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Abstract— Many applications require exploring or monitor-
ing a region. This can be achieved by a sensor network,
a large team of robots which can cover only a very small
fraction each. When the region is convex, small, and static, it
suffices to deploy the robots as a Centroidal Voronoi Tessellation
(CVT). Instead, we consider that the area to cover is wide,
not necessarily convex, and complex. Then, a smaller simple
region is maneuvered and deformed to rake the full area. A
few waypoints describing the region along time are provided to
the robots. The goal is that the robots coordinate to dynamically
deploy over this region evenly, near a CVT. Unfortunately, the
distributed CVT computation algorithm converges too slowly
for such exploration method to be practical. In this work, CVT
computation is complemented with feedback and feedforward
based control techniques, and dynamic consensus, to adjust
the robot speeds so that they coordinate to cover the dynamic
region. We demonstrate in simulation that the proposed method
succeeds to achieve the goal of tracking the region, with the
robots evenly deployed, while keeping the connectivity and
avoiding collisions. We also compare the performance of the
proposed method versus other alternatives.

I. INTRODUCTION

In the taxonomy proposed by [1] we are interested both in
mobile search and monitoring problems, with similar appli-
cations as those that motivate, e.g., [2]–[10], and references
therein. In this work we propose a method to cover evenly
a dynamic region. This region, and its changes, is given
by the (human or intelligent) leader or operator, to remove
from the team difficult decisions about its borders, while
the operator cognitive effort to control n robots is reduced
from something above O(n) to O(1). To make the method
practical, the allowable velocity of region’s changes is an
issue. The proposed method has immediate applications in
search and rescue, 3-D mapping, and monitoring of protected
environments. For instance, several valleys and canyons must
be explored by a team of aerial robots that fly low, adapting
to the steep rocks and cliffs. For such a mission, it is required
that the swarm is kept together, to receive new commands
and to take almost simultaneous photos of the same scene
from different points of view.

In these scenarios, it is interesting to use ideas from swarm
robotics, that achieve useful high level behaviors through the
cooperation of relatively simple autonomous robots situated
in the environment, with local sensing and communication
capabilities, intending to be inherently reliable [11]. Sin-
gle robots are interchangeable and expendable. In order to
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distribute them evenly on the region to cover, they can be
placed near a Centroidal Voronoi Tessellation (CVT) [12].
Distributed implementations of the CVT algorithm [13] have
been applied to cover a convex region [2], [10]. However,
when the region to cover changes along time, classical CVT
methods are impractical due to their slow convergence speed.

In our previous work [14], this problem is faced exploiting
the past information about the region pose to incorporate a
feedforward action. There, it is shown that the method can
successfully track a region moving much faster than with the
basic CVT algorithm (Lloyd’s method) alone. We consider
that robots successfully track the region if the network stays
continuously connected, agents do not collide, and they
are deployed so that the coverage of the region is high.
However, [14] required that the region to be covered was
communicated to the robots step by step, and it had to be
guessed a priori how fastly the region should change from
one step to the next. Here, we introduce a practical method to
adapt the speed of the region movement to what the swarm
can correctly follow. From a few sparse specified waypoints,
the robots cooperate to decide if they can move at maximum
speed from one to the next, or they have to slow down.

A. Related Work

In some methods to tackle a similar problem, the geometry
of the formation is determined, allowing some flexibility [7].
On the contrary, in our proposal robots behave as a swarm:
Each robot decides its movement autonomously, after the
information received from its current neighbors, irrespective
of their number or identity, and the place of each individual
robot within the region is not important.

In [6], the problem of region-based shape control for
swarms of robots is approached by maintaining minimum
relative distances between them. In that approach, following
the research line [4], [5], the shape of the desired region
needs to be defined with an appropriate objective function
that guarantees convergence through Lyapunov analysis.
However, the flexibility is limited since each desired shape
requires a particular objective function definition, whereas
our proposal is general for any convex shape, and able to
directly deal with shape transitions. Unlike [6], our proposal
provides scalability in the number of robots and homoge-
neous distribution of the swarm within the working area,
which may be necessary in many applications.

