
Scaled layout recovery with wide field of view RGB-D

Alejandro Perez-Yus∗, Gonzalo Lopez-Nicolas, Jose J. Guerrero

Instituto de Investigación en Ingenierı́a de Aragón (I3A), Universidad de Zaragoza, Spain

Abstract

In this work, we propose a method that integrates depth and fisheye cameras to obtain a wide 3D scene reconstruction with scale
in one single shot. The motivation of such integration is to overcome the narrow field of view in consumer RGB-D cameras and lack
of depth and scale information in fisheye cameras. The hybrid camera system we use is easy to build and calibrate, and currently
consumer devices with similar configuration are already available in the market. With this system, we have a portion of the scene
with shared field of view that provides simultaneously color and depth. In the rest of the color image we estimate the depth by
recovering the structural information of the scene. Our method finds and ranks corners in the scene combining the extraction of
lines in the color image and the depth information. These corners are used to generate plausible layout hypotheses, which have
real-world scale due to the usage of depth. The wide angle camera captures more information from the environment (e.g. the
ceiling), which helps to overcome severe occlusions. After an automatic evaluation of the hypotheses, we obtain a scaled 3D model
expanding the original depth information with the wide scene reconstruction. We show in our experiments with real images from
both home-made and commercial systems that our method achieves high success ratio in different scenarios and that our hybrid
camera system outperforms the single color camera set-up while additionally providing scale in one single shot.

Keywords: 3D layout estimation, RGB-D, Omnidirectional cameras, Multi-camera systems

1. Introduction

One of the most important topics in computer vision and
robotics has been to perceive the 3D information from the
scene. The recent advent of consumer RGB-D cameras has
caused a great impact in the field, since having color and depth
information synchronized in one single shot is very appealing.
Unfortunately, these devices usually have a field of view (FOV)
too narrow for certain applications, and it is necessary to move
the camera in order to capture different views of the scene. That
is often not easy to achieve when cameras are attached to sys-
tems with limited mobility (e.g. a robot navigating an indoor
environment with rigidly attached camera, or a visually im-
paired aid with a fixed camera pointing towards the front of
the user to detect obstacles or other hazards [1]).

Here, we propose to use a color camera with wide FOV to
extend the depth information in a hybrid camera configuration
composed by a depth and a fisheye camera. The FOV of a fish-
eye is over 180◦, in contrast with the usual FOV of 43◦ × 57◦ of
consumer depth cameras (Fig. 1a). Once the cameras are cali-
brated, the system is capable of viewing over a hemisphere of
color information where the central part of the image has also
depth data (about 8.7% of the total number of pixels, as shown
in Fig. 1b). One can think of this configuration inspired in the
vision of the human eye, where the central part (fovea) provides

∗Corresponding author
Email addresses: alperez@unizar.es (Alejandro Perez-Yus),

gonlopez@unizar.es (Gonzalo Lopez-Nicolas),
josechu.guerrero@unizar.es (Jose J. Guerrero)

RGB-D camera

Fisheye camera

(a)

(b) (c)

Figure 1: (a) Fields of view of our proposed system composed by
a Fisheye and a RGB-D camera. (b) The depth information in the
center is extended to the periphery combining information with the
line segments that we use to extract the spatial layout of the scene. (c)
As a result we obtain a full-scaled 3D reconstruction of the scene.

richer information than the periphery, and the field of view is

A. Pérez-Yus, G. López-Nicolás, J. J. Guerrero. Scaled layout recovery with wide field of view RGB-D. Image and
Vision Computing, vol. 87, pp. 76-96, 2019.

Figure 2: Block diagram of the main stages of the algorithm, starting with the initial Fisheye and Depth images and finishing with the result of
the scaled layout. In the captions the numbers of the corresponding sections of each stage.

slightly over 180◦. Notice that, although our work uses a fish-
eye camera, the approach could be extended to other kinds of
omnidirectional systems. This kind of system could be helpful
in limited mobility problems since it provides safe depth ob-
servations in front of the moving robot/subject, but at the same
time allows to recover additional meaningful scene information
with wider context.

In particular, we propose to extend the 3D information in one
single shot via spatial layout estimation. Acquiring knowledge
about the layout of the room can have advantages in many tasks
like mapping, navigation, scene recognition, augmented reality
or even object detection (e.g. objects on surfaces, discerning
objects from structure). Layout estimation approaches are not
new, but most of them are either too restricted (i.e. specific
room shapes like boxes) or designed for conventional cameras
with small field of view, which weakens the results since the
available context is reduced and the possibility of occlusions is
much higher. Besides, most of them produce results up to a
scale, which is not ideal for the applications mentioned above.
Here we propose a method able to overcome all these limita-
tions. Notice that our approach does not only provide geometric
reconstruction, but also provides additional contextual informa-
tion about the scene, such as the distribution of walls, floor and
ceiling, and thus the shape of the room. Hence, it is different
to methods that register RGB-D frames together that provide
just pure geometrical information (including non-structural ob-
jects), unless further processing is applied.

Our layout estimation method is based on line segments from
the fisheye image, and provides scaled solutions rooted on the
depth information. As a result, a final 3D scene reconstruction
is provided (see Fig. 1c). The 3D room layout can be seam-
lessly merged with the original depth information to generate
a 3D image with the periphery providing an estimation of the
spatial context to the central part of the image, where the depth
is known with good certainty. The collaboration between cam-
eras is bidirectional, since the extension of the scene layout to

the periphery is performed with the fisheye, but the depth infor-
mation is used both to enhance the layout estimation algorithm
and to scale the solution.

A scheme of the whole algorithm with the corresponding sec-
tions in the paper is shown in Fig. 2. In detail, the depth camera
provides a region of the image with 3D data, from which an ini-
tial estimate of the Vanishing Points (VPs) and 3D planes can
be recovered. The VPs are used to retrieve the scene orienta-
tion necessary to generate layout proposals. In this work, we
assume scenes are from a Manhattan World [2], meaning the
world is organized according to three orthogonal main direc-
tions. This assumption holds for most human-made scenarios,
especially indoors. The 3D planes extracted are used to pro-
vide scale, impossible to get otherwise with one single shot and
no previous knowledge of the scene. The layout is scaled by
detecting the floor plane, however, we include a scaling proce-
dure in case the floor is not found. Having scale has many ad-
vantages in this type of methods which usually require several
heuristics. For instance, tuning parameters can be grounded in
reality. Depth information is also used to filter hypotheses and
reward line segments corresponding to intersections of planes.

The line segments from the wide image are classified accord-
ing to the three Manhattan directions. The horizontal lines are
projected either to the floor plane or the estimated ceiling plane
to have the 3D segment position in the real world. Structural
corners are then looked for, by considering plausible and simple
cases of line distribution. The corners of the map are evaluated
by our scoring function, and layout hypotheses are proposed by
the probability of these corners to occur in the real world, pro-
portional to these scores. Then, layout hypotheses are gener-
ated based on geometrically coherent wall distributions that do
not contradict the initial depth information and the visible seg-
ments. The algorithm is able to work even under high clutter
circumstances due to the combination of lines from both floor
and ceiling (visible because of using a large FOV camera), but
also because of our generation of Manhattan hypotheses that

2

can estimate hidden corners to complete the layout. In order
to choose the best hypothesis, we propose and compare four
criteria for evaluation of hypotheses. One of them is adapted
from the state of the art (Orientation Map from [3]), whereas
the other three, newly proposed, have comparable performance
while being much more efficient.

Preliminary results were already presented in [4]. To our
knowledge, this was the first time this configuration was used,
although the interest in such sensor pairing is clear in the re-
cent Google’s Tango project (launched in 2014) and recent ap-
proaches that also use a similar set-up [5]. Experiments with
real images have already shown promising results about both
the proposed algorithm and the camera configuration. In par-
ticular, our method gets good results even when only a few hy-
potheses are drawn, and having depth information helps notably
in the layout extraction. In this paper, we improve some stages
of the algorithm in both performance and efficiency, add some
additional features to generalize the method to more environ-
ments and extend the experiments showing results from other
device. In particular, our improvements with respect to [4] are:
• New evaluation criterion called Angular Coverage (AC)

which outperforms our Sum of Scores and Sum of Edges
and presents similar results to the Orientation Map [3] with
much less required computation.

• A scaling procedure has been added for those cases where
the floor plane is not in the image.

• The generation of hypotheses now includes a pre-filtering
of corners that can be paired with one another, speeding
up the process.

• The estimation of the height of the ceiling has been im-
proved using the more robust concept of angular coverage.

• Experiments have been extended considering the new fea-
tures and evaluation criterion.

• New experiments with images taken from the Google
Tango device have been carried out, showing the potential
of the method in commercial devices.

2. Related work

One of the first attempts to recover 3D layout information
of indoor environments with single images was [6], which uses
a Bayesian network model to find the floor-wall boundary. In
contrast, Lee et al. [3] use line segments to generate layout hy-
potheses evaluating their fitness to an Orientation Map (OM).
Using lines has the advantage of producing results without rely-
ing on scene-specific properties such as colors and image gradi-
ents. However, while some lines can actually include structural
information of the environment (e.g. intersections wall-wall or
wall-floor), usually most of them belong to clutter or are useless
and misleading. To help with this problem, some assumptions
and some set of rules are usually proposed based on geometric
coherence. Usually the main assumptions are that all structures
in indoor environments are composed by planar surfaces and
that these surfaces are oriented according to three orthogonal
directions [2]. This assumption holds for most indoor environ-
ments, and it is almost unanimously used in the literature.

