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Extrinsic calibration of multiple RGB-D cameras
from line observations

Alejandro Perez-Yus1, Eduardo Fernandez-Moral2, Gonzalo Lopez-Nicolas1,
Jose J. Guerrero1 and Patrick Rives2

Abstract—This paper presents a novel method to estimate
the relative poses between RGB and depth cameras without
the requirement of an overlapping field of view, thus providing
flexibility to calibrate a variety of sensor configurations. This
calibration problem is relevant to robotic applications which can
benefit of using several cameras to increase the field of view.
In our approach, we extract and match lines of the scene in
the RGB and depth cameras, and impose geometric constraints
to find the relative poses between the sensors. An analysis of
the observability properties of the problem is presented. We
have validated our method in both synthetic and real scenarios
with different camera configurations, demonstrating that our
approach achieves good accuracy and is very simple to apply,
in contrast with previous methods based on trajectory matching
using visual odometry or SLAM.

Index Terms—Calibration and Identification, Range Sensing,
Sensor Fusion, Omnidirectional Vision

I. INTRODUCTION

IN the vast majority of vision-based applications related
to mobile robotics and autonomous vehicles, having a

large field of view (FOV) is required or provides important
advantages [1], [2], [3]. It is particularly interesting when the
information of the sensor comes with both color and range
data. However, most of the RGB-D cameras that dominate
the market have a very narrow FOV. Thus, the idea of using
several RGB-D cameras to extend the FOV is very appealing.
Such system needs to be calibrated in order to fuse all the data
in the same reference frame. This process is called extrinsic
calibration, and consists in estimating the relative poses be-
tween the cameras. Current solutions for this problem are time
consuming and/or may require building a specific calibration
pattern. Besides, there are some additional challenges, such
as trying to combine different type of cameras, or finding the
calibration when the cameras have no overlap in their FOV. In
this work, we propose an original method to perform extrinsic
calibration of RGB-D cameras, which also works for different
combinations of 3D range and image sensors, even when their
FOVs do not overlap.
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Fig. 1: Observation of lines in the scene by a pair of RGB-D
and conventional cameras rigidly joined with non-overlapping
field of view. Line correspondences are used to formulate
geometric restrictions to compute the relative pose T between
the cameras.

Several extrinsic calibration approaches for different types
of camera systems have been proposed previously. A classical
strategy is through the detection and matching of control points
that are detected in the overlapping regions of the different
cameras [4]. Line features detected by conventional cameras
have also been used in a similar way to recover the essential
matrices among uncalibrated cameras [5], the relative poses
of calibrated cameras [6], [7], or the intrinsic and extrinsic
parameters of a number of them [8], [9]. However, the overlap
requirement constitutes a very strong constraint. Besides, even
when some overlap exists, it is generally more complicated
to match features in range images than in intensity images.
With a different perspective, the use of a calibration pattern
is a resource that has been employed as an ad hoc solution
for very specific problems [10], [11]. The lack of generality
of this solution for any configuration of cameras is indeed an
important limitation. Also the need to create the 3D calibration
pattern itself is wearisome.

A more general approach not depending on the geometric
configuration of the sensors is based on ego-motion to match
the camera trajectories, which are tracked independently. For
that, simultaneous localization and mapping (SLAM) or vi-
sual odometry (VO) techniques are applied [12], [13], [14].
However, this kind of solution is laborious to apply, requiring
robust SLAM or VO in controlled environments. Besides, they
may not be able to fully observe the calibration parameters
depending on the movement restrictions, e.g. the translation in
the vertical axis is unobservable in the case of planar motion,
so common for a wheeled robot or autonomous vehicle.

A solution for the extrinsic calibration of 3D range sensors
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based on 3D plane observations was presented in [15] which
works with non-overlapping sensors. This solution only re-
quires the co-observation of planar surfaces by the different
sensors and it is easy to apply, but it cannot be used with
conventional cameras. Similar approaches have later been
presented for other kind of sensors based on the observation
of large geometric features from the scene, like [16] for a
set of 2D laser range finders (LRF), or [17] which calibrates
a camera and a 2D LRF. The approach presented here is
inspired by this kind of solutions. In particular, it is based
on the observation and matching of lines in the scene from
the different sensors, which are used to formulate constraints
on the relative poses of the cameras. Our method allows to
calibrate any system with:

1) One sensor able to extract the parameters to completely
define a line in 3D space (e.g. a depth camera).