In [9], the problem of making a swarm to acquire a
desired shape is addressed. Given the desired shape, they
use auction mechanisms to assign individual robots to indi-
vidual terminal positions. Then, robots move between these
configurations according to collision free paths. There are
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several differences between [9] and our proposal. First, we
are not interested in particular robots achieving particular
destinations. Instead, our mission is satisfied if the whole
desired shape is uniformly covered by our robots, regardless
of their identities. This makes our method lighter in terms of
the computation required to solve the assignment problem.
In addition, our method copes in a more natural way with
the sudden disappearance of robots, due to ocassional robot
(or sensor) failures, since we do not need to re-compute
the number and positions of targets. Second, [9] deals with
sequential reconfigurations (transitions between a set of static
configurations), while we are focused on the dynamic case,
where the region to be covered changes all along the execu-
tion. Thus, we address the problem of correctly tracking and
adapting to these variations.

In [10], coverage of a long region by deploying and
moving the sensors, is achieved maximizing a sensing func-
tion. The followed strategy uses two virtual guidance points,
located in the rear and front areas, to control the dynamics
of the moving region. It is first assumed in [10] that all
agents communicate with each other, whereas we focus in
scalability of the system, with a fully distributed approach.

Robustness against robots’ failures is inherited from the
CVT deployment strategy in static regions. Note that, as
agents deploy over a region, they expand to cover larger
regions. Thus, even if the agents start separated or discon-
nected, they eventually get closer to each other and establish
communication links [17]. When the region is not static but
it moves, in order to keep this property, robots must move at
a very slow speed to avoid disrupting substantially the near-
CVT formation. This problem is addressed in this work, in
order to move the formation as fast as possible.

B. Contributions and Organization of the Paper

The main contribution of this paper is the introduction of
a practical method to regulate automatically the speed of a
swarm of robots to cover a dynamic region specified by a
few waypoints in its trajectory. The problem statement and
assumptions are collected in Section II. The robots deploy
autonomously as a near-CVT formation within the region,
using the method introduced in [14], recalled in Section III.
The next waypoint is known in due time by every robot,
which uses also the information received through the network
from the rest of the swarm to decide each next step, not
diverging from each other thanks to a dynamic consensus.
The velocity regulation is presented in Section IV, leading
to a distributed algorithm to control the swarm. Performance
of the method and scalation are demonstrated in Section V
through simulation examples.

II. PROBLEM STATEMENT AND ASSUMPTIONS

Consider n robots operating in a dynamic planar convex
region, denoted by Q(t) ⊂ R2, with t ∈ R. Robots sense
with better quality the area nearby, so they should keep
evenly deployed over the area for a good coverage of the
region, while this region moves and changes.

In this paper, we make the following assumptions:

1) The region is a polygon inscribed within an ellipse. (The
problem could be extended, and approached similarly, to
more general regions, and also to the 3-D case.)
2) Each robot can obtain information from its current neigh-
bors, within its perception/communication radius r, so the
communication graph is undirected and time-varying. The
communication radius r is enough for ensuring connectivity
when the robots are uniformly distributed within the region.
In the worst case, the number of communication links
between neighbors, or hops, between the most distant robots
is in the order of

√
n. With r or n larger than necessary, the

region would be overpopulated with robots, and less hops
would be required.
3) Direct communication between robots, within radius r, is
assumed to be instantaneous. In other words, the dominant
information delays (by far) are those caused by the flooding
mechanism, due to the number of communication hops.
Other delays are neglected.
4) Each robot knows its own pose in a global reference.
5) Robots are equipped with a suitable lower level local
control, in which we are not interested here, so they are
able to reach their successive targets specified by the high
level control steps.
6) Although neither communication nor control actions over
robots need to be synchronized, for simplicity they are
considered to take place at discrete high level control steps
of duration T . Hence, time can be measured in steps. We
denote Qk = Q(kT ) in discrete-time. The robot positions at
step k are denoted by pi,k, for i = 1, . . . , n.

III. BASIC DEPLOYMENT ALGORITHM

Let us begin with a brief description of the coverage
problem, and the basic solution strategy based on CVT
computation plus feedforward action.

