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Abstract— Deformable object manipulation tasks have long
been regarded as challenging robotic problems. However, until
recently, very little work had been done on the subject, with
most robotic manipulation methods being developed for rigid
objects. As machine learning methods are becoming more
powerful, there are new model-free strategies to explore for
these objects, which are notoriously hard to model. This paper
focuses on shape control problems for Deformable Linear Ob-
jects (DLOs). Despite being one of the most researched classes
of DLOs in terms of geometry, no other paper has focused
on materials with elastoplastic properties. Therefore, a novel
shape control task, requiring permanent plastic deformation
is implemented in a simulation environment. Reinforcement
Learning methods are used to learn a continuous control
policy. To that end, a discrete curvature measure is used
as a low-dimensional state representation and as part of an
intuitive reward function. Finally, three state-of-the-art actor-
critic algorithms are compared on the proposed environment
and successfully achieve the goal shape.

I. INTRODUCTION

In recent years, there has been a growing interest in
deformable object grasping and manipulation problems by
the robotics community [1], [2]. This is due in part to
their prevalence in many diverse applications as well as
their complexity, which makes these problems challenging to
solve with classical approaches [1]. Consequently, learning-
based approaches are being favored as a more powerful
alternative [2]. Intuitively, if a robot is to reach human-level
dexterity, there may be a need for human-inspired learn-
ing. Reinforcement Learning (RL) consists of a particularly
promising group of methods which seek to make robots
capable of learning through experience [3]. RL has been
proven successful in solving complex games, such as Go,
as well as robotic control tasks [4].

Contrary to grasping and manipulation of rigid objects,
which have been extensively addressed in the robotics liter-
ature, non-rigid objects have been largely overlooked [1].
Though some of the same methods can be extended to
particular types of deformable objects, there are still many
problems left unsolved [1]. Most notably, while manipulation
of rigid objects focuses mainly on controlling their pose,
when manipulating deformable objects it is often their shape
which needs to be controlled [2]. Furthermore, when materi-
als are highly deformable have with elastoplastic properties,
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Fig. 1. Simulation of DLO with plastic properties. By bending the object
inwards in 1-3, when returning the gripper to the same position as before
i.e. gripper is in back in the same place as in 2, the shape of the DLO is
different due to permanent plastic deformation.

modeling and sensing of these objects presents a difficult
challenge.

Most work on deformable object manipulation has focused
on specialized tasks, from applications like robotic surgery,
food processing, fabric manufacturing, etc. While this is
the most practical choice, since they aim to solve real-life
problems, the solutions are often not general [5]. With this
work we aim to lay a foundation for shape control, which
could potentially be applied to a large range of problems.
According to classification criteria suggested by Sanchez et
al. [1], objects can be categorized based on their mechanical
properties, i.e. low or high compression strength and their
geometric properties, i.e. linear, planar or solid shapes. We
focus on a subclass of deformable objects within each
category, namely Deformable Linear Objects (DLOs) with
elastoplastic properties.

DLOs are an appealing choice for their relative geometric
simplicity without loss of manipulation complexity. Within
this class, we found that objects with elastoplastic properties
have been largely overlooked, with most of the literature
focusing on purely elastic DLOs or ropes [1]. This large class
of objects, includes metal wires and cables found in numer-
ous applications [5]. To that end, we have implemented a
simulation environment with a set of shape control problems
for DLOs which sustain plastic deformation. These present
a particularly difficult class of objects since they exhibit
non-linear behavior, suffering irreversible changes in their
mechanical properties, as illustrated in Figure 1. Our interest
is not on the modeling accuracy of the simulation, but on the
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ability to learn how to manipulate these objects in a model-
free fashion using actor-critic methods. Specifically, Deep
Deterministic Policy Gradient (DDPG) [6], Twin Delayed
DDPG (TD3) [7] and Soft Actor-Critic (SAC) [8].

Finally, summarized below are our main contributions
within the field of deformable object manipulation:

i. An RL formulation of a shape control problem for
elastoplastic DLOs using curvature state representa-
tion.

ii. A new simulation environment using a multi-physics
engine with specialized DLO models.

iii. Comparison of state-of-the-art actor-critic algorithms
for our simulation environment.

II. RELATED WORK

To date, ropes or rope-like objects are the most researched
group of DLOs in robotic manipulation. Common problems
involving ropes include knot tying, untangling, threading and
reaching goal-configurations on a flat surface [1]. While
all of these present interesting challenges, only the latter
represents a true shape control problem. For the rest, what
matters is not the final geometric deformation, but the
configuration of the DLO, relative to itself, or other objects.
Recent research on shape control problems with DLOs seems
to focus on the state-estimation problem. Zhu et al. [5] used
Fourier series to model the DLO shape and successfully
controlled cables with low compression strength into desired
deformations, using a dual-armed robot. Similarly, Yan et al.
[9] used self-supervised learning to learn the state of ropes
in an analogous scenario, but with a single-arm approach,
thus requiring re-grasping.