2) One (or several) sensors able to extract the lines in the
projective plane (e.g. a standard camera).

Thus, our method calibrates Color-Depth pairs {C,D}, Depth-
Depth pairs {D1,D2} and larger systems with NC color
cameras and ND depth cameras {D1..DND ,C1..CNC} whenever
ND ≥ 1 and ND +NC ≥ 2.

Before the calibration we describe our line extraction pro-
cess in color images (from both conventional and omnidirec-
tional cameras) and from range data. In particular, from range
data the lines are found as plane intersections. RGB-D sensors
are a special case where we can use line extraction in the
RGB image, and then use the depth to get the 3D line. This
situation is illustrated in Fig. 1, where the line with sub-index
1 corresponds to the intersection of two planar surfaces (Πa
and Πb) and thus, its 3D parameters are observable by a depth
camera, while the 3D parameters of the line with sub-index
2 (which is contained in the plane Πa) are only observable
by an RGB sensor. After line extraction, we propose a robust
method to find line matchings via a RANSAC approach. We
have additionally included an analysis of the observability of
the problem, where we discuss the minimum amount of line-
matchings necessary and degenerate cases.

The main contribution of this work is a novel method for
extrinsic calibration of an RGB-D multi-camera system based
on line observations. Our method has important advantages
with respect to other approaches in the literature: i) no
overlapping fields of view are required among the sensors;
ii) it can be used to calibrate different types of cameras;
and iii) it avoids needing to build a calibration pattern. We
performed experiments in simulation and with real images
with different camera combinations. These experiments show
the validity of our method and test the accuracy and real-world
usability of the approach. We demonstrate the calibration of:
an RGB-D sensor from a public dataset consisting on common
indoor scenes; a fisheye camera and a depth camera; two non-
overlapping RGB-D cameras; and a rig of 8 RGB-D cameras
arranged in a radial configuration for omnidirectional FOV.

II. LINE EXTRACTION AND MATCHING

We use line to refer to the line in 3D space, and segment
to refer to the set of collinear points found in a conventional

image. Mathematically, a line is the set of points p ∈ R3 that
satisfy the following equation:

p = p0 +λv = (p0x, p0y, p0z)+λ (vx,vy,vz) , ∀λ ∈ R (1)

being p0 ∈ R3 a point in the line, and v ∈ R3 the direction
vector of the line (see Fig. 1). We also define the projective
plane of the line π as the 3D plane that contains the line and
the origin of the reference system (i.e. the optical center of the
camera). The normal n ∈ R3 of this plane (see Fig. 1), also
known as the moment vector of the line, is the vector perpen-
dicular to p0 and v, i.e. n = p0×v. In the following sections
we describe how we extract lines in an image depending on
the type of camera used.

A. Line extraction in RGB camera

Due to the projective nature of conventional cameras we
cannot compute the direction vector v, nor any 3D point p.
Nonetheless, we can extract segments in the image to retrieve
the normal vectors n of their projective planes. For this, the
camera must be intrinsically calibrated in advance. The process
of getting segments is a traditional problem in computer
vision, which can be solved using widespread algorithms. In
particular, our approach goes as follows:

1) Apply a Canny filter [18] to extract edges in the intensity
image.

2) The edge points are grouped in boundaries formed by
consecutive points in the image.

3) For each boundary, we apply a RANSAC procedure [19]
to get the lines in 2D. The 2D lines have a direction
vector in the image l = [lx, ly,0]> and a set of k inlier
edge points {u1..uk} where ui = (ui,vi).

4) The mean of the inlier points ū is used to compute the
3D ray r = [(ū− cx)/ fx, (v̄− cy)/ fy, 1]> with camera’s
optical center (cx,cy) and focal length ( fx, fy).