Other works try to simplify the problem by making assump-
tions about the structure, e.g. assuming that the room is a 3D
box, like Hedau et al. in [7]. This work uses a modified version
of Geometric Context (GC) [8] instead of the OM for evalu-
ation of hypotheses which includes a separate clutter category.
Similar examples are [9], which applies efficient structured pre-
diction; [10], which defines a catalogue of scene corners; and
[11], whose method is based on line consistency. Some other
works perform this type of ‘3D box’ reasoning while perform-
ing object detection [12, 13, 14, 15, 16, 17]. Doing so can have
both tasks help each other (e.g, it is impossible for this room to
have a certain layout if there is a bed across the wall, or vice
versa). However, using the ‘3D box’ assumption does not gen-
eralize well in real world scenes, e.g. in corridors or entrances.
Other approaches make use of video sequences instead of sin-
gle images [18, 19]. While introducing temporal consistency
may be beneficial in this task, we focus on getting better layout
estimation with single image.

Deep learning has exploded in popularity in the last few
years, and recently new interesting approaches in layout estima-
tion are appearing and dominating in challenges such as LSUN
Room Layout Estimation [20]. That is the case of [21], which
has trained a fully convolutional neural network (FCNN) to ex-
tract the informative edges of the scene (i.e. those correspond-
ing to structural boundaries and not coming from clutter), and
then use those edges to extract the layout. Another similar pro-
posal with better results is shown in [22]. Dasgupta et al. [23]
propose an alternative method that trains a FCNN which re-
turns the heat maps of each surface class (walls, ceiling, floor).
RoomNet [24] is an end-to-end neural network which infers the
type of room and the main keypoints to build a layout (i.e. cor-
ners). These approaches show a great potential of these data-
driven techniques. On the other hand, the results are too tied to
specific room configurations, not being able to work on com-
plex structures.

The methods mentioned up to this point have in common that
all of them use images from conventional cameras. As opposed
to that, some recent works use omnidirectional cameras such as
catadioptric systems or fisheye cameras. Having greater field of
view has many advantages for this task:
• Larger view of the line segments appear in the image, so it

is more likely to extract the relevant lines of the scene.
• Allows to perceive better the orientation of the scene and

thus a more robust vanishing point estimation.
• Provides better view of the ceiling areas, which usually

have less clutter than the lower parts in indoor scenes.
• Larger portion of the room is captured at once, which pro-

vides wider or even complete room reconstructions.
For example, in [25], the authors use a fisheye camera to per-

form layout retrieval, essentially extending the work from [3],
but with wider FOV. Lopez-Nicolas et al. in [26] perform the
closed layout recovery using a catadioptric system mounted in
a helmet. Jia and Li [27] use 360◦ panorama full-view images,
which allows them to recover the layout of the whole scene at
once. Fukano et al. [28] propose another method with panora-
mas, solving the problem as a high order energy minimiza-
tion. Similarly, PanoContext [29] uses the same type of images

3

to perform layout retrieval along with a whole-room context
model in 3D including bounding boxes of the main objects in-
side the room. Pano2CAD [30] enhances PanoContext by con-
sidering not only box-shaped types of room. In [31] they pro-
pose an alternative graph-based method for panoramas, com-
bining superpixels and line segments. Cabral et al. [32] gets
3D information from structure from motion with a panoramic
image, and then generates the best fitting floor plan reconstruc-
tion.

In these approaches the recovered 3D layout is obtained up to
a scale, unless previous knowledge about the scene is provided.
Modern RGB-D cameras are able to provide depth alongside
color, which provides scale information in a single shot. How-
ever, most of these cameras have a FOV too narrow for layout
estimation. Recently, some alternatives investigate extending
the FOV of depth cameras using additional elements. For ex-
ample, [33] uses two planar mirrors as a catadioptric extension
of the RGB-D device to view to the front and to the back of the
robot. More generally, [34] proposes a framework for omnidi-
rectional RGB-D camera calibration. A consumer set of wide
angle lens is used in [35]. Fernandez-Moral et al. [36] pro-
posed a method to calibrate an omnidirectional RGB-D multi-
camera rig from plane observations. These approaches are ei-
ther expensive to build [36], hard to calibrate [33, 34], or do not
provide good enough depth maps [35]. There are commercial
systems available such as the Matterport camera that have been
used to create the large scale indoor dataset from [37]. How-
ever, this camera system is too expensive and unpractical to be
used in situations that require mobility.

Here, we propose to use a depth camera alongside a fisheye
in the same calibrated system, and perform the depth exten-
sion via spatial layout estimation. Our proposal combines the
advantages of omnidirectional cameras (recover wider informa-
tion) and depth cameras (provide 3D certainty and scale). This
is also a camera system that already exists in the market (e.g.
Google Tango) or can be easily reproduced with state-of-the-art
calibration methods [38, 39]. No restrictions about the shape of
the room are considered, i.e. not only ‘3D box’ room shapes
or layout estimations tied to specific room configurations. No
rigid assumption about the camera pose in the scene is consid-
ered, since it is found automatically. Besides, no sequences of
images or machine learning algorithms are used in our method.

3. Depth and fisheye images processing

In this section, we address the initial stages of our method,
describing how we extract the information we need to perform
the layout recovery (Fig. 2). First we explain the calibration of
the system, needed to map information from the depth camera
to the fisheye camera (Section 3.1). Then we describe the line
segment extraction algorithm in the fisheye image (Section 3.2).
To recover the Manhattan directions we use information from
depth (for an initial estimate) and lines (for the final values),
as described in Section 3.3. Then we perform plane extraction
in the depth image to find 3D line intersections and to enable
scaled layout extraction (Section 3.4). At the end, the line seg-
ments are classified according to its orientation (Section 3.5).

Fisheye
 camera

Depth
camera

zD

nl

l1

yF

x1

R,t

Π1

1

xF

 zF

xDyD

X1

nP

P1

x1^

Fisheye
Image

OF u

v

Depth
Image

nX1

1

P2 P3 P4

Figure 3: Scheme of the system in a 3D world scene with the extrinsic
calibration parameters R and t and the correspondent depth and fisheye
images.

3.1. System calibration
To map world points X from the depth camera reference

frame D to the fisheye camera reference frame F, it is neces-
sary to calibrate the extrinsic parameters (R, t) and the intrinsic
parameters of both cameras (Fig. 3). The extrinsic calibration
of range sensors to cameras is not a new issue, but most re-
lated works require manual selection of correspondences or do
not support omnidirectional cameras [40, 41, 42]. To obtain the
intrinsic parameters of the fisheye camera, we need a specific
method with an appropriate camera model [43]. In particular,
we choose the parametric camera model described by Scara-
muzza et al. in [44], which considers the omnidirectional im-
age as a highly distorted image with the distortion modeled as
a polynomial. Using this polynomial it is not necessary to pro-
vide a specific model of projection and works with all kind of
perspective, catadioptric or dioptric cameras. The points in the
image x̂i = [ui, vi] and the vector xi =

[
x, y, z

]
which points to

the world point Xi are related following:

xi =

 x
y
z

 =

 ui

vi

f (ρi)

 =

 ui

vi

a0 + a2ρ
2
i + ... + aNρ

N
i

 (1)

where the function f is the polynomial that models the distor-

tion with coefficients a0..aN and ρi =

√
u2

i + v2
i .

For the extrinsic calibration we have recently proposed two
alternative methods suitable for our system [39, 38]. While the
one in [39] has the advantages of being more generalizable to
other camera systems and does not require to build a calibra-
tion device, we use [38] since it is more accurate for our camera
system. This method is inspired by [45], adapted to the fisheye
camera model from [44]. During the calibration process, the

4

intrinsic parameters of the depth camera are also computed as
defined in [45] to improve the default parameters of the system.
The depth images as captured by the sensor are transformed
to point clouds using these parameters, and they are rotated
and translated to the fisheye camera reference frame, follow-
ing XF = R · XD + t. From now on, every computation is done
in that frame unless specified. A more detailed analysis of our
calibration procedure is presented in [38].

3.2. Line extraction in the fisheye image

For the line extraction in the fisheye camera we use the work
from [46], which is compatible with central catadioptric and
dioptric systems with revolution symmetry. Unlike conven-
tional cameras, 3D lines in space do not appear as straight lines
in the omnidirectional images, but they are projected to curves
called line-images. In the schematic scene from Fig. 3 we high-
light a vertical line segment on the sphere model and its pro-
jection in the fisheye image. The shape of these line-images
changes with the type of omnidirectional camera and its spe-
cific camera configuration.

The projection of a line li in the 3D space can be represented
by the normal of the plane Πi defined by the line itself and the
viewpoint of the system, with normal nli = (nx, ny, nz)>. The
direction vector x of the points X lying on a 3D line l satisfies
the condition n>l x = 0. From [46] and with (1), the constraint
for points on the line projection in image coordinates is:

nxu + nyv + nz f (ρ) = 0 (2)

The line-images are non-polynomial and do not have conic
shape. To extract them is necessary to solve a minimization
problem [46]. In the process, each line li is associated to a set
of contour points, denoted by c(li), which are the inliers of the
constraint (2).