While to the best of our knowledge there has been no work
where large plastic deformations were considered for DLOs,
Cherubini et al. [10] addressed the manipulation of plastic
materials, using kinetic sand as a test case. To solve this
task, they relied on human demonstrations, further providing
a dataset for comparative studies and benchmarking.

Most robotic tasks related to DLOs usually require both
sensing and manipulation. In the aforementioned works,
sensing of the deformable objects relied at least partially on
vision measurements. This is a natural choice since force-
torque readings are not sufficient to identify the state of
a deformable object. From image data, there have been
different approaches to represent and estimate a DLO’s state,
including node-graphs, Frenet coordinate frames, Kirchoff
elastic rods, etc. [1], [11].

Using deep learning techniques has opened up the possi-
bility to learn directly from the high-dimensional raw data.
This can be used in end-to-end strategies, where robot joint
velocities are obtained directly from pixels. An example of
such an approach was the work from Matas et al. [12], which
produced promising results in cloth-manipulation using a
state-of-the-art RL algorithm. Their work also proved suc-
cessful in sim-to-real transfer. However, they used a variation
of Deep Deterministic Policy Gradient, named DDPGfD

which was seeded by employing LfD. Conversely, Wu et
al. [13] proposed to solve pick-and-place tasks without
demonstrations.

III. METHODS

Although our aim is to implement robot learning in real-
life scenarios, it can be a laborious and time consuming
endeavor with RL algorithms. This is especially true when
learning from scratch and using model-free methods, which
are notoriously sample inefficient [8]. Due to their need
for extensive experience before convergence, it is common-
practice to tackle problems first in simulation. With this
in mind, we have defined a DLO shape control problem
in a virtual environment, to evaluate the potential of these
methods for deformable object manipulation.

A. Problem Statement

We propose a shape control problem of an elastoplastic
DLO, on a vertical plane. While scenarios involving ropes
or flexible cables typically have the object lying on a surface,
here we consider two grippers holding a DLO in free space.
Therefore, the limitation to a planar motion is induced solely
by the gripper configuration, and not by any other object such
as a table top.

From this configuration, we can formulate a variety of
control tasks with increasing degrees of difficulty. For in-
stance, both the linear and angular velocities of the gripper,
together with the compliance of the grip (i.e. how much
the grasped object can rotate around the gripping point)
can be controlled. However, in this work a single control
input is considered, namely the linear velocity of the gripper
along a fixed axis, aligned with the DLO. This implies that
the gripper is constrained to move along a straight line.
Furthermore, to produce smoother deformations, the DLO
is grasped with a passive compliant grip.

The proposed task is to control a single gripping point
on the DLO in order to reach a goal shape of the entire
object. This can be viewed as controlling an under-actuated
continuum robot, where only the first joint is actuated. To
generate the goal shape, a sinusoidal trajectory is used, so
that plastic deformation occurs as seen in Figure 1. In a way,
this resembles the classical RL problem of an under-powered
car in a valley, climbing a mountain. Both problems require
moving in a direction which is farther from the desired goal,
in order to be successful.

Finally, it is important to note that grasping is not a part of
this work. For our simulations, a perfect grasp is assumed,
by reducing the interaction between robot and DLO to a
single control point on the object. This implies there is no
relative displacement between the controlled point and the
robot gripper, e.g. by slippage.

B. Modeling and Simulation

When choosing a multi-physics engine, there are many
factors to consider, such as accuracy, speed and development
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Fig. 2. Discrete curve described by points g;, tangent vectors Tj;
and angles 6,. Two osculating circles are illustrated to show the inverse
relationship between radius r and curvature .

time. The robotics and classical control environments avail-
able in Gym [14] were implemented using MuJoCo (Multi-
Joint dynamics with Contact) [15]. This proprietary soft-
ware seems to be the Reinforcement Learning community’s
predominant choice. We opted for AGX Dynamics, another
commercial engine which provides specialized models for
different classes of DLOs [16], [17], and great documentation
thus enabling shorter development times.

To simulate our problem we approximate the gripping
points on the DLO as being attached on each extremity
to a rigid object, by a Hinge constraint. This removes 5
Degrees of Freedom (DoF) from the relative motion between
the object and the DLO, only allowing for movement around
the hinge center. Further, varying the constraint compliance
makes rotation around its axis more or less stiff, which is
analogous to having more or less friction between the DLO
and the gripper. We use Prismatic constraints, between
each rigid object and the initial position of the other rigid
body, when the DLO is undeformed. This constrains the
motion of the controlled gripper to translation along one
dimension. Thus, the gripping points of the DLO move along
2 DoF, with only one of them actuated.

Finally, we have modeled the state of a DLO by its
curvature. This assumes that there is an object tracking
algorithm in place, to obtain an approximation of the DLO’s
state in Euclidean space, as a set of discrete points, ¢ =
(x,y,2) € R3. However, in simulation, the exact coordinates
can be used to compute the discrete curvature.