A. Centroidal Voronoi Tessellations

For a good coverage, the goal is to deploy robots evenly
over the region Qk. The ideal would be to partition Qk into
n disjoint cells Wk = (W1,k, . . . ,Wn,k), and to place the
robots in positions Pk = (p1,k, . . . , pn,k) at the centroids of
these cells, such that they form a CVT, defined as follows:

Definition 1: Let ‖ · ‖ denote the Euclidean norm in R2.
Given a set of n robots within a convex region Q ⊂ R2:
1) A configuration for Q, denoted by (W,P ), is any partition
of Q into n disjoint cells W = (W1, . . . ,Wn) with n robots
in positions P = (p1, . . . , pn) within those cells.
2) A Voronoi Tessellation is a configuration such that for
each i: Wi = {q ∈ Q | ||q − pi|| < ||q − pj ||,∀j 6= i}.
3) A Centroidal Voronoi Tessellation (CVT) is a Voronoi
Tessellation with each pi at the centroid of Wi, see, e.g., [12].

B. Movements/Transformations

Although the movement of the dynamic region can be
more general in practice, for some theoretical results in [14]
to hold, it is required that the successive Qk are related by
affine transformations [18, Ch. 12], denoted as follows:



Definition 2: Consider A : R2 → R2 an affine transfor-
mation. (Examples of affine transformations include trans-
lation, scaling, homothety, rotation, shear mapping, and
compositions of them, in any combination and sequence.)
The resulting region from applying A to every point in Q,
that is, Q after movement A, is denoted by Q

A−→ A(Q).
Successive movements are represented by the composition
of transformations: Qk = Ak ◦ Ak−1 ◦ · · · ◦ A1(Q0).

In general, it cannot be assumed that robots know the
“true” pose of the region at any time. Instead, they manage
their own estimations of the region from the information they
have. This is denoted and computed as follows:

Definition 3: Consider Qk ⊂ R2 and Ak : R2 → R2,
respectively a region and a movement at step k, and n robots.
The estimation of the region Qk, or the movement Ak, by
robot i ∈ {1, . . . , n} is denoted by Q̂i

k, or Âi
k, respectively.

Robot i uses the most recent information available about
the region. If this information was hi steps old, robot i would
know up to Qk−hi

, from which Âi
k−hi

could be estimated.
Then, robot i would presume Âi

k′ = Âi
k−hi

, for every k′ >
k − hi, and Q̂i

k = (Âi
k−hi

)hi(Qk−hi
), where (Âi

k−hi
)hi is

the composition of hi times Âi
k−hi

.

C. Basic Algorithm: Dynamic Distributed CVT
The algorithm proposed in [14] to deploy the robots in

a dynamic region is based on the distributed version of
the Lloyd’s method for a static region [13]. Starting at
a configuration (W0, P0), in a region Q0, which moves
according to successive Qk−1

Ak−→ Qk, at each step k, with
robots at Pk, each robot i executes Alg. 1. When a robot
receives the information on the region to cover through the
network, at each step k, it has only information up to k−hi,
where hi is the number of hops that the information traveled.

Each cell Wi,k is computed in line 11 of Alg. 1 as the
intersection between: (a) the boundaries of Q̂i

k; (b) a circle,
or approximate polygon, with center pi,k and radius r/2; and
(c) its Voronoi cell Vi,k based on the (known) positions of
the robots up to distance r,

Vi,k = {q ∈ Q̂i
k | ‖q − pi,k‖ ≤ ‖q − pj,k‖,

∀j such that ‖pi,k − pj,k‖ ≤ r},
which is a relatively straightforward geometric problem,
see, e.g., [13]. The Voronoi cell can be shrunk to prevent
collisions between large robots moving within neighbor cells,
see, e.g., [19].

The next robot position pi,k+1 computed in line 15 of
Alg. 1 consists of two terms: Its centroid (“feedback action”)
plus the next estimated displacement (“feedforward action”).

Note that the computational and memory costs associated
to the operations performed by this algorithm, within each
robot at each iteration, are very light. They are actually linear
with the number of robots placed within a distance r, which
are very few (at most about six [20]) in non overpopulated
swarms. This is one of the facts that makes distributed
strategies such as this one so appealing.

