observed that this initialization
has better convergence than a photometric one.

V. EXPERIMENTAL RESULTS1

A. Learning the weighting factors λi
In our model, the relative weights λi depend on

the inverse depth ρ

λi =
λ̂i,f

1 + 1/ρ
(14)

For every robust cost function we learn the opti-
mal value for λi,f using 5 training sequences. We
first re-scale every reconstruction by minimizing
the error between the estimated depth 1

ρ(uj) and
the D channel D(uj) of every pixel uj .

λ̂i,f = argmin
λi,f

5∑
k=1

#pixels∑
uj=1

|| 1

ρ(uj)
−D(uj)|| (15)

1A video of the experiments can be watched at https://
youtu.be/PeOux7XhFBI

https://youtu.be/PeOux7XhFBI
https://youtu.be/PeOux7XhFBI
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Sequence 16 Sequence 17 Sequence 18 Sequence 19 Sequence 20

Fig. 1: Sample images for the 20 sequences of our dataset. We selected different indoor scenes including
bookshelves (Sequences 2, 3 and 8), bags and backpack (Sequence 6), a bike (Sequence 7), desktops
(Sequences 1, 17 and 18) and kitchens (Sequences 4 and 5).

B. Small scale experiments

We recorded 20 sequences in different indoor en-
vironments using a RGB-D sensor. Figure 1 shows
the reference frame of each one of the sequences.
The depth (D) channel has been used as ground
truth and the RGB channel as the input for our
algorithm. We chose quite textured scenes in which
the standard variational mapping algorithms show
a good performance. Direct methods have a low
accuracy in low-textured scenes [5] that can hide
the influence of the robust error functions.

Table III summarizes the results of our evalua-
tion. Each row corresponds to one experiment –the
latest one averages them all– and each column to
a different error function.

Look first at the L1 and L2 norm results in
the 1st and 3rd column. As expected, the higher
weight that the L2 norm gives to high-residual

points results on a depth map with a larger mean
error –77 mm in the latest, 68 mm in the former.
Notice how the Huber norm (5th column), giving
linear weight to big errors, behaves similarly to L1.

The 2nd and 4th columns show the mean esti-
mation error for the truncated L1 and L2 norms.
Notice that limiting the maximum cost of large
errors has a big influence in the error. Specifically,
for the truncated L1 the error is reduced 25% when
compared against the plain L1.

The results for the Tukey’s biweight function
are displayed in the 6th column. The key aspect
of this function is that, as the truncated L1 and
L2, saturates for high errors. The results are very
similar to the truncated L1. The same comments
apply for the Geman-McClure results in the 8th

column.
The results for the Cauchy cost function, in

the 7th column, are between those of the L1 and



Mean Depth Error [mm]
L1 L1

trunc L2 L2
trunc Huber Tukey Cauchy Geman-McClure

1 82.6 56.2 94.3 57.0 82.6 55.6 68.6 54.4
2 28.6 18.1 37.9 21.9 28.7 17.1 19.7 18.1
3 39.9 31.2 43.2 29.0 39.7 29.1 36.8 27.1
4 36.7 32.2 44.7 33.5 37.0 31.8 33.9 33.8
5 69.5 57.1 77.0 58.1 68.1 56.8 64.7 57.2
6 29.2 25.5 33.0 25.5 28.8 25.7 27.8 27.4
7 91.9 94.5 106.8 91.4 92.3 95.6 89.4 89.7
8 41.5 38.2 45.8 38.6 42.3 37.5 39.1 36.6
9 39.6 40.3 39.4 41.6 39.4 40.3 39.1 41.5
10 45.9 34.2 47.6 35.7 45.1 34.7 43.4 34.8
11 76.3 68.3 78.6 72.1 75.7 66.3 71.4 59.7
12 52.9 49.9 60.3 51.5 52.6 50.0 49.1 48.8
13 55.9 49.6 66.0 50.4 54.6 50.0 55.8 50.6
14 90.1 64.9 65.7 61.3 89.5 69.5 100.4 68.0
15 80.9 46.8 79.8 46.6 79.2 47.4 73.6 48.4
16 110.9 67.9 146.1 72.8 109.6 66.0 86.6 65.2
17 126.3 51.7 160.9 52.3 124.3 54.8 83.9 56.4
18 146.3 95.1 165.3 102.2 145.0 95.2 135.2 103.2
19 120.5 96.4 144.3 106.4 118.4 86.0 101.4 75.6
20 10.3 9.0 9.8 12.9 10.0 9.0 10.5 15.8
Mean 68.8 51.4 77.36 53.2 68.1 50.9 61.5 50.6