3.3. Estimation of the vanishing points

As mentioned before, we assume the scenes are organized
according to three orthogonal directions, {mx,my,mz}, that de-
fine the Manhattan reference frame M. Parallel lines in the 3D
world intersect in one single point in perspective images, called
Vanishing Point (VP). In omnidirectional images, line projec-
tions result in curved line-images, and parallel lines intersect in
two VPs. The directions M are correlated to the VPs in regard
that lines along these directions intersect in their correspond-
ing VPs. Thus, we refer indistinctly to the computation of M
and the VPs from now on. We estimate the VPs to classify lines
and planar surfaces from the depth information according to the
three Manhattan directions.

There are previous approaches to obtain the VPs from om-
nidirectional images [47]. However, we propose a method to
extract the VPs taking advantage of both cameras with a two
step optimization problem. Depth information is usually more
robust, but less accurate than RGB information. Using fish-
eye images typically obtain a more accurate VP solution, but
the problem may be unable to converge if the initial solution

is not good enough. Besides that, a joint optimization is prob-
lematic as it needs to weight both terms appropriately. Exper-
iments showed that our two-stage optimization procedure per-
forms well without significant extra computational cost.

To compute M, we define a 3× 3 matrix M that has the three
Manhattan directions by columns, i.e. M = [mx,my,mz]. The
initial solution of M is set as a three orthogonal vector base
(M = I3×3). The variables to optimize are the roll-pitch-yaw
angles (α, β and γ) that form the rotation matrix Rα,β,γ that after
the optimization process should orient the vector base accord-
ing to the Manhattan directions, M = Rα,β,γ · I = Rα,β,γ. All
optimizations are performed with the Levenberg-Marquardt al-
gorithm.

3.3.1. Initial estimate with depth information
The first step is to get the 3D normals of the points in the

cloud. The normals nXi of every point Xi (Fig. 3) can be es-
timated using the method from [48]. To reduce computation
time, the cloud can be previously down-sampled (e.g. with a
voxel grid filter). In Manhattan scenes, it is likely for a large
amount of points to have normals oriented in these directions.
Based on this, the vector base is rotated until the angle between
the normals of as many points as possible and one of the three
vectors from the base is minimized. Notice that two normals
are enough to define the three main directions since the system
is orthogonal. Moreover, since this is an initial estimate, a good
result may also be eventually obtained having just one normal.

The minimization problem to retrieve M is formulated as fol-
lows:

arg min
α,β,γ

Nx∑
i=1

min
(∣∣∣arccos(R>α,β,γ · nXi)

∣∣∣) (3)

where Nx is the number of points from the cloud. The product
(R>α,β,γ · nXi) gives the cosine of the normal with respect to each
one of the directions, from which the min function only takes
the smallest one of the angles in absolute value. The columns
of the final rotation matrix Rα,β,γ are the three Manhattan di-
rections M. An example where the points have been classified
according to their normals and with the correspondent VPs is
shown in Fig. 4a.

3.3.2. Final estimate with lines in the fisheye image
In this second stage, we use as seed the current value M from

the previous optimization. The vector base is now rotated un-
til the angle between the normals of as many lines as possible
and one of the three vectors from the base is as close of being
orthogonal as possible. This is based in that, by definition, the
normal nl of every line li is orthogonal to the direction of the
line in the 3D world, and therefore, if a line follows the Man-
hattan direction m j, then n>li ·m j = 0. The optimization problem
is formulated as follows:

arg min
α,β,γ

Nl∑
i=1

min
(∣∣∣R>α,β,γ · nli

∣∣∣) (4)

where the initial values of α, β and γ are the values returned
from the first minimization and Nl is the number of lines in

5

(a)

(b)

Figure 4: (a) Planes from depth classified according to the Manhattan
directions (red in mx, green in my, blue in mz), initial extracted van-
ishing points, horizon line (white dotted line), and 3D intersections in
yellow lines. (b) Line-images classified with their contours in white
and the vanishing points after the second optimization.

the fisheye image. In Fig. 4b there is an example where the
line-images that support each direction have been colored ac-
cordingly.

Our convention is to denote my the column whose vector is
closest to the gravity vector given an intuition of how the cam-
era is posed (pointing to the front, slightly downwards). We
choose mz to be the column pointing to the front and leaving
mx orthogonal to the previous two. The VPs are the points in
the image that result of projecting rays following the Manhattan
directions according to the intrinsic parameters (Section 3.1).

3.4. Depth information processing
In this stage we start from the registered point cloud and

extract planes (Section 3.4.1) and we determine if the floor is
present in the image and provide a final transformation from
camera pose to oriented scene pose (Section 3.4.2).

3.4.1. Plane extraction
The points from the point cloud X are classified depending

on the orientation of their normals nX in the three orthogonal
classes, given a certain angular threshold. For each class we
perform a RANSAC for planes to recover its plane equations.

It can happen that some of these plane equations have inliers in
different surfaces separated in space (e.g. wall planes at each
side of an open door, or two separate tables of same height).
In this work we recover planar patches instead, i.e. groups of
points that belong to the same planar surface and that are also
close to each other in Euclidean space. Hence, for each set
of inliers, a 3D clustering is performed to recover the planar
patches P in the image (Fig. 3). Each plane is defined by its
normal nP and distance to the origin X0 so that any point X
belongs to a plane if n>P · X + X0 = 0.

3.4.2. Floor detection and scene pose
In this work we assume the floor and ceiling are unique and

symmetric. Among the horizontal planes (i.e. with normal
nP = my), the lowest one (i.e. highest X0 value below the hori-
zon) is initially chosen as floor plane (P f loor). Then we verify if
there are a significant amount of points below that plane (con-
sidering a threshold due to noise): if there are points below the
P f loor then it is not a valid floor plane, but other structure (such
as a table). When the floor plane is discarded or not found, a
virtual P∗f loor with normal equal to my and distance to the ori-
gin X0 = 1 is created to continue the execution of the algorithm
normally. At the end, the rest of the planes are used for scaling
(see Section 4.4).

We compute the transformation matrix MTF ∈ SE(3) that
transforms 3D points from the fisheye reference frame to the
Manhattan reference frame. To compute MTF we create its
counterpart FTM with rotation part the Manhattan directions
(M) and the translation vector

[
0, XF

0 , 0
]>

, where XF
0 is the

height of the camera with respect to the floor. Then, MTF =F

T−1
M .

3.5. Classification of lines

Those lines li whose minimum angular distance to their clos-
est Manhattan direction m j is below a threshold θ1 are classified
as lines in that direction L j:∣∣∣∣∣](nli ,m j) −

π

2

∣∣∣∣∣ < θ1 → li ∈ L j j = {x, y, z} (5)

where] indicates the angle between its two vector arguments.
An example of lines classified is shown in (Fig. 4b).

The horizon line is the line-image lH corresponding to the
normal nlH = my (drawn in dotted white line in Fig. 4). Lines
oriented in mx and mz are classified as upper lines (L) when
they are above horizon, and lower lines (L) when they are be-
low. Lines oriented in my (Ly) are classified as long lines when
they have contour points above and below the horizon.

Some lines correspond to intersections of 3D planes ex-
tracted from the depth image. In order to detect such correspon-
dences, we compute the 3D intersection lines of wall planes
with the floor plane and between walls, that we call L3D. When
there are two consecutive wall planes of the same orientation,
the line of the border is computed instead. An example is shown
in Fig. 4a, where all L3D have been drawn in yellow. Every 3D
intersection line l3D

j can be projected to the fisheye image and

6

have its line normal computed (n3D
j). To perform the associa-

tion, we evaluate the angular distance between their normals,
and choose the closest if the angular distance is below a small
threshold θ2: ∣∣∣](nli ,n

3D
j)

∣∣∣ < θ2 → li ∈ L3D (6)

Those lines supported by 3D evidence have more relevance
when generating layout hypotheses. To refer to these lines we
use the boolean function λ(li) defined as:

λ(li) =

{
1 i f li ∈ L3D

0 otherwise (7)

4. Layout estimation

To extend the depth information to the periphery, we look
for features in the fisheye image that allow us to draw coherent
layout hypotheses. We choose corners, i.e. points of intersec-
tion of three alternatively oriented structural planes in the 3D
world, manifested in the image as intersections of lines. In Sec-
tion 4.1 we describe how the corners are detected and scored for
the next stage: the generation of layout hypotheses, explained
in Section 4.2. Finally, we deal with the evaluation process in
Section 4.3 and the final global scaling (which is to be applied
when the floor has not been found) in Section 4.4.

4.1. Corner extraction

We call corner (C) in this context to the physical intersection
of two walls and floor or ceiling. The junctions between these
structural planes often produce detectable line segments in an
image, whose intersection produces a corner detection. How-
ever, not all line intersections are actual corners, and not all
actual corners have detectable line segments (e.g. occlusions or
not enough contrast in the image).

To address this issue, first we translate the data from pixel
space to 2D metric space by creating a floor plan projection of
the lower lines (Section 4.1.1). Then we estimate the height
of the ceiling and do a similar procedure with the upper lines
(Section 4.1.2). We define the types of corners we detect in
Section 4.1.3, covering all plausible cases with a minimum set
of lines. At the end we describe how we score the corners in
Section 4.1.4 to reward corners formed by more lines, longer
lines, less distance from the lines to the intersection point and
lines coming from 3D plane intersections.