5) The normal n is n = l× ri

Some examples of line extraction are shown in Fig. 2. While
this approach is appropriate for standard cameras, we can
substitute this method to a more suitable one if we need
to use a more complex type of camera. The work from
Bermudez-Cameo et al. [20] presents a line extraction method
for uncalibrated omnidirectional cameras with revolution sym-
metry. With this method we can calibrate a wide range of
ominidirectional cameras like the fisheye shown in Fig. 3 (a).

B. Line extraction in depth camera

A depth camera permits to obtain the 3D line parameters
(i.e. we can extract p, v and n from the lines in the image).
The strategy to obtain the lines may depend on the sensor.
Using only depth information, the simplest way to retrieve 3D
lines is by looking for 3D plane intersections. For example,
in Fig. 1, the line {p1,v1} is the intersection of the planes
Πa and Πb (e.g. the intersection of two walls). We extract
3D planes using RANSAC for plane fitting. Some samples
of real scenes with the planes extracted are shown in Fig. 2
and Fig. 3 (b). A plane Πi has normal ni and distance to the
origin di so that all points X belonging to the plane satisfy
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Fig. 2: Examples of common indoor scenes used for calibration, like wall-wall and wall-ceil junctions. The first row shows the
RGB images with the lines extracted in green, the second row shows the corresponding depth images with the planar surfaces
colored in different colors. Images (1-4) belong to the NYU2 RGB-D dataset [21].

(a) (b) (c) (d)

Fig. 3: (a) Lines extracted in a fisheye image (in green). The two relevant ones are selected in blue. (b) View from the RGB-D
camera. Top: the RGB image (not used for calibration). Bottom: the planar segmentation in the depth image used to extract
3D line from plane intersections. (c) 3D planes projected to the fisheye view with the corresponding lines in blue (from RGB)
and red (from depth). (d) After calibration, the projection of the 3D lines and the depth map fits the color image.

ni ·X+ di = 0. To compute the 3D line between two planes
Πa and Πb, we get the direction v as the cross product of their
normals, v = na×nb. A 3D point of the line p0 is obtained
as the closest point to the origin that fulfills the equations
na ·p0 +da = 0 and nb ·p0 +db = 0.

In the case of an RGB-D camera already calibrated (with
per-pixel correspondence between color and depth), the easiest
way to proceed is to use the segment extraction described for
an RGB camera, and use the depth information to transform
the segment points to 3D. RANSAC can be used to remove
possible outliers in the 3D points that define the line. This
approach has the advantage of being able to extract lines on
planes, which is not possible only with depth data. That is the
case of the line {p2,v2} contained in the plane Πa in Fig. 1,
which can be detected from the color changes.

C. Line correspondences between cameras

After line extraction, we create a set of NL line corre-
spondences Li=1..NL . In our notation, we call D the camera
with depth information and C the conventional one (color
or monochrome). Every correspondence Li consists of a
fully parametrized 3D line from D and the normal of the

projective plane from C, i.e. Li = {pD
i ,vD

i ,nC
i }. For example,

in Fig. 1 we can observe L1 and L2, and a real case with
two correspondences in Fig. 3 (c).

An automatic procedure to extract line correspondences
based on RANSAC is implemented as follows:

1) Extract all the lines in C and D for each image pair
independently to create a broad set of correspondence
candidates L .

2) Filter L according to an initial estimate of the relative
poses of the cameras and their uncertainty by setting
angular and/or distance thresholds to remove outliers.

3) Pull a minimal set (Section IV) of three random cor-
respondences from L to perform the calibration as de-
scribed in Section III, and count the number of consistent
correspondences in L .

4) Repeat the previous step using RANSAC to obtain the
maximal consensus (inliers).

5) The final calibration is computed from the inlier corre-
spondences.

Note that it is easier to perform the calibration from scenes
without clutter, see Fig. 3 (b), where a few lines can be
robustly extracted. Cluttered scenes result in higher number
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of outlier correspondences which may require a better initial
approximation of the calibration to be filtered out. Neverthe-
less, since calibration should not be performed very often, the
correpondences may also be selected with human supervision
to guarantee the correctness of the calibration.