For any discrete curve with N > 3 points, it is possible to
compute its curvature through the circumscribed osculating
circle, as shown in Figure 2. Since the curvature of a circle
with radius r > 0, is defined as x = 1/r, the curvature can

be computed as: 0

Kq = 7 tan ?a (D)
where [ is the segment length, and 6 is the angle between
tangent vectors of two consecutive segments. It is assumed
that all segments have equal length, and that 6, € [0, 7] with
a=1,..., N —1. Thus, for each pair of adjacent points, the
tangent vector can be obtained:

Tij = qiq; = (x5 — T, Yj — Yirzj — 2), Ji=i+1 (2)

for all ¢; with ¢ = 1,..., N. Further, for each pair of
consecutive tangent vectors, the angle can be computed,

ﬂj X Tjk
T 11| Tl |
which is enough to approximate the discrete curvature r,

between each segment, as in equation (1), since [ is defined
in the simulation [18].

Gaarccos< ), k=75+1 3)

C. Reinforcement Learning

In RL, control problems are framed as Markov Deci-
sion Processes (MDPs). We consider an infinite-horizon
discounted MDP, defined as a tuple (S,.A,p,r,7), where
~ is the discount factor and S and A are continuous state
and action spaces, respectively. In real-life problems this
MDP is unknown since the probability density function,
p:S xS xA—[0,00), depends on an environment which
cannot be accurately modeled. This function represents the
probability of transitioning to state s;4+1, given the current
state s; and action a;, with s;, 8,41 € S and a; € A.
Further, in practical applications, the reward function r :
S X A = [Fmin,"maz), 1S defined based on the desired
task. To provide a measure of expected success, the return
at time ¢ is defined as the sum of discounted future rewards:
Ry = 5% vt (si, ai).

Policy gradient methods update parameters ¢, by taking
the gradient of the expected return. Note that the learned
policy can be both deterministic or stochastic. DDPG, TD3
and SAC all learn a deterministic policy, modeled as a Neural
Network. Therefore, policy parameters can be updated using
the deterministic policy gradient theorem [19]:

V¢J(¢) = Es~p7r [VGQW(Sa a)|a:7!‘(s)v¢ﬂ-¢<s>} (4)

where Q7(s,a) = Eg,p, aion [Re|s,al], is the expected
return when taking action a in state s, and following policy
m after that.

To evaluate the success of these methods on the problem
formulated in III-A, we need to define the states s, actions
a and the reward r. The state can be defined as a one-
dimensional vector of the discrete curvature, concatenated
with the forces and torques measured on the controlled
gripper, s = [k, F,7], with & = [kgq,...,kn—1] and
F,7 € R3. The actions provided by the learned policy are
clipped such that a € [—1, 1]. Finally, the reward function is
defined in equation (5), based on the L2-norm of the distance
between the current curvature, k; and the goal curvature, kK:
Li(k:) = ||kt — K||- Reward values are also clipped such
that » € [—1.5, 1.5]. In addition, the threshold value depends
on the complexity of the goal shape, and thus needed to be
tuned. For our experiments it is set to 0.06.

{Lt(nt), if Ly(r;) > threshold
ry =

otherwise

(&)

Tmax — |ai‘a

where the second term is meant to encourage the RL agent
to maintain zero velocity, once the desired shape is achieved.
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Fig. 3. Training curves for DDPG, TD3 and SAC algorithms. The shaded
region represents half a standard deviation of the average evaluation over 5
trials. First 10% steps without updates (min_steps_learn).

IV. EXPERIMENTAL RESULTS

For our experiments, the open source rlpyt [20] code-
base is used, which provides modular implementations of
major RL algorithms. All default hyper-parameters provided
by this library were used to obtain our results, since they
corresponded to the values from the original papers.

To build a realistic simulation the DLO is modeled as
an Aluminum wire, which is 10cm long and has a radius
of Imm. Being a lumped-element model, the resolution of
Cable needs to be defined, and is arbitrarily set to 1000
segments per meter. Furthermore, a maximum velocity is
enforced by limiting the force range of the controlled motor
to [—2.5,2.5]N. The simulation time-step was set to 0.02s,
while actions were applied every second step leading to a
control frequency of 25Hz.

For each algorithm, 5 trials are performed and the results
averaged, as seen in Figure 3. From the obtained results, all
algorithms seem to converge to similar average return levels,
although DDPG is the fastest to reach higher values. Since
all hyper-parameters were left as in the original papers, a
thorough hyper-parameter search needs to be done to reach
more conclusive results. What is relevant here is that all
methods seem to reach a solution, with comparable success.
The learned policy reaches the desired threshold and then
stops, sustaining zero velocity until the end of the episode.
All algorithms reach similar results with the maximum return
across trials and iterations, more specifically 1172 by DDPG,
1167 by TD3 and 1165 by SAC.

V. CONCLUDING REMARKS

In this work we have presented a new shape control
problem for elastoplastic DLOs. We proposed a state rep-
resentation based on curvature, which is independent from
the object position, thus making it better suited for shape
control tasks. To test this representation, a specialized sim-
ulation environment was implemented. Three different RL
algorithms were used to evaluate the potential of our state

representation. Results show that all actor-critic methods
learn a velocity trajectory which achieves the desired shape,
within the established threshold. This indicates that our
approach may be extended to more complex problems.
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