4.1.1. Floor plan projection
The line segments from Section 3.5 represent just a projec-

tion, whose depth is unknown (except for those li ∈ L3D). From
previous steps, we have the 3D location of at least one structural
plane from the depth data (the floor plane P f loor). We use that
plane to project all the lower lines and place them in a scaled
2D floor plan of the scene, we call XZ-plane. Notice that, in the
cases the floor plane has not been found the algorithm contin-
ues with the virtual floor plane P∗f loor normally. In those cases,
the scale is lost in the process and it is recovered afterwards
(Section 4.4).

We can get the ray emanating from the optical center to every
contour point of every lower line Lx and Lz and intersect them
with the P f loor in 3D (Fig. 5a). With the transformation MTF ,
we can transform these points from the camera reference frame
F to M, with the Manhattan directions and origin at the floor
level. If we plot the transformed points in the axis x− z, we can
get a 2D floor plan of the contours with scale (the XZ-plane in
Fig. 5). Notice also that we naively projected all lower lines,
unaware if they actually belong to the wall-floor junction or to
clutter, since it is impossible to know with the information we
have. Further stages will choose the lines which most likely
belong to the real junctions.

With the points now in this 2D projection, we define the an-
gle of a point, α(Xi), as the central angle of the arc between −z
and the radius from the origin to Xi, as shown in Fig. 5a. Simi-
larly, we compute the angle of a line, α(li), as the central angle
between its end points. In the Fig. 5a, α(l1) = α(X2) − α(X1).
Note that these angles are defined not only by the value of the
angle itself, but also by their starting and ending points. To
extract to the value of the angles we define the operation 〈•〉
that returns a numeric value. For instance, 〈α(X1)〉 = 100◦ and
〈α(l1)〉 = 40◦ in Fig. 5a. Vertical lines Ly are a special case only
defined by a single angle α(Ly) and thus 〈α(Ly)〉 = 0. These
definitions will be helpful in next stages.

4.1.2. Ceiling plane projection
Similarly to the previous section, to get the ceiling plane

projection, the rays traced from the optical center to the con-
tour points of the upper lines must be intersected with the Pceil.
Since we consider floor and ceiling unique and symmetric, we
know that the normal of the ceiling plane will be the same as the
floor normal, but the distance to the origin is still unknown. To
estimate the height of the ceiling (Hceil) we assume that, in the
XZ-plane view, wall-floor (l j) and wall-ceiling (li) intersection
segments of the same wall must be coincident. We can gener-
ate a Pceil at an arbitrary height, compute the 3D intersections of
the projection rays and evaluate how well the contours from up-
per segments c(li) coincide with contours from lower segments
c(l j) in the XZ-plane. In Fig. 5b there is an example with three
different Hceil. H1 is too small and H3 too big, so the segments
of the floor do not match the segments of the ceiling in the XZ-
plane. H2 is the best one as contours from both planes match
perfectly. Mathematically, ∀li ∈ L and ∀l j ∈ L, we express the
overlap in two ways:
• Contour overlap. Denoted by c(li)∩ c(l j), determines the

number of contours overlapping (i.e. in the 2D plane, con-
tour points from ceiling and floor that are closer than a
certain threshold).

• Angular overlap. Denoted by α(li) ∩ α(l j), determines
the shared angle of the two lines given the definitions from
Section 4.1.1.

Then we propose the following optimization problem:

arg max
Hceil

〈A(Hceil)〉 (8)

where A(Hceil) is the Angular Coverage (AC) of the overlapping
contours as a function of Hceil. Here we introduce the concept

7

XZ-plane

Pfloor

l1

α(X1)

α(X2)

α(l1)

x

z

Image

l1

X2

X2

X1 X1

F

M z

x

y

(a)

H1

3

Height 2

2

H2 H3

1

Pfloor

Height 1

x

z

Height 3

x

z

Pceil 1

Pceil 3

Pceil 2

A

A=160oA=0o A=0o
x

z

F

M z

x

y

(b)

Figure 5: (a) Projection of the lower line segments of the image to the P f loor in schematic 3D view and the resulting XZ-plane. Definition of
angles of a point, α(X), and angle of a line, α(l). (b) Projection of the upper line segments to three virtual ceiling planes (Pceil) at different Hceil.
The chosen Hceil is the one with highest angle coverage of overlapping line segments in the XZ-plane (H2 in the example).

(a) (b)

Figure 6: Real example of contour projection of lower lines (blue) and
upper lines (red) to the XZ-plane (a) and 3D point cloud (b). The small
circle represents the position of the camera system.

of Angular Coverage (AC), denoted by the function A(•), which
returns the union of central angles around the origin that satisfy
certain condition. In this case, the condition is having contour
overlap of ceiling and floor line pairs, and A(•) is a function of
Hceil. Mathematically:

A(Hceil) =
⋃(

α(li) ∩ α(l j)
)
·
(
c(li) ∩ c(l j) > 0

)
(9)

∀li ∈ L,∀l j ∈ L, where
(
c(li) ∩ c(l j) > 0

)
returns 1 when there

is contour overlap and zero otherwise. Higher 〈A(Hceil)〉 means
that the lines whose contours are overlapping in the XZ-plane
cover a greater angular area. In Fig. 5b, we can see the value of
A of the three different Hceil, where it can be visually appreci-
ated why H2 is the best result.

In [4] we proposed an alternative method considering
uniquely the number of contours overlapping. However, we
found that the angular coverage method produces better results
since they reward a consensus distributed in the scene instead
of concentrated areas with many contours.

One of the advantages of working with scaled distances is
that we can set reasonable valid ranges of heights to constrain

the values of Hceil. For example, we can set a default Hceil of 2.5
meters and a span of 2 to 3 meters to look for the Pceil, which
is very reasonable for indoor environments. If the problem has
no solution between the valid range it could be due to clutter,
undetected lines or absence of ceiling in the image. Then the
algorithm goes on considering the default Hceil. When the floor
plane has not been found, the range of height values will not be
constrained to the default values, which makes the system more
prone to mismatches. In Fig. 6a the XZ-plane with the contours
of both lower and upper lines from the case from Fig. 4b is
shown. Those lines are plotted in 3D in Fig. 6b over the initial
point cloud, so we can see how the lines extend beyond the FOV
of the RGB-D camera.

4.1.3. Corner definitions
Line segments are the main piece of information we use to

create layout hypotheses. However, we do not know at this
point if the lines extracted are informative about the structure of
the scene, that is, whether they come from actual intersections
between structural planes (e.g. walls, ceiling, floor), or from
other elements of the scene. In the literature there are many
approaches to tackle this problem. For instance, [3] defines a
corner when a minimal set of three or four line segments in
certain orientations are detected. This requires having unclut-
tered environments where most line segments can be perfectly
detected. However, in the real world, occlusions or bad light-
ing conditions may cause some contours to remain undetected.
Other works such as [26, 27] tend to give more emphasis to
vertical lines and the extension of their segments in their cor-
ner definition, which may be problematic for the same reason
as before. In a Manhattan World, two line segments are enough
to define a corner.

An example of a corner is shown in Fig. 7a, where the cor-
ner’s 3D point, denoted as C, is the intersection of the floor
plane (P f loor) and two walls (Wx, Wz) with respective planes
PWx and PWz . Another thing to bear in mind is the concept of
visibility of the corners. The corner from Fig. 7a represents
a fully visible corner, since all three line segments and corner

8

lx
C

Pfloor

PWz dist(lz,C)

ly

lz

PWx

leng(lz)

(a)

1. Horizontal intersections

2. Vertical intersections

3. Long vertical

lH

4. Long horizontal

DH

VP

(b)

x

x

z

z

C1

C2

α(C1)

α(C2)

α(C1)

α(C2)

dx(C1) = -1, dz(C1) = -1

dx(C2) = 0, dz(C2) = +1
(c)

Figure 7: (a) Graphical definition of a corner C: the corner point C, its line segments (lx, ly, lz) and the dist and leng functions used in our
scoring method. (b) Four different types of corners we consider. Detected line segments as black thick lines and corresponding extracted corners
as yellow circles. (c) XZ-plane view of two example corners showing their angles α(Ci), angle coverage α(Ci) and directions dx and dz regarding
the position of their line segments with respect to the plane axis.

point can be extracted. In a convex room (e.g. a rectangu-
lar room), all corners are fully visible. However, in a con-
cave room (e.g. an L-shaped room), depending on where the
camera is located there might be some corners partially visible,
meaning one of the walls and thus its intersection line segments
are occluded by the other visible wall (i.e. the corner point
and two segments are visible). There are also hidden corners,
which have the corner point occluded by the walls of the room,
and thus only one or zero segments are observable. Box-shape
methods consider that all corners in the scene are fully visible
corners (if they are inside the image). Our method aims to find
all type of corners. The hidden corners cannot be extracted di-
rectly from the image, and will be recovered with the layout
estimation process (Section 4.2). In this section we will focus
on the visible corners. We propose to use more relaxed require-
ments to define corners, using just two line segments, or one in
special cases of long lines introduced as practical assumptions
to compensate for misdetections. Then, we use a scoring func-
tion to select the most salient corners and favor their appearance
in the layout hypotheses generation.