III. EXTRINSIC CALIBRATION FROM LINE
OBSERVATIONS

In this section we address the problem of extrinsic cal-
ibration of a depth camera D and a color camera C. Let
CTD = [R|t]∈ SE(3) be the relative pose between the reference
frame of D with respect to C. Our goal is to find the maximum
likelihood estimation (MLE) for CTD. Since rotation and
translation can be decoupled, we separate the process in two
stages, computing first the rotation R and then the translation t.
We consider that our line observations are affected by unbiased
Gaussian noise N(0,σ), uncorrelated between different line
correspondences. Under this assumption, the MLE is equiva-
lent to the solution of the least-squares minimization of the
geometric errors of the line correspondences for the rotation
and the translation.

A. Rotation estimation

From the definitions in the previous section, the direction
vector of a line v is orthogonal to the normal vector n.
This condition holds between separate cameras C1 and C2
after applying the corresponding relative rotation to transform
both vectors to the same reference frame. Thus, we can
use the condition of orthogonality to retrieve the rotation by
computing the matrix R ∈ SO(3) that satisfies:

(nC2)
T ·RvC1 = 0 (2)

where in our problem, C1 = D and C2 = C (we drop these
super-indexes for readability). We need at least three line
correspondences Li to estimate the rotation R, which has three
degrees of freedom. A more extended discussion about the
observability of this problem is provided in section IV.

The MLE of the relative rotation is equivalent to the solution
of the following non-linear least squares minimization, with
the relative rotation R represented in a minimal parametrization
with the exponential map from Lie algebra:

argmin
µ

NL

∑
i=1

(nT
i · eµ Rvi)

2 (3)

where eµ is the exponential map of the increment of rotation
µ on R. The vector µ has three dimensions and it is the
axis-angle representation of the rotation on a manifold space
of SO(3). We solve this non-linear least squares problem
iteratively with Gauss-Newton. The increment vector µ is
computed as:

µ =−H−1g (4)

where H and g are the Hessian and the Gradient of the error
function, computed as:

H =
NL

∑
i=1

JT
i Ji , g =

NL

∑
i=1

JT
i ri (5)

with the Jacobians and residuals given by

Ji = (Rvi×ni)
T , ri = ni ·Rvi (6)

B. Translation estimation

Following a similar reasoning, the vector p representing any
point on the 3D line is perpendicular to the normal vector n.
Therefore, the relative pose CTD = [R|t] must satisfy:

(nC)
T · (RpD + t) = 0 (7)

Assuming that the rotation is already known, we require at
least three line correspondences to find a valid solution for t
(see section IV for special degenerate cases). The MLE of the
relative translation is equivalent to the solution of the following
non-linear least squares minimization:

argmin
t

NL

∑
i=1

(
nT

i ·
T pi

‖T pi‖

)2

= argmin
t

NL

∑
i=1

(
nT

i ·
Rpi + t
‖Rpi + t‖

)2

(8)
Note that the point pi, after rotated and translated, must be

normalized since, otherwise, points situated farther away from
the origin of coordinates would have more influence in the
optimization. We also solve the problem with Gauss-Newton,
where the Jacobians and residuals are computed as:

Ji = nT ·
I− T p

‖T p‖

(
T p
‖T p‖

)T

‖T p‖
, ri = nT

i ·
T pi

‖T pi‖
(9)

C. Calibration of multiple cameras

Let us assume we have a rig of N = NC + ND sensors,
with NC conventional cameras {C1,C2, ..,CNC} and ND depth
cameras {D1,D2, ..,DND}, if we perform pair-wise calibration
for all the combinations Ci−D j, the global solution will be
inconsistent generally. The solution is to perform a complete
non-linear optimization with all the parameters. We can set
the global reference frame to one of the sensors without loss
of generality, for instance C1. Thus, we need to find the MLE
for (N−1) rigid transformations.