In [14, Th. 3.6] it is proven that, thanks to the feedforward
action, the swarm controlled by this algorithm maintains a

Algorithm 1: Dynamic Distributed CVT Algorithm
Data: Current robot position: pi,k
(Some) Previous known poses of the region
Result: Next robot position: pi,k+1

Distance to nearest neighbor: ni
Distance traveled: di
Effort to stay in region: ei

1 Get positions pj,k 3 ||pj,k − pi,k|| ≤ r (neighbors)
2 ni ← min(||pj,k − pi,k||)
3 Update, from neighbors, the most recent previous

pose of the region Qk−hi

4 Estimate Âi
k−hi

from Qk−hi and previous poses
5 // The subsequent, unknown, movements are

presumed to be similar (Def. 3). Note that when
hi = 0 then Q̂i

k = Qk.
6 Q̂i

k = (Âk−hi)
hi(Qk−hi); Âk+1 = Âk−hi

7 if pi,k /∈ Q̂i
k then

8 pi,k ← A close position at the boundary of Q̂i
k

9 ei ← Effort to stay in the region (the distance
from the former to the new pi,k)

10 end
11 Compute Wi,k [13]
12 // Compute mass (area) and centroid of Wi,k [2]:
13 MWi,k

=
∫
Wi,k

dq

14 CWi,k
=M−1Wi,k

∫
Wi,k

qdq

15 Move to pi,k+1 = CWi,k
+ Âi

k+1(CWi,k
)

16 di ← ||pi,k+1 − pi,k||

near-CVT, for movements consisting of an adequate number
of intermediate steps. It is always possible to slow down the
region motion by oversampling a given trajectory, including
more steps. However, it was not clear a priori the relation
between the region movement dynamics versus the required
number of steps that allows the swarm to successfully track
the region. Moreover, the difficulty to track a practical
movement is varying: a region that translates at uniform
speed can be trivially tracked by using a common constant
feedforward action. However, when the region movement
changes abruptly, e.g., in a sharp turn, it may be required
to slow down so that robots have enough time to rearrange.
Although this was discussed, nothing was said about whether,
and how, robots could compute automatically this speed.
This is the problem that we tackle in this paper: we want
to automatically control the speed of the movement, so
that the swarm can autonomously track the moving region
successfully. Essentially, it is required that the swarm feeds
back some information about its current difficulties to follow
the region, and that the velocity is adapted consequently. This
is the main contribution of this paper, which is addressed in
the next section.

IV. FEEDBACK CONTROL TO PREVENT OVERSPEED

From a process control viewpoint, we consider the swarm
as a plant to be controlled. Given the complexity of modeling



this plant for a practical distributed real-time control purpose,
this calls for the application of feedback controllers, which
do not rely on an accurate plant model. PID control has
been the most relevant approach to successfully control such
systems in industry for decades [15], [16].

The first step to apply feedback control in any system is to
measure the deviation of its behavior with respect to the one
desired. Our objective is to move as fast as possible while
succesfully tracking the region. In Subsect. IV-A, we define
a measure of overspeed, that should be kept small or null.

Once the controlled variable, overspeed, is defined, a
control law is applied to decide a good value for the
control action. The control action is chosen to be a virtual
force (Subsect. IV-C), which induces a change in velocity
(Subsect. IV-B), inversely proportional to the size of the
swarm. The designed feedback control law is explained in
Subsect. IV-D. Finally, the control algorithm for the swarm
robots is given in Subsect. IV-E.

A. Overspeed

A most critical issue when conceiving a feedback control
system is to select the appropriate controlled variable, which
must be informative in accordance with the final purpose of
the system. For the feedback control of physical magnitudes,
it is usually a matter of selecting the appropriate sensors
and signal processing. In our case, though, it is a matter of
finding an appropriate definition of overspeed, which must
be: 1) Precise and sensitive, meaning that it differs from
zero if, and only if, the current velocity is actually too high,
and it becomes gradually greater when the velocity becomes
increasingly dangerous; 2) Simple to implement, taking into
account that it must be computed by the distributed network
of simple robots; and 3) Simple to interpret, so that a trace
of its causes can be easily understood, particularly during
the tuning and testing of the control.