For the detection of visible corners, we consider four
cases depending on the classification of the segments involved
(Fig. 7b):

1. Horizontal intersections (Lx − Lz): These are by defini-
tion fully visible corners, formed by two lines in x and z
respectively. If there is a ly passing through the intersec-
tion point C, the contour points of ly are scaled by assum-
ing they share the same wall as lx (i.e. 3D plane PWx) or lz
(PWz). If the scaled 3D contours of ly have heights between
0 and Hceil the vertical is included to improve the score of
the corner.

2. Vertical intersections (Lx − Ly or Ly − Lz): These inter-
sections could represent partially visible corners or fully
visible corners with an undetected line. As with the previ-
ous case, the segment ly is scaled to verify plausibility.

3. Long vertical lines (Ly): We select the end-points of long
vertical lines, since those can represent wall-wall intersec-

tions. These are added to include cases of misdetections
of horizontal lines. Only the ones crossing the horizon
are considered as they are more likely to be wall to wall
intersections instead of clutter. The projection of their top-
most contour point to the Pceil or the bottommost one to
the P f loor is considered, depending on which one makes
the scaled ly not exceed the height of the ceiling.

4. Long horizontal lines (Lx or Lz): We consider the possi-
bility of long horizontal lines to intersect with the horizon.
These are added since sometimes there is no visible or de-
tected corner at the farther end of a corridor or a big room.
Horizontal lines are considered long if their length is over
a threshold (we set 0.5 meters). To keep layouts of rea-
sonable size we restrict the distance of intersection to a
maximum of DH (in particular we set DH = 10 m).

These simple types of corner intersections include all nec-
essary cases to build a layout of any shape. We call direction
(d) of the corner the position of their horizontal segments in the
XZ-plane with respect to the corner point. For example, in the
x axis, a direction dx(Ci) = +1 means that the corner Ci has lx

defined from the corner point to the positive direction of the x
axis. A corner with no lx has dx(Ci) = 0. Similar definitions
for dz(Ci). We also define the angle of a corner as the angle of
the corner point α(Ci) as well as the angle coverage of a cor-
ner α(Ci) as the central angle of the arc between the minimum
and the maximum angle among all the contour points from lx

and lz, i.e. α(Ci) = max(α(c(lx) ∪ c(lz))) −min(α(c(lx) ∪ c(lz))).
Two simple examples of corners showing these parameter val-
ues are shown in Fig. 7c. In the case of horizontal intersections,
to evaluate if a line ly belongs to the corner, we check if the
angle difference

∣∣∣〈α(Ci)〉 − 〈α(ly)〉
∣∣∣ < θ3.

4.1.4. Corner scoring
In a natural scene highly populated with line segments, the

amount of line intersections and thus corner detections can be
very high. Therefore, when generating hypotheses it will be
difficult to find the best ones. To avoid excessive amount of cor-

9

Figure 8: Relevant corners in the scene plotted over the fisheye image
as yellow circles with diameter proportional to their score.

ners, a solution is applying thresholds, but it is hard to tune the
parameters correctly to make it work in all cases. Instead, we
perform a scoring of corners to keep those with positive score
and make high scored corners more relevant in the generation
of hypotheses.

In particular we want to reward corners formed by line seg-
ments of great length and low distance from the segments to
the corner point. To examine length and the proximity between
segment points, instead of using pixel distances, we reason in
the 3D world with metric distances. Pixel distance is mislead-
ing, as it is affected by how far the points are from the camera,
the perspective and the heavy distortion of the fisheye camera.
Note that it is also difficult to deal with distances in the 3D
world when there is no scale information available. With our
system we integrate scale information in the process.

A corner C is defined by a set of Nl line segments, and its
score S C j depends on the number of lines and their respective
score value S li :

S C j = Nl j ·

Nl j∑
i=1

S li (10)

S li = (leng(li) − dist(li,C)) · (1 + λ(li)) (11)

where λ(li) is defined in (7), leng(li) measures the length of the
line segment in meters, dist(li,C) measures the distance of the
closest point of the segment to the actual intersection point C
in meters (Fig. 7a). Note that S C j computation includes a mul-
tiplication by Nl to increase the score of corners supported by
more lines. The line score for the corners in the horizon case is
modified:

S li = leng(li) · (1 + λ(li)) · (DH > dist(li, c)) (12)

After the extraction of corners we keep those with S C > 0.
To avoid redundant corners, we merge those which are close to
each other, have similar angle coverage (α(Ci) ≈ α(C j)) and the
same corner directions (dx(Ci) = dx(C j) and dz(Ci) = dz(C j)).
When doing the merging we pick the maximum score among all
corners involved. In [4] we took the summation of the scores
instead. However, we found that it rewarded too much specific
areas crowded with line segments with no necessarily relevant

corners. Finally, we assign a probability P to corners C of oc-
curring in the real world:

P(Ci) =
S Ci∑NC

j=1 S C j

(13)

where NC is the number of corners in the image. In Fig. 8 there
is an example of the 100 most probable corners represented as
yellow circles with radius proportional to their probability. In
Fig. 9 there are corner results of a similar scene in a 3D point
cloud, separated by the corner cases defined in Section 4.1.3.

4.2. Layout hypotheses generation
In Section 4.1 we defined corner points as intersections of

three structural planes, which can be either intersections of two
walls and floor or two walls and ceiling. Here we assume floor-
ceiling symmetry, and thus, each corner point at the ceiling has
its counterpart at the floor, and vice versa. Since we have re-
covered the pose of the scene MTF and the height of the ceiling
Hceil, we can compute the counterparts of each corner point.
Therefore, from now on, when we refer to corners we implic-
itly refer to the pair of opposite corner points in ceiling and
floor, and all the points in between that represent the intersec-
tion of two planar walls. To simplify notation, in this section
we reason in 2D, in the XZ-plane, where the corner is a single
point, independently if its detection comes from the ceiling or
the floor. This equal consideration of ceiling and floor corners
is advantageous, since in most indoor environments the level
of clutter is higher in the lower part of the scene. Hence, hav-
ing corners from the ceiling allows to provide results in difficult
environments.

We define completely a layout with their corners and the
height of the ceiling, L = {C1..CN ,Hceil}. The walls of the
layout, W, are implicitly defined as the planes connecting two
consecutive corners with a height Hceil (thus, there are N walls).
Each individual wall is noted as w j ∈ W and they are in prac-
tice used as virtual lines with similar properties. To get our
layout solution, we generate a set of hypotheses from where a
last evaluation process will select the better one. To generate a
layout hypothesis, we already have Hceil and we just need to se-
lect the corners among the extracted set of corners with S C > 0.
Once a hypothesis L has been generated, with the relative po-
sition of the camera to the scene MTF and the calibration of the
system we have enough information to build the complete 3D
reconstruction of the scene.

In this section, first we present in Section 4.2.1 the conditions
for a layout to be geometrically valid. Then, we generate the
layouts as described in Section 4.2.2. Additionally, we intro-
duce a pre-filtering procedure of corner connections to verify
its plausible association before start generating layouts (Sec-
tion 4.2.3).

4.2.1. Conditions for a valid layout
To generate hypotheses we do not impose any condition

about the shape of the scene in order to provide valid solutions
to any kind of indoor environment. However, we consider a
layout valid when it satisfies the next conditions:

10

(a) Horizontal intersections (b) Vertical intersections (c) Long vertical lines (d) Long horizontal lines

Figure 9: Projection of the corners to the 3D point cloud as pink spheres with the line segments that form them, for each intersection case defined.
Most relevant corners for the layout are outside the depth information range.

1

2

4

3
A1

1

2 43A2

5

1

2
4

3

B
5

6

C

1

2 3

D

1

2 3

4

E

1

2 3

4

F1

F2

1

2 3

4

1

2 3

4
5

6

Figure 10: Examples of layouts that do not satisfy our conditions for
a valid layout described in Section 4.2.1. In each case, corners are
numbered blue crosses and the camera viewpoint is the green circled
cross. In E the depth points and field of view in pink. In F1 and F2,
line segments of the corners in red. In F2, the view of the segments of
corner 3 in yellow.

A. The walls must follow the Manhattan World convention: a
wall directed in mx, must be followed by a wall directed
in mz, and vice versa.
A1. There must be no walls following other directions.
A2. Two consecutive walls must not have the same direc-

tion.
B. The layout must not have any non-consecutive wall inter-

secting another.
C. The layout must be closed, i.e. the wall sequence must end

in the same point it begins.
D. The camera must be inside the layout.
E. The layout must not contradict the information from the

depth camera, i.e. there cannot be a wall in front of the
given depth map.

F. The layout must not contradict the information given by
the line segments of the corners, since they are considered
directly visible.
F1. Each wall connecting two corners must be on their

corresponding line segments, if any.

1

2 3

z

x

α

4

β β

b

a

a

b

a

c

1 2 3

4a 5a

4b

1

2 3

4

1

2 3

4

1

2 3

4

1

2 3

4

1

2 3

4

Figure 11: Example of layout generation in the XZ-plane given pre-
selected corners from our set (in blue, with their respective red hori-
zontal contours and a green circle when there is a vertical line). The
camera position is the green circled cross. Detailed explanation of the
procedure is provided in the text.

F2. Walls are opaque, so they must not be in front of
any line segment since that would mean it is visible
through the wall.