The problem is formulated as follows, for the rotation:

argmin
µ2..µN

NC

∑
j=1

ND

∑
k=1

N jk
L

∑
i=1

((eµ j R jn ji)
T · eµk Rkvki)

2 (10)

where µx is the increment of rotation to Rx for each camera.
N jk

L stands for the number of line correspondences between
cameras C j and Dk. The Hessian and gradient, with dimensions
(3 · (N−1)×3 · (N−1)) and (3 · (N−1)×1) respectively, are
computed following eq. 5, where the Jacobians are given by

J( j)
i = ((R jn ji)× (Rkvki))

T

J(k)i = ((Rkvki)× (R jn ji))
T

(11)

and the super-indexes ( j) and (k) represent the three-column
block corresponding to the parameters µ j or µk. For the
translation, the formulation of the minimization problem is:

argmin
t2..tN

NC

∑
j=1

ND

∑
k=1

N jk
L

∑
i=1

(
nT

ji ·
T−1

j Tkpki

‖T−1
j Tkpki‖

)2

(12)
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where the operation T−1
j Tkpki transforms the point pki to the

reference frame of C j (note that we have employed homoge-
neous notation for simplicity, and the transformed points are
used in its compact form afterwards). Again, instead of using
the coordinates of the transformed point, we normalize to have
the direction vector of such point. The resulting Jacobians are:

J( j)
i = nT

i j ·
−RT

j −
T−1

j Tkpki

‖T−1
j Tkpki‖

(
T−1

j Tkpki

‖T−1
j Tkpki‖

)T

‖T−1
j Tkpki‖

J(k)i = nT
i j ·

RT
j −

T−1
j Tkpki

‖T−1
j Tkpki‖

(
T−1

j Tkpki

‖T−1
j Tkpki‖

)T

‖T−1
j Tkpki‖

(13)

IV. OBSERVABILITY

In this section we present the analysis of minimal solutions
and possible degenerate cases of our calibration problem. For
that, we analyse the shape of the Fisher Information Matrix
(FIM) for the parameters of the maximum likelihood estimator
(MLE) of the calibration presented in the previous section. The
FIM coincides with the Hessian of the least squares problem
resulting from the MLE, and its inverse is the covariance of the
resulting calibration (which corresponds in turn to the Cramér-
Rao lower bound when the MLE is given by an unbiased
Gaussian distribution [22]). When the FIM is singular, the
information provided is not sufficient and the MLE does not
exist, therefore, the calibration problem has a solution only
when the FIM has full rank.

Let us analyse first the rotation estimation problem. From
the error function and its Jacobian (eqs. (3) and (6)), we have
that each line correspondence imposes a new constraint be-
tween a pair of sensors. Thus, we need at least 3 measurements
to compute the relative rotation. These constraints must be
linearly independent, which is the case when the direction
vectors vD of the 3D lines as seen by the depth camera are
not all parallel (i.e. two of the three can be parallel). Notice
that two parallel lines in 3D are not necessarily parallel in the
image, as they may intersect in a vanishing point.

Regarding the estimation of the translation, assuming that
the rotation is known, each line correspondence imposes a
new constraint between the pair of sensors. In order to get a
full rank FIM, the Jacobians of the 3 constraints (9) must be
linearly independent. For that, at least 2 normal vectors nC

must be linearly independent, which is true for any pair of
different lines in the projected image (even for parallel lines
in the image). This condition is trivially fulfilled for any three
constraints for which the rotation’s FIM has full rank. Also,
the lines used for calibrating the translation cannot intersect all
in the same 3D point (e.g. a trihedron), because the translation
along the projection ray which contains the optical center of
the camera and the line’s intersection would not be observable.
Hence, the observation of the three non-parallel lines which do
not intersect in the same point provides enough information to
localize a conventional camera with respect to a depth camera.