Recall that we consider that robots successfully track the
region if the network stays continuously connected, agents do
not collide, and they are deployed so that the coverage of the
region is high. An intuitive promising candidate for keeping
the network connected would be the algebraic connectiv-
ity [21], [22], which can be computed by a decentralized
algorithm [23]. However, this option was discarded, since
preliminary experiments showed that even the centralized
version of the algebraic connectivity may drop to zero from
a non-alarming value in one single step. In our case, we
propose using instead emax, which informs of the increasing
difficulties for some robots to stay in the region, which
is related to connectedness: When a robot estimates the
region with the currently available information, it could be
the case that the robot finds itself outside of such region,
what indicates it is falling behind of the swarm, risking
connectivity. Another good indicator of increasing difficulties
for the swarm to keep a near-CVT formation is nmin,
related to collision avoidance: When the minimum distance
to the closest neighbor approaches zero, the corresponding
robots are risking collision. These situations are quantified
by saturated linear functions, from 0 to 1, which start to be

positive at the warning value of the corresponding variable,
and which reach unity at the alarming value. Overspeed, o,
from 0 to 1, is defined as the saturated sum of these functions:

Definition 4: The following swarm performance indices
are defined, at each step k of the algorithm:
1) nmin = min{ni}, where ni is the minimum distance
between robot i and a neighbor.
2) emax = max{ei}, where ei is the distance robot i moved
to re-enter its estimated region, Q̂i

k (Alg. 1, line 9).
Overspeed, o ∈ [0, 1], is defined as follows:

o = sat

(
sat

(
0 ≤ n↓min − nmin

n↓min − n
�
min

≤ 1

)
+ · · ·

+sat
(
0 ≤ emax − e↑max

e�max − e↑max

≤ 1

)
≤ 1

)
(1)

The following parameter selection, used for the simula-
tions in Sect. V, has been made with the Assumption 2 that
the region is not overpopulated (Sect. II):

Variable Warning Value Alarming Value
nmin < 0.2r = n↓min < 0.1r = n�min

emax > 0.1r = e↑max > 0.2r = e�max

Our selection of warning and alarming distances between
neighbor robots, n↓min = 0.2r and n�min = 0.1r, respectively,
is prudent, and it makes good sense, taking into account
that the usual distance between neighbor robots in a non
overpopulated region would be about 0.5r to r, and, with
a typical value of the perception ratio of 100m and a robot
safety diameter of 0.5m, the safety distance would be 0.005r.

B. Velocity and Limit Velocity

The feedback mechanism based on overspeed measure-
ment shall compute an action that induces the appropriate
changes in the velocity, to adjust it. Notice that such velocity
refers to the change of the region between successive steps,
that is, the change from a Qk−1 to Qk. Let us start by
quantifying precisely such velocity of change of pose.

A trajectory is a sequence of (a few) poses or
the region, or waypoints, that must be passed through:
Q0, Q1, · · · , Qw, Qw+1, · · ·Qf . Waypoints are not too close,
so the region advances (typically much) less than one way-
point per step. If, for instance, it takes 100 steps to advance
from Qw to Qw+1, then the velocity is vk = 0.01 between
two successive intermediate poses Qk−1 and Qk, in the
direction from Qw towards Qw+1. At any time, the next pose
of the region is obtained interpolating between the previous
and next waypoints. The following definition summarizes
these ideas, introducing a convenient notation:

Definition 5: Given a region Q ⊂ R2 and an affine
transformation A : R2 → R2, to simplify the notation,
obviating the involved transformations, if Q′ = A(Q), then
Q′ − Q reads A. Let A be a movement between some Qa

and Qb, and let αA be a fraction of such movement, with
α ∈ [0, 1]. Then, if Qk = αA(Qk−1) this is denoted by
Qk −Qk−1 = α(Qb −Qa), or Qk = Qk−1 + α(Qb −Qa).