Note that, in Fig. 10 we show respective examples of layout
proposals that do not satisfy each condition.

4.2.2. Generation of layout hypotheses
In the general case, our algorithm looks for a number of hy-

potheses by iterating following these steps (note that the ex-
planation of this section can be followed using the graphical
sample case from Fig. 11):

1. Using the probability from (13), we randomly choose a
number of corners from the set to generate a hypothesis.
As the view of the scene is not complete and we do not
impose any condition about the shape of the room, the
number of corners to select cannot be fixed, and there-
fore it must be randomly chosen every time a hypothesis
is generated. We believe a reasonable number of corners
to draw is between 2 and 5. In the example, we draw four

11

corners. The selected corners are ordered clockwise con-
sidering their angle α(C) as shown in the Fig. 11 (1).

2. The walls from the layout are defined joining every corner
with the following one. The angle β between corners is
observed to verify if the walls are oriented according to
the Manhattan convention (Fig. 11 (2)). If it is closer than
an angular threshold to 0, π

2 , − π2 or π, then it is accepted as
valid as it is (case between corners 1 and 2 and corners 2
and 3 in Fig. 11).

3. Else (angle between corners 3 and 4 in Fig. 11), two addi-
tional corners (a and b) are created as shown in Fig. 11 (3).

4. In case two additional corners are defined, the generation
of layout goes on with consecutive corners in separate
branches, as the cases (4a) and (4b) in Fig. 11. At any
point the line segments composing a corner can invalidate
a layout generation branch (condition F). For instance, in
(4b) the wall from corner 3 to corner b goes in direction
−x, but there is a line segment that defines corner 3 in di-
rection −x as well that goes in opposite direction. Solution
(4a) matches the line segments from corner 3 perfectly.

5. Continue in every branch until the layout is closed (Fig. 11
(5a)) or the solution is invalid (Fig. 11 (5b)). It can be seen
how the layout is completed by defining an additional cor-
ner c as performed before, and no line segments contradict
the wall distribution.

We repeat this process until a predetermined number of hy-
potheses are extracted. The number of hypotheses is a config-
uration parameter of the method, whose performance is eval-
uated in Section 5.3.1. The maximum number of attempts is
also limited to prevent the system from getting stuck. A gener-
ated hypothesis has to satisfy the conditions mentioned in Sec-
tion 4.2.1 or could be discarded. To verify conditions D and E
we can treat the set of corners as a polygon and verify if the
camera and depth points are inside it. For the depth points we
set a threshold to determine the minimum percentage of points
to be inside the polygon. To verify condition B we check the
polygon does not self-intersect.

One of the keypoints of this method is that hidden corners
can be estimated using the Manhattan assumption, even if there
is no visible evidence of the presence of the corner in the image
(e.g. in Fig. 11 corners a and c were not detected but its defini-
tion provides a valid closed Manhattan layout). This means that
the algorithm can handle heavy occlusions and still provide co-
herent results. Besides, whenever the information from behind
the camera point is not enough to provide closing points, we
can assume the walls extend beyond the field of view towards
the rear vanishing point (following −z) in order to keep our lay-
out closed (condition C). For this operation we need to place
additional corners at the horizon, at a previously determined
distance (DH = 10m in our experiments), and watch if these so-
lution do not break other rules. Note that when we introduce
additional corners to perform the rear extension it is to keep the
model consistent, but the final reconstruction only extends to
where the field of view of the fisheye camera reaches.

In Fig. 12 there is an example of a layout hypothesis from the
scene from Fig. 8, similar to the one from Fig. 11. In Fig. 12a
the original corners (in yellow) and the line segments that define

them have been displayed in the image along with the additional
corners (in light blue). In Fig. 12b the solution has been plotted
over the XZ-plane. The resulting wall distribution colored is
shown in Fig. 12c. In these labeled images each surface orien-
tation is colored distinctly (Red-Green-Blue for surfaces with
normals in x-y-z). As the XZ-plane is scaled and the Hceil have
been estimated we can generate a 3D depth map of the scene
(Fig. 12d). The depth map can be used to recover the 3D point
cloud of the complete layout, as it can be seen in Fig. 12e.

4.2.3. Pre-filtering of corner connections
Given the considerations from Section 4.2.1, before start

drawing hypotheses we pre-filter the corners that can go with
each other in the same layout. This process was not performed
in [4], but has proven to help reducing the computation time
and providing better hypotheses. At the end of this process we
obtain a matrix M of NC × NC which relates every corner to
each other and indicates if they can be connected to each other
with one wall, two walls (and thus introducing an additional
corner) or cannot be connected by any mean. Besides, if they
can be connected with two walls, we compute where should be
the additional corner and if there is more than one option. Since
we enforce closed layouts, we also verify if a closing strategy
in the rear vanishing point can be created between two corners.
Our filtering steps are the following:
• Considering the quadrant the corners are located on the

XZ-plane, there are some detectable cases of impossible
corners. For instance, a corner Ci in the {+x,+z} quadrant
cannot have dx(Ci) = −1 and dz(Ci) = +1 since that would
mean lz would be occluded by the wall of lx, which makes
impossible for the segment lz to be visible and therefore
detected. Corners 1 and 3 in Fig. 10 (F1) are impossible
corners by this reasoning, and should not have been con-
sidered to generate hypotheses.

• Filter those corners close to each other, since we consider
rooms with walls relatively large. To check this we com-
pute distances between corner points and apply a threshold
(we choose Hceil/10).

• Verify if they can be connected clockwise. This is the or-
der we use to generate the hypotheses, so it is only neces-
sary to check corner connections one way.

• Compute the orientation of the walls with respect to the
Manhattan directions to verify if they can be connected
with a single wall or two (condition 1).

– Single wall: if line segments are in the wall’s direc-
tion, they must be facing each other (condition F1).

– Two walls: no shared angle coverage between cor-
ners (condition F2). Get the two positions of the ad-
ditional corners and discard those cases whose walls
do not satisfy conditions F1 and F2.

• Look if there are closing strategies in case they are the first
and last corners once ordered with α. Check if their corner
points have different signs in the x coordinate (otherwise
it would not satisfy condition D).

After the pre-filtering process, there might be some corners
that cannot be connected to any other, which are discarded.
With matrix M, right after performing step 1 from the gen-

12

(a) Extracted corners (b) XZ-plane with layout (c) Labeled image

(d) Depth image (e) 3D views of the scaled reconstruction

Figure 12: (a) Layout hypotheses example with its original corners in yellow with their line segments shown and the additional corners in light
blue. (b) XZ-plane with the layout overlaid. (c) Colored wall-floor-ceiling distribution of the hypotheses. (d) Corresponding depth map of the
hypotheses with scale in meters. (e) Different views of the corresponding 3D point cloud.

eration of hypotheses we can quickly discard those cases of
pseudo-randomly chosen corners and pick others, instead of go-
ing through all the process avoiding useless steps until finding
that some condition is not met.

4.3. Evaluation of the Hypotheses

The final stage of our method consists in choosing the best
hypothesis from the previous stage according to a predefined
criterion. For this task, we propose four possible evaluation cri-
teria, whose performance is evaluated in Section 5.3.2. One of
the criteria is an adaptation of an existing method (Orientation
Map [3]) to our hybrid camera system, whereas the other three
are novel approaches. One of these is a new criterion not in-
cluded in [4] based on the Angle Coverage concept introduced
in Section 4.1.2. In each evaluation criterion, we compute a
score Sk for each layoutLk, finally selecting as solution the one
with higher value. The following sections will describe how we
compute the corresponding scores:

Sum of Scores (SS). We define the score of a hypothesis as the
sum of scores of the corners that have been used to generate it.

SS S
k =

Nk∑
i=1

S Ci (14)

where Nk is the number of corners in Lk. Notice that the addi-
tional corners defined to generate Manhattan layouts have score
zero.

Sum of Edges (SE). The polygon defined by the corners of
the hypotheses as vertices can be drawn on the XZ-plane in
order to choose the hypothesis which overlaps the most with
the observed contours, i.e. the layout Lk with a set of walls Wk

such that the sum of contours of the lines in the image li ∈ L
that overlap with any wall w j ∈ Wk. Hence, we select the layout
with highest score SS E

k , computed as:

SS E
k =

NL∑
i=1

c(li) ·
(
c(li) ∩ c(w j) > 0

)
(15)

Angle Coverage (AC). In this case we draw the polygon in the
XZ-plane and we compute the angular coverage of the layout
(A(L)) similar to the process of Section 4.1.2, but consider-
ing all line segments and wall lines instead of floor and ceiling
lines. Mathematically:

A(Lk) =
⋃(

α(li) ∩ α(w j)
)
·
(
c(li) ∩ c(w j) > 0

)
(16)

SAC
k = 〈A(Lk)〉 (17)

∀li ∈ L,∀w j ∈ Wk. The hypothesis Lk with the highest angular
coverage value 〈A(Lk)〉 is selected with this criterion.