The required line correspondences may be observed in
several views or in a single one (e.g. the rightmost image pair
of Fig. 2). Note that the 3 direction vectors do not have to form

0 50 100 150 200

Number of line correspondences

0

0.5

1

1.5

2

M
e
a
n
 a

n
g
u
la

r 
e
rr

o
r 

(d
e
g
)

= 0.1 deg
= 0.5 deg

= 1 deg

0 50 100 150 200

Number of line correspondences

0.005

0.01

0.015

0.02

0.025

0.03

0.035

M
e
a
n
 t
ra

n
s
la

ti
o
n
 e

rr
o
r 

(m
)

= 0.001 m
= 0.005 m

= 0.01 m

Fig. 4: Simulation results of the calibration accuracy for the
rotation (left) and translation (right), given by the mean error
with respect to the ground truth, over the number of line
correspondences at three different noise levels.

an orthogonal base, as it was required in other works [17].
For a rig with N sensors, the number of line correspondences
will depend on the type of sensors of the system. Again, by
analysing the FIM of both rotation and translation estimation,
we can guarantee that the system has a solution if there are at
least 3(N− 1) correspondences which fulfill the rotation and
translation conditions between pairs of cameras. Depending
on the type of sensors in the system, a solution may exist
even with less line correspondences, but such analysis is out
of the scope of this paper. Note also that we will be interested
to obtain considerably more line correspondences than the
minimal set in order to improve the accuracy. Nevertheless,
the minimal solution is of interest to remove outlier line
correspondences using RANSAC (Section II-C).

V. EXPERIMENTAL VALIDATION

We have performed experiments in simulation and with real
multi-camera systems. With the former we provide an analysis
of performance and robustness to noise with regard to the
number of line correspondences. Next, the real case scenarios
show the validity and applicability of our method to the real
world.

A. Simulation

We present the results of calibration of a pair of depth
and RGB cameras with a relative pose T from D to C
given by a rotation of (0.2,−π/4− 0.2,0.1) in Euler angles
and a translation of (−0.06,0.03,0.1) in meters, for different
numbers of line correspondences and different noise levels in
their observations. We have also tested different ground truth
poses with similar results. For each experiment, we generate
randomly NL = 5..200 lines in 3D space and obtain their
observation parameters in both cameras. For the analysis of the
rotation we add unbiased Gaussian noise to the vectors v and
n to rotate them slightly. We analyse the calibration accuracy
for three noise levels with standard deviation σ = {0.1,0.5,1}
degrees. For the analysis of the translation, the point p is
also translated with Gaussian noise σ = {0.001,0.005,0.01}
meters. We find these values to be realistic for the case of
RGB-D sensors like Asus Xtion Pro Live (XPL).

We show the accuracy of the rotation and the translation
separately in Fig. 4, with the accuracy of the calibration
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measured by the angular error of our estimated rotation (left),
and the translation error measured in meters as the norm of
the difference with respect to the ground truth (right). The
mean errors decrease asymptotically with the number of line
correspondences. This behavior was expected, since having
more data should improve the performance when the noise
in the measurements is Gaussian. We see how the translation
error is more sensitive to noise in comparison with the rotation
error. This experiment shows promising results, since the mean
error values remain small with a reasonably low number of
correspondences.

B. Real case scenarios
Four sensor combinations are tested to show the successful

performance of our method under different challenging situa-
tions:

1) Fisheye to Depth:
This experiment describes the extrinsic calibration of a regular
fisheye camera with FOV over 180◦ and the depth sensor of
an Asus XPL, shown in Fig. 5 (a). This system is useful to
combine the large FOV of the fisheye camera with the real
scale provided by the depth [3]. We compare our calibration
results to the ones obtained using the method from [23], based
on a traditional planar checkerboard calibration which we use
as ground truth. Note that we do not make use of the color
information from the Asus XPL in this experiment in order to
be consistent with our comparison with [23].

We have recorded a set of 65 image pairs from our office
desktop which contain a good number of lines, thus constitut-
ing a good source of information for our method, (see Fig. 3).
We selected manually 77 line matches to perform calibration
and test its accuracy. From the set of line correspondences, we
extract random sets of NL = {10,20,30,40,50} and measure
the average angular and translational errors with respect to
the ground truth from 100 calibration runs for each set, using
the same metrics of the simulation results. The error values
in Table I seem to corroborate the results from simulation,
since the error decreases as number of line correspondences
rises. The residuals from the optimization are also quite low,
as we could expect since no outliers are introduced with the
manual selection of correspondences. In Fig. 3 (d) there is the
reprojection of the 3D planes and lines on the fisheye image
after the calibration.