Given a complete trajectory to follow,
Q0, Q1, · · · , Qw, Qw+1, · · ·Qf , let Qk−1 be a pose
between Qw and Qw+1, then:

Qk = Qk−1 + vk(Qw+1 −Qw). (2)

where vk ∈ [0, 1] is the velocity between Qk−1 and Qk.
Clearly, the region should not move so fast that some of

its points move anything near one perception radius r in one
step. This motivates the definition of a limit velocity, vlim:

Definition 6: Given two regions Q,Q′ ⊂ R2 such that
Q′ = A(Q), their distance is defined to be the maximum
Euclidean distance between two corresponding points:

‖Q′ −Q‖ = max
q∈Q
{‖A(q)− q‖} (3)

The limit velocity to move in the direction from one way-
point, Qw, towards the next, Qw+1, is

vlim = η
r

‖Qw+1 −Qw‖
(4)

where η ∈ (0, 1] is a prudency parameter.
First of all, notice that the above notions of velocity and

limit velocity are relative to the distance between waypoints.
The absolute velocity is the displacement in one control step
divided by the control step duration. This velocity is tightly
related to η. With r = 100m and T = 1 s, the absolute
velocity of a robot recklessly moving 0.6r, approaching the
border of its perception area, in one step would be 60m/s
(216 km/h), but, even with such an imprudent η = 0.6, if
waypoints were 10 km away from each other, the limit
velocity vlim would be as low as 0.006 (0.6% of the distance
between the waypoints in one step). Note that η represents
the fraction of r that the region is allowed to move in one step
at vlim, so vlim can be interpreted as the maximum absolute
velocity of the region (in r/T ).

Concerning the tuning of the prudency parameter, we have
found that a good choice is between η = 0.2 and 0.4. This
means that the maximum displacement of the region in one
control step should be between 20% and 40% of r. Notice
that robots would move at this pace when they are keeping
the near-CVT formation, but some might have to move faster
when they have to rearrange, so, with higher values of η,
some robot might have to move near r, which would not be
admissible in practice.

C. Lead and Drag Forces. Density.

We propose to use a virtual force to induce the velocity
changes according to Newton’s second law, using a virtual
mass proportional to the swarm size: δ·n, where δ is a virtual
density parameter. The value used for the simulations in
Sect. V is δ = 1, which is conservative (with less density the
control action is more aggressive). The virtual force has two
components, a constant lead force, FL, and a drag force FD

that depends on the overspeed. For normalization, FD ranges
from 0 to 1. Mimicking actual vehicles, where their ability
to brake should be larger than their ability to accelerate, a
reasonable choice, used for the simulations in Sect. V, is
FL = 0.25, so the net force ranges from -0.75 to 0.25. The

combined effect of the force and the limit velocity might be
a larger or smaller number of steps from one waypoint to
the next one, affecting the total time required to fulfill the
mission.

D. Feedback Control Law

We want the control to be simple and robust, and easy to
tune. We propose a proportional-plus-derivative (PD) control,
with proportional gain Kp and derivative time constant Td,
that manipulates the virtual force, FL − FD, that drives the
movement. The integral mode of control is not required,
because once the overspeed, o, is small or zero there is
a positive (lead) force, FL, that increases the velocity up
to its maximum prudent value, given by the limit velocity,
vlim. The inertial behavior, due to the virtual mass δ · n of
the swarm, smooths the changes in the velocity, v, although
changes in the drag force, FD, are often abrupt.

The difference equations, including the saturation limits in
FD and v, are the following:

FDk = sat (0 ≤ Kp (ok + Td (ok − ok−1)) ≤ 1) (5)

vk = sat
(
0 ≤ vk−1 +

FL − FDk

δ · n
≤ vlim

)
(6)

In Sect. V we adjusted Kp = 1.2FL, and Td =
√
n/5.

E. Algorithm for Automatic Region Movement

Algorithm 2: Automatic region movement
Data: Current robot position: pi,k
Current estimated region pose: Q̂i

k

Most recent nj , dj , and ej of every robot j 6= i
Local values of ok and vk
Result: Next target position: pi,k+1

Next target region pose: Q̂i
k+1

1 pi,k+1, ni, di, ei ← Alg. 1 (Note that hi = 0.)
2 Update, through neighbors, the values of ni, di, ei

from j 6= i
3 Promediate ok and vk with the mean values updated

from neighbors (dynamic average consensus [24] )
4 Compute nmin, emax, ok+1 ← Def. 4
5 Compute vlim, FD, vk+1 ← (4), (5), (6)

6 Estimate Q̂i
k+1 = Q̂i

k + vk+1(Qw+1 −Qw) ← (2)
7 // where Qw and Qw+1 are the previous and next

waypoints

It is assumed that, at any time, every robot knows the next
waypoint. In the case of a fully autonomous mission, every
robot would know all the waypoints from the start. In the
case of a teleoperated mission, it suffices that the following
waypoint is sent to one or some of the robots well before the
swarm reaches the next waypoint, so it can be communicated
to the others in time, through the network. In any case, the
next pose of the region is not communicated through the
network, but it is computed by each robot i, at each step k,
and consensuated with the others, applying Alg. 2.