Orientation Map (OM). It requires to build a reference image
called Orientation Map [3], which is an image whose pixels
encode the believed orientation given the line segments for per-
spective cameras. To build that image we create a set of over-
lapping perspective images from the fisheye image, apply the

13

orientation map algorithm from [3] in each one of them and fi-
nally stitch them back together to form an omnidirectional ori-
entation map that we call IOM . The evaluation consists in se-
lecting the layout hypothesis with better fitness between pixels
with the same orientation. To compute that fitness, we gener-
ate for each hypothesis a labeled image ILB (such as the one
Fig. 12c) where each color represents one of the three orienta-
tions M =

{
mx,my,mz

}
. We do that with the score:

SOM
k =

∑
m∈M

I∑
u=1

J∑
v=1

ILB
k (v, u,m) & IOM(v, u,m) (18)

where I and J are respectively the width and height of the im-
ages I, and operation & returns 1 when the pixel value is equal.

4.4. Scaling of hypotheses
The layouts can be generated and evaluated as described

above without scale information. However, the thresholds and
parameters are then harder to tune (e.g. no valid height of the
room estimation), and depth cannot be used to discard incoher-
ent layouts. Thus, the normal execution should include floor de-
tection and scaling from the beginning in order to obtain better
results. Nevertheless, in the cases the floor cannot be detected,
we include a method to scale the layouts once generated, so
that the height range and depth information conditions can be
verified.

To perform layout scaling from an non-scaled hypothesis L̂k,
first we compute the labeled image ILB

k . Then, we generate a
separate label image for each of the walls w j ∈ Wk, where pixels
outside the wall are valued zero, denoted ILB

w j
. For each plane

Pi extracted in Section 3.4.1, we can compute an equivalent la-
beled image ILB

Pi
, whose pixel values inside the plane encode

the orientation of the plane, and pixels outside are valued zero.
Then we look for the plane with the highest overlap with the hy-
potheses label to provide the scale, computing an score similar
to (18):

Si, j =
∑
m∈M

I∑
u=1

J∑
v=1

ILB
Pi

(v, u,m) & ILB
w j

(v, u,m) (19)

The labeled wall/labeled plane pair (j, i) with highest overlap
Si, j will be used to provide the scale. In particular, we have the
distance to the origin Xi

0 from Section 3.4.1 and we can compute
the equivalent with the non-scaled hypothesis, X̂ j

0. The quotient
s = Xi

0/X̂
j
0 is the scale, and the corner points or obtained point

cloud can be simply multiplied to that scale in order to get the
full scaled 3D reconstruction, i.e. Lk = sL̂k.

5. Experiments

In this work, we use a novel camera system with fisheye and
depth image. Many datasets for indoor layout retrieval are usu-
ally based on conventional images, but not so many on omni-
images, and none combining them with depth. For the experi-
mental evaluation we have collected our own set of images with
two different devices (Fig. 13):

Figure 13: The two devices used to collect the data for our experi-
ments. On the left, an RGB-D camera (ASUS Xtion Pro Live) with an
adjacent fisheye camera. On the right, the Google Tango Development
Kit.

• Conventional RGB-D system with fisheye camera: A
hybrid camera system built and calibrated by ourselves
[38]. With this system we have a dataset with 70 im-
age pairs from indoor scenarios, including 23 from cor-
ridors/entrances, 15 from four different bedrooms, 4 from
a bathroom, 12 from two living rooms, 4 from a kitchen
and 12 from two small cluttered rooms. We have manu-
ally labeled the 70 images of the dataset to provide a per
pixel label of the three main classes (walls in mx or mz and
floor/ceiling) with the labeled image IGT .

• Google Tango: A tablet for developers with built-in depth
sensor and fisheye. The Tango technology is now avail-
able in commercial phones from well known brands (e.g.
Lenovo, Asus). We have taken several images from similar
environments as the previous device to test applicability of
the method with commercial systems.

Quantitative detailed analysis is provided with the larger dataset
from the first device. Unless noted, this is the dataset we use in
our experiments. First, we provide implementation details (pa-
rameters, time consumption) in Section 5.1. In the following
sections, we analyze the performance of the corner extraction
(Section 5.2) and the layout estimation (Section 5.3), which are
the most important parts of our algorithm. Additionally, we
provide some insight about using the proposed camera configu-
ration in Section 5.4, and more results using the Google Tango
dataset in Section 5.5.

5.1. Implementation details

Here we provide implementation details such as threshold
values or computation time, to illustrate the performance of the
method and facilitate reproducibility. This method was imple-
mented in Matlab in a computer with processor of 3.4 Ghz, not
using any GPU. The method follows the flow diagram repre-
sented in Fig. 2, while the datasets were captured using soft-
ware implemented in ROS [49]. The calibration was performed
using [38] and line extraction with [46].

5.1.1. Parameters and thresholds
In the depth processing, we considered a voxel grid size of

Vsize = 0.02 meters, and considered planes and clusters of more
than 50 points or 10% of the size of the cloud. To validate a

14

floor detection, there shall be no 10% of the points from the
point cloud below the floor plane, with a threshold of 3 × Vsize.
Lines are classified according to a Manhattan directions with a
threshold of θ1 = ±15◦, since being too strict could discard lines
that are actually useful since not all constructions accurately
satisfy Manhattan assumption, and also there might be noise
in the measurements. To associate lines to 3D lines, however,
we are more strict and use a θ2 = ±5◦. We find corners at the
horizon when they are based from horizontal lines of at least
0.5 meters, and limit the distance of the horizon to DH = 10
meters. We additionally discard horizontal lines that are close
to the horizon and thus their projection to floor or ceiling is
farther than DH . Corners are merged when they are within a
radius of 0.2 meters and more than 80% of intersecting angles
α(C). Vertical lines Ly are included in corners with θ3 = ±2◦. In
the layout generation, minimum wall length is 10% of the Hceil,
and deviation with respect to. Manhattan directions of ±10◦. To
discard layout hypotheses with depth information, 80% of the
cloud must be inside the 3D layout.

5.1.2. Time analysis
In this work, the experiments were performed in single-

image and offline. Consequently, we used the images at full
resolution: fisheye image of 2560×1920 pixel and depth image
of 640 × 480 pixel. While there was no major effort in opti-
mizing the implementation to make it able to run in real-time,
it is interesting to see how the system behaves regarding time
performance. Table 1 shows the total time consumption of the
method in our implementation, and a breakdown of the time
consumption of each stage including mean and standard devi-
ation. It can be observed that the two most time-consuming
stages are the line extraction and depth processing, whose high
value is direct consequence of the high resolution of the fish-
eye image (2560 × 1920) and the point cloud (640 × 480 with
Vsize = 2cm). Nevertheless, more efficient programming lan-
guages and libraries (e.g. C++ and PCL [48]) could improve
performance up to real-time. The same argument could be
made for the VP extraction, since it requires to filter the cloud
and obtain the normals previously, which is by far the most ex-
pensive part (the optimization itself is very quick). If we count
the time spent to perform the processes that end up with a set
of corners detected and scored, the times range from 4.67 to
11.26 seconds with an average of 7.32 seconds. It shows a large
variance (standard deviation of 1.47s), which shows the perfor-
mance of the corner extractor depends on the complexity of the
scene (i.e. amount of lines and planes).

About the layout hypotheses generation, it is interesting to
compare the performance of the current implementation pre-
filtering the corners (Section 4.2.3) with respect to our previous
work [4], where we simply analyze connectivity between cor-
ners as they were selected. In average, pre-filtering makes the
method about 4 times more efficient, reducing considerably the
standard deviation as well. Notice that both approaches keep
selecting corners from the set until a predetermined number of
50 valid hypotheses are generated, or a maximum number of
iterations is met. The performance of this part depends heavily
on the scene, the corners extracted and how are they distributed

Table 1: Breakdown of computation time of each stage including
mean, x, and standard deviation, σ, in seconds; and the percentage
over the total time (%). We have included the hypotheses generation
implementation from [4] that did not include pre-filtering for compar-
ison purposes.

Stage of the method x σ %
Line extraction (3.2) 2.060 0.288 23.907
Vanishing point (3.3)
- Voxel and normal estimation 0.612 0.286 7.100
- VPs computation 0.101 0.052 1.169
Depth processing (3.4) 1.907 0.836 22.137
Line classification (3.5) 0.755 0.072 8.764
Corner extraction (4.1)
- Line projection / Hceil 0.544 0.278 6.317
- Corner detection and scoring 1.342 0.790 15.578
Total time for corner extraction 7.321 1.471 84.970
Hypotheses generation (4.2)
- Pre-filtering (4.2.3) 0.587 0.097 6.8814
- 50 Hypotheses (4.2.2) 0.659 2.237 7.651
Hypotheses generation in [4]
- 50 Hypotheses 4.288 5.753 –
Hypotheses evaluation (4.3)
- SS + SE + CA 0.049 0.008 0.564
Total time 8.616 2.867 100

in the scene. Then, some cases may take a long time to recover
50 valid hypotheses, producing large standard deviation. This
can be improved in both cases reducing the number of maxi-
mum iterations: considering the selection of corners is score-
based, it might not be necessary to reach 50 valid hypotheses.
In the evaluation stage, we did not include Orientation Map cri-
teria since it is much slower than the others (a more extended
comparison is shown in Table 3). The other evaluation criteria
show that they are very fast, with almost non-existent standard
deviation.

5.2. Corner extraction

In this section we analyze the capacity of the method to ex-
tract the relevant corners for the layout estimation, but also its
limitations. Ultimately, the success of the system depends on
the good extraction of corners. While our layout estimation
process allows to introduce additional undetected corners, they
are placed between corners that had been extracted beforehand.