We also test the performance of the automatic line-matching
via RANSAC (Section II-C) compared to manual matchings.
For that, we only consider as correspondence candidates
those pairs of lines with a relative rotation below 5◦ (i.e.:
|n · v| < cos((90− 5) ∗ π/180)) and a relative translation of
10 cm (i.e.: |n ·p|< 0.1), where we have used the identity as
the initial estimation of the relative pose, obtaining a total
of NL = 152 candidate line matches. Notice that this type
of heuristic filtering of candidate correspondences may be
applied to any system where we have some rough information
about the sensor set-up. We apply RANSAC to remove outliers
and perform the calibration, whose results are shown in the
lower part of the Table I. We can see that the automatic
approach achieves better accuracy in comparison to the case
with manually selected correspondences.

TABLE I: Mean rotation and translation errors with respect to
the ground truth and residuals in the calibration case of fisheye
and depth cameras. Results for both manual and automatic
(via RANSAC) matching of lines. The acccuracy is analyzed
respectively with the number of lines (NL) or iterations (Niter).

Mean error with GT Mean residual error

M
A

N
U

A
L

NL
Rotation
(degrees)

Translation
(meters)

Rotation
(degrees)

Translation
(meters)

10 1.9796 0.0483 0.0132 0.0053
20 1.2006 0.0288 0.0158 0.0050
30 0.8901 0.0216 0.0169 0.0051
40 0.7103 0.0179 0.0172 0.0050
50 0.5741 0.0150 0.0176 0.0051

R
A

N
SA

C Niter
Rotation
(degrees)

Translation
(meters)

Rotation
(degrees)

Translation
(meters)

100 1.1922 0.0376 0.0009 0.0007
1000 0.7270 0.0202 0.0009 0.0008
10000 0.5545 0.0127 0.0010 0.0008

(a) (b)

Fig. 5: (a): Fisheye with RGB-D camera system. (b): Omni-
directional camera rig.

2) Kinect calibration: RGB to Depth:
In this case we show the performance of our calibration system
using images from the NYU2 RGB-D public dataset [21]. This
dataset is thought to be used in segmentation tasks instead of
calibration, so all images are from common indoor scenes (e.g.
living rooms, kitchens, offices). A few examples of the line
and plane extractions are shown in Fig. 2. We use the provided
parameters of extrinsic calibration of the camera Kinect as
ground truth to compare our results. The Kinect has a relative
pose from the depth camera to the RGB camera close to the
identity, with a translation in the X axis of around 2.5 cm. We
use the identity as initial rotation matrix, with initial translation
equal to zero.

For the experiment we use a recorded sequence in a study
room, which was one of the less cluttered (third image in
Fig. 2). We use the automatic line-matching with prefiltering of
0.5◦ for the rotation and 5 cm for the translation, obtaining an
initial set of 2229 line-matchings. The RANSAC returns 328
inliers, for which in the optimization we got a rotation error
of 0.7578◦ and a translation error of 1.27 cm (the translation
result in X is 3.16 cm). The residuals of the optimization are
very low (under 10−5 for the rotation and the translation).

We can consider this results satisfactory considering the
difficulty of using images from an external dataset which
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Fig. 6: Visual evaluation of the RGB to depth camera calibra-
tion with a checkerboard with the point clouds reprojected to
a common reference frame (general and lateral views).

TABLE II: Residual errors in the extrinsic calibration of an
RGB camera to a depth camera experiment and the omni-
directional RGB-D camera rig for different number of line
correspondences.