TABLE III: Mean errors for several common error functions in the photometric term.

truncated L1. The reason is that the Cauchy cost
function has a non-zero derivative for large values
of the residual, so it still tries to reduce large errors.

The conclusion is that the functions with null
derivative for large errors –truncated L1 and L2,
Tukey and Geman-McClure– produce more accu-
rate results as they totally ignore large errors and
should be preferred over the other ones.

The improvement offered by different functions
is not homogeneous. Notice in figure 2 how the
depth errors –5th and 6th columns– are particularly
large at depth discontinuities. It is mainly in that
regions where the effect of the robust functions
is more noticeable. In occlusion-free sequences –
e.g., our experiment number 20 imaging a wall–
the results are similar for every function.

In figure 2 we show a qualitative comparison for
some of the experiments. Notice that the Tukey’s
estimation is closer to the ground truth and have a
smaller error than the L1 norm one.

C. Medium-scale experiment

The aim of this experiment is to evaluate the
performance of the robust cost functions in the
Manhattan term of our direct mapping approach.
Table IV shows the quantitative results. The mean
estimation error is reduced around 16% in the first

reference image, 38% in the second one and 13% in
the third one with an appropriate error function. As
before, those with zero derivative for large errors
are the preferred ones.

Figure 3 shows a qualitative view of the results,
where the improvement is better explained. 3(b),
3(g) and 3(l) show the layout estimation and label-
ing –yellow for walls, magenta for clutter and green
for floor– for the three reference images considered
in this experiment. Notice the large errors of the
floor label –some parts corresponding to tables, and
even walls in figure 3(l) appear in green color. As
a result, the Manhattan energy term (equation 13)
is very large there for the right depth. The L2 norm
tries to reduce such high energy, and hence large
mapping errors appear. Notice the big differences
between the ground truth depth for tables and the
L2 estimated depth in figures 3(d),3(i) and 3(n).
Using the Tukey’s function, the large Manhattan
errors are assumed spurious and ignored and the
rest of the terms define the depth estimation in that
area. Notice the more accurate depth estimation in
the table areas in figures 3(e),3(j) and 3(o).

VI. CONCLUSIONS

In this paper we have evaluated several robust
cost functions for dense monocular mapping. Our
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Fig. 2: Five selected quantitative results. 1st colum: Reference image. 2nd column: Ground truth depth
from a RGB-D sensor. Red stands for no depth data. 3rd column: Estimated depth using the L1 norm.
4th column: Estimated depth using the Tukey function. 5th column: L1 depth error, the brighter the larger
(and the worse). 6th column: Tukey depth error, the brighter the larger (and the worse).

Mean Depth Error [cm]
L1 L1

trunc L2 L2
trunc Huber Tukey Cauchy Geman-McClure

1 15.69 15.12 16.12 14.30 15.43 13.07 13.73 14.49
2 12.00 11.65 18.52 18.40 11.86 11.06 11.48 11.48
3 32.4 31.59 31.00 29.00 33.4 30.25 29.51 31.91
Mean 20.03 19.45 21.88 20.56 20.23 18.12 18.24 19.29

TABLE IV: Mean errors several common cost functions in the Manhattan term.

results show that the error functions that saturate
for large errors –truncated L1 and L2, Tukey and
Geman-MacClure– have the best performance. In
our experiments the reduction over the standard L1

and Huber functions is approximately 25% when
used in the photometric term and 15% when used
in the Manhattan regularization.
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