Note that the proposed method is distributed: For the CVT
and feedforward computation (Alg. 1), and for the overspeed
regulation and velocity consensus, only data from the robot
and from its one-hop neighbors are required, although part
of these data refers to more distant robots.

V. SIMULATION EXAMPLES

The behavior of the method will be analyzed by simulation
examples of a case adapted from [3]. A polygonal region
(defined by 16 vertices, inscribed in an ellipse) translates,
rotates, and changes its shape and size to pass through a
narrow corridor. A tenth of the robots are removed suddenly
by the middle of the simulation, little later than the sharp
change of direction, to simulate a massive failure, a most de-
manding severe perturbation happening in the worst moment.
The perception and communication adimensional radius r
is chosen to be r = 3

√
A/(nπ) so that the region is not

overpopulated with A = 1 being the largest area to cover1.
Assuming that the communication radius is always the same,
e.g., 100m, with (adimensional) r = 0.24 (0.14) for n =
50 (150) robots, respectively, the scale is 399 (691)m, in the
snapshots of Figs. 1 and 2.

Figs. 1 and 2 show snapshots of the swarm in a few
cases, which are also included in the video attachment, in
motion. They are accompanied by plots with the evolution
of the following variables, related to the quality of the area
coverage, the controlled velocity, and overspeed:
• Coverage ratio, the fraction of the area of the current

region covered by at least one robot (black). The pur-
pose of the mission is to keep the region covered, so
this is an important performance index.

• Maximum distance di (scaled by r) traveled by a robot
in each step (blue), and distance traveled by the region
in each step (dotted bue). They differ when the robots
have to rearrange to keep the near-CVT formation.
These distances can be translated to actual velocities,
for given values of r and T . For instance, a 0.4 value,
for technologically feasible r = 100m and T = 1 s,
corresponds to 40m/s (144 km/h).

• The two magnitudes taken into account to compute
the overspeed: the minimum distance ni to the nearest
neighbor (red), and the maximum distance ei traveled to
re-enter the region (magenta), both scaled by r. When
their values are too low, respectively too high, they
trigger the mechanism based on PD, force, and inertia
to change the actual velocity of the region (dotted blue).

In Fig. 3, the results of these cases, and many others, are
summarized. There are simulations with different number
of agents (n, from 10 to 300, in the horizontal axis), and
different methods: plain Lloyd’s method (red), our previous
work [14] (magenta), and the method proposed here, with
three different settings of the prudency parameter, η, limiting
the velocity, to 0.2 (prudent, green), 0.4 (medium, cyan),
or 0.6 (reckless, blue). The thick plots indicate the mean

1To satisfy Assumption 2 (Sect. II): Notice that A ≈ nπ(rmin/2)
2,

when all robots are separated rmin.

approximate coverage ratio, and the dotted plots are one
standard deviation above and below. The boxed integer
numbers indicate the number of steps required to complete
the mission, which starts once the robots are deployed as a
CVT formation over the initial region, and ends when they
are deployed as a CVT formation over the final region. For
the previous methods, the displayed figures correspond to
the fastest trials that succeeded, with a constant velocity that
had to be guessed by trial-and-error (faster cases failed). For
the proposed method, all the cases succeeded, even with the
extreme η = 0.6. In fact, η = 0.6 is too reckless to be used
in practice, because, while rearranging, some robots would
be required to move about their perception ratio in one step.

With the basic Lloyd’s method, which works well with
static regions [2], the region movement needs to be extremely
slow for the mission to succeed, even if the region pose is
broadcasted to every robot. In Fig. 3 some cases with up to
50 robots are reported. For instance, with 50 robots, 1290
steps were required. In the video attachment, a failure case,
when the speed is not low enough, is shown. (We considered
needless to try this method with more robots.)