RGB to Depth no overlap Omnidirectional RGB-D rig

NL

Rotation
residual
(degrees)

Translation
residual
(meters)

Rotation
residual
(degrees)

Translation
residual
(degrees)

10 0.0882 0.0319 0.0378 0.0557
20 0.0849 0.0336 0.0354 0.0405
30 0.0632 0.0271 0.0267 0.0160
40 0.0553 0.0229 0.0205 0.0110
50 0.0489 0.0193 0.0211 0.0193

was thought for another task. In particular, this dataset has
very high levels of clutter which introduces many outliers in
the set of line correspondences. Besides, many of the useful
line correspondences are from far distances, where the plane
extraction is less accurate due to the higher levels of noise
from the depth camera. Other methods achieve better accuracy
(such as [24]), but they need to build a calibration pattern and
capture images for this specific purpose.

3) RGB to depth with non-overlapping FOVs:
In this experiment we have used an omnidirectional camera rig
formed by 8 Asus Xtion Pro Live cameras arranged in a radial
configuration, see Fig. 5 (b). For this particular experiment we
only use two adjacent cameras from the rig to calibrate the
RGB of one of the cameras to the Depth of the other. Adjacent
cameras have a relative rotation of 45◦, which we use as initial
estimate of relative pose, and a relative translation of less than
10 cm.

The average value of the residuals after the optimization
for different numbers of line correspondences (NL) are shown
in Table II (columns 2-3). As in simulation, we observe that
a higher number of line correspondences generally improves
the results in both rotation and translation. Such improvement
stabilizes after a few tens of lines, with a similar trend as the
simulation above.

In order to evaluate the accuracy of the system it is desirable
to have the ground truth of the calibration of our camera
rig. Since this is not available, we employ a big planar
checkerboard in a way that each camera observes the portion
of the checkerboard not visible by the other camera to evaluate
the accuracy of our calibration. First we perform a qualitative
evaluation by visualizing the image stitching together with

the point cloud reconstructed after calibration from different
perspectives (Fig. 6), showing the consistency of the different
views. For a quantitative evaluation, we extract the 3D points
of the square corners from the checkerboard and place them
into the same reference frame given by the calibration (as it
is commonly done for intrinsic calibration [24], [23]). Then,
we measure the distance of the corners between both cameras
to compare them to the real measurements. We compute the
average distance between the most distant corners for each
row. The average size of the checkerboard squares is of
118.3 mm in the calibrated images, which is similar to the
real dimension of 120 mm. We can also estimate the plane
equations from each side and compare angles of their normals
and the differences in distances to the origin. We obtained an
angular difference of 1.7◦ and a distance difference of 2.4 mm.

4) Omnidirectional rig of 8 RGB-D cameras:
In this experiment we calibrate the relative positions among
all cameras from the camera rig shown in Fig. 5 (b). Since
the cameras have an approximate vertical FOV of 45◦, the
eight camera rig achieves an horizontal FOV of 360◦. We
calibrate this rig following III-C. Table II (columns 4-5) shows
the residuals of the optimization according to the number of
correspondences extracted between pairs of adjacent cameras
(e.g. NL = 10 corresponds to 10 correspondences per pair and
80 for the full rig). A comparison with the two-camera case
reveals that the residuals are smaller because of the global
optimization.

In this case we cannot obtain any ground truth, so we
evaluate the accuracy qualitatively by visual verification. The
different RGB images are stitched into a panorama by project-
ing the individual 3D point clouds transformed to a common
reference frame. Ideally, the images should merge seamlessly
for a good calibration. In Fig. 7 there are two examples of
our image stitching, where it can be observed that the relative
positions are well recovered. Compared to [15], which uses the
same camera rig, we got better results in the image stitching.
The main reason for that is that we use information coming
from the color camera and not only depth.

VI. CONCLUSIONS

We propose a novel solution to calibrate different com-
binations of range and conventional cameras. In contrast to
previous alternatives to solve the problem for sensors systems
without overlapping FOVs, our solution is considerably easier
to apply, it does not have unobservable parameters and it
allows to calibrate different sensor combinations with reason-
able accuracy. We also present an observability analysis of the
problem, providing relevant information regarding the number
of observations necessary for our method to perform properly.
Our experiments in simulation and real multi-camera systems
prove the validity of the method and its applicability to real
cases.
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