For the feedforward, both in our previous and current
methods, robots estimate the region movement from the last
information about its translation and rotation, that is, changes
in size and shape are ignored, so they can be regarded as
unmodeled disturbances. Higher order estimations could be
used, and future poses could be taken into account, when they
were already known, but this is not done, for simplicity, and
to illustrate robustness against some uncertainty.

In Fig. 1a, a snapshot after 45 steps of the method in [14]
is shown at the highest constant speed for which the mission
ends successfully. The current region position is flooded
through the network from a central leader, so the outermost
robots try to cover a region that is some steps outdated
(shown dotted), and therefore they are falling behind, in
spite of the feedforward action. In Fig. 1b, a snapshot
after 30 steps of the proposed method with η = 0.6 is
shown. Note that, at this step, the swarm is slowing down
the movement (dotted blue) because both emax (magenta)
and nmin (red) have alarming values, signalling overspeed.
While the dynamic consensus is being reached, each robot
has slightly different versions of the region to cover, but
nevertheless the area coverage ratio of the “true” (mean)
region, yet unknown/consensuated by the robots, is still very
good. Note that the mission is accomplished faster, not only
better: in the end, it results in 71 vs. 89 steps, with a mean
coverage ratio of 95% vs. 83% (see Fig. 3, for n = 50).

To demonstrate the good scalation of the method, two
cases with n = 150 initial robots are shown, with η = 0.2
and 0.6, in Fig. 2a and 2b, respectively. Notice that when the
reason for a larger swarm is to cover a wider area with the
same kind of robots, then it is also the case that distances
are greater (they are roughly proportional to

√
n), hence,

with the same velocities, the time to complete the mission
(the number of steps) grows. Three snapshots are shown in
the scenes: the initial and final ones, and one at the step
when 15 robots are forced to disappear (they are marked with
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Fig. 1. Rather than receiving the pose of the region to cover at each step from (or through) some leaders, it is more practical regulating plus consensuating
the velocity between waypoints known in advance. This also leads to a better coverage ratio even when the prudency parameter η is adjusted to a reckless
value.
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Fig. 2. With many more robots, to cover a larger area, the behavior is similar, although it naturally takes more time to complete the mission, since
distances are greater. The parameter η allows to priorize either coverage quality and orderly movement or speed.

red ×). It is apparent, here and in Fig. 3, that lower, more
prudent, values of η result consistently in a better quality of
the coverage, practically independent of the swarm size. The
more ordered evolution of the swarm comes at the expense
of a longer time to complete the mission.

The behavior is better appreciated in the video attachment,
where, for a final practical demonstration, an additional
simulation experiment is shown: Two rooms connected by a
corridor have to be explored by a team of robots uniformly
deployed over a square, then a diamond, and finally a
circle. (The last transformation of the region is not affine,
a restriction that is only needed for some theoretical results
to hold.) In this experiment, which serves as a validation and
illustration, all the parameters are the same as in all the other
simulations, with η = 0.4.

VI. CONCLUSION

A practical method to cover uniformly a dynamic region
has been proposed. This method is based on Centroidal
Voronoi tessellations, as a method to deploy the robots
uniformly, which works perfectly to cover static regions
with a sort of flexible formation, and which is well adapted
to swarms. To cope with movements, deformations, and
other disturbances, simple control principles are applied. The
set up used in the simulation experiments was somehow
ideal, to concentrate on the basic properties of the method.
Once it has demonstrated to work well and to be scalable,
even in difficult situations, with reckless speeds, we plan to
investigate its performance and robustness further, in more
realistic simulations of the perception and control of the
agents, with relative positions, uncertainties, communication
latencies and random losses, and asynchronicity, or in real
experiments.
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Fig. 3. Summary of results. The new proposed method clearly outperforms the existing alternatives to cover a dynamic region with a near-CVT formation.
Thanks to the distributed nature of the algorithm, it scales well. The prudency parameter η allows to priorize order and quality or speed. The fact that the
method succeeds even with such a reckless adjustment as η = 0.6 is a good indication of the robustness of the method.
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