In our method, we extract and rank the corners depending on
their score, but for the layout extraction we only keep the 100
better ranked corners. The first experiment analyzes how well
the corners found with our method correspond to the real world
corners. To perform this experiment, we have manually anno-
tated the number of corners that should be found for all the 70
images in the dataset, in order to provide the best layout solu-
tion, obtaining 206 corners in total. Then, we visually inspected
if these corners are actually among the 100 best ranked corners.
The ratio of number of corners found over number of corners
to find is of 191/206→ 92.7%. All the important corners were

15

Figure 14: Examples of corner detections, represented by yellow cir-
cles, in four different scenes. In these examples all the important cor-
ners have been found, plus some outliers.

found in 58 of the 70 images. Taking into account that even
in cases where relevant corners are missing they could still be
recovered as intermediate hidden corners in the layout hypothe-
ses generation, we consider these high percentages a good in-
dicator of performance: in most cases the relevant corners are
found, and even when they are not, the algorithm may be able
to complete the task. In Fig. 14 there are some cases where all
the important corners have been detected. We can also see how
very often several corner detections appear around the same real
world corner. This multiplicity is due to similar detections from
close lines corresponding to different objects (e.g. embellish-
ments). There are also some outliers (i.e. corner detections not
corresponding to real world corners) that the layout estimation
process has to overcome.

Next, we analyze the main difficulties and causes of failure
that the corner extraction problem has, also showing some ex-
amples. Given that the basic elements to find corners are the
lines, missing some of them may be critical. The line extraction
method requires edges to be detected properly, which may not
happen when there is low contrast in the image, e.g. because of
non-existent color shift, bad lighting conditions or motion blur.
Some of the reasons that harmed the results in some experi-
ments are the following: in Fig. 15 (a-c) most lines in the ceil-
ing were not detected and thus, the height of the ceiling could
not be obtained properly and some relevant corners are miss-
ing. Particularly, in Fig. 15 (c) the illumination from the lamp
itself casts a shadow that resembles a wall-ceiling intersection.
The opposite problem arises sometimes as well, i.e. lines com-
ing from textures (Fig. 15 (d)) or objects irrelevant for the task
(Fig. 15 (e)) provoke accumulation of misleading corners.

The ceiling plane may be wrongly obtained when fortuitous
scene configurations and line distributions occur. For exam-
ple, in Fig. 15 (f) the rectangular rug resembles the rectangular
shape of the ceiling and thus the Hceil is such that makes the
contour of the ceiling and the rug overlap in the XZ-plane. In
Fig. 15 (g) the wardrobe has parallel lines that deceive the ceil-

(a) Bad lighting (b) No color shift/bad lighting

(c) Misleading shadow (d) Highly textured surface

(e) Lines from objects (f) Bad ceiling detection with object

(g) Bad ceiling detection with (h) No depth information
parallel lines producing bad ceiling detection

Figure 15: Examples of corner detections damaged by scene condi-
tions. The pink rectangle points at the region where failure happens.

ing plane extraction as well. This is a problematic issue, since it
affects the layout proposals that combine corners from floor and
ceiling (i.e. if the ceiling plane is not right the corner intersec-
tion in the ceiling will not be exactly on top of the intersection
in the floor). Since we introduce depth information of the pro-
cess, the ranges for a valid Hceil are restricted to common ones
(e.g. from 2 to 3 meters). In Fig. 15 (h) we can see the previous
case by removing the input from the depth camera: the lines
from the furniture and posters create a situation where the best
ceiling plane solution is very inaccurate. Providing scale and re-
stricting the measurements to natural ranges produces that even
when the ceiling plane is not properly found, the value it takes
is not very far of the real solution. In average, the ratio of suc-
cess of finding a ceiling plane within a few centimeters error is
almost 80%. Comparing this result with our previous method
without Angle Coverage [4], the success ratio of the newer ap-

16

proach is about 15% higher. Moreover, comparing each case
from the dataset, the new Hceil estimation method improves in
54/70 cases, taking in consideration the accuracy with respect
to real values and the matchings of lines from ceiling and floor,
showing the proposed method better performance.

Despite the aforementioned failure cases, most important
corners are generally well extracted in our experiments. The
majority of these problems are derived from the line extraction
method of our current implementation and not the method itself.
More sophisticated approaches of line detection in the vein of
[50] could be used to improve the results. Additionally, some
filtering methods could be used to remove textures and high-
light borders (e.g. [51]), even deep learning methods have been
used to detect only structural edges and ignore those from other
objects or clutter [21]. However, this line of research was out
of scope for this work, and instead we focus on developing a
layout estimation method robust enough to overcome the fact
that not all corners are always detected.

5.3. Layout estimation

In this section, we analyze quantitatively the results of the
system regarding layout estimation: from hypotheses genera-
tion to the evaluation and the final result. For this we use the
dataset of 70 images for which we have labeled the ground
truth. Our ground truth is the labeled images such as the one
from Fig. 12c, where each color represents a layout surface of
different orientation. Since only the structural information of
the scene is to be extracted, in the tagging we ignore all the
objects unless they cover entire walls (e.g. wardrobes or book-
shelves). We only extract single room layouts, meaning that
open doors are ignored during tagging phase as well. The met-
ric employed is the percentage of pixels correctly tagged over
the totality of pixels from the ground truth, which we call Pixel
Accuracy (PA). With that metric, we analyze the quality of our
solution depending on the number of hypotheses drawn and the
evaluation criterion.

5.3.1. Number of hypotheses
This experiment analyzes how the PA changes depending on

the number of hypotheses to draw with the four evaluation cri-
teria presented. The objective of this experiment is to observe
the behavior and determine how many hypotheses we need to
have the best results. We have registered the mean PA obtained
from 5 to 50 hypotheses by intervals of 5 and from 50 to 200
by intervals of 10. The resulting graph is shown in Fig. 16. At
a glance we can see two distinct trends: The Sum of Scores
(SS) and Sum of Edges (SE) evaluation criteria present lower
score and a small decline through iterations, whereas Angular
Coverage (AC) and Orientation Map (OM) rise briefly at the
beginning until they reach a steady maximum.

However, in all four cases we can note that the variation of
PA through iterations is negligible. This is a consequence of
the good performance of the detection and scoring of the cor-
ners, which makes higher scored corners more likely to appear
in layout hypotheses. In many cases the highest scored corners
are the real world corners that we are looking for. Thus, a small

0 20 40 60 80 100 120 140 160 180 200

Number of hypotheses generated

70

75

80

85

90

95

100

P
ix

el
 A

cc
ur

ac
y

(%
)

Mean SS
Mean SE
Mean AC
Mean OM

Figure 16: Pixel accuracy over the number of hypotheses generated.

number of hypotheses is likely to already provide a good re-
sult. Other cases may have a more complex corner distribution,
which leads to more variety of layout hypotheses among which
the SS and SE evaluation criteria may find one that fits better
the criterion while being not very accurate. On the other hand,
AC and OM prove to be better for the task, since they look for
the best distributed consensus in the scene. Therefore, these
criteria tend to improve with a larger variety of hypotheses.

The best number of hypotheses to draw will depend on the
criterion. For SS and SE, lower number of hypotheses improves
the results, but at least a few should be required (otherwise there
is a risk of getting oddly-shaped layouts). Thus, 5-10 hypothe-
ses seem reasonable. For AC and OM, on the other hand, the PA
rises until 30-40 hypotheses, and the improvements afterwards
are marginal. In all cases, we choose a very reduced number of
hypotheses, substantially less than other similar works [29].

5.3.2. Comparison of evaluation criteria
To provide a more meaningful discussion about the evalua-

tion criteria, the mean PA displayed in Fig. 16 is not enough. In
Fig. 17, there is another boxplot-type graph showing the distri-
bution of pixel accuracy in the 70 images with the four evalu-
ation criteria at 50 hypotheses. For each column we show the
mean (black line), median (black dotted line), standard error
of the mean (SEM) at 95% of confidence (dark rectangle), and
standard deviation (SD) (bright rectangle). The values of the
mean and median are shown in the Table 2. Additionally, each
individual result of the 70 images is also scattered on the graph
for visualization purposes. Analyzing only the left part of the
graph (the general case, with depth information), we can see
how SS and SE are able to tag correctly a median of 86% and
85.7% of the pixels in the image respectively. Both AC and OM
reach over 90%, particularly 90.3% and 91.5% of PA. While all
criteria perform well, the AC and OM are clearly the best. The
OM has the better scoring overall, but the AC has smaller stan-
dard deviation and less outliers.

In Fig. 18 and Fig. 19 there are several examples showing

17

SS SE OM SS SE OM

With depth Without depth

40

50

60

70

80

90

100

P
ix

el
 A

cc
ur

ac
y

(%
)

AC AC

Figure 17: Boxplot of the results using the four evaluation criteria
with the set of 70 images. The graph is divided in results using depth
(on the left, in green) and without depth (on the right, in red). For all
cases the black line marks the mean value, the black dotted line the
median value, the dark rectangles are the standard error of the mean
(SEM) with 95% of confidence and the bright rectangles the standard
deviation (SD). The individual values per image are also scattered over
each column.

Table 2: Mean pixel accuracy of the system with and without depth
information (%).

Criterion With depth No depth
Mean Median Mean Median

SS 84.96 86.05 81.62 85.13
SE 84.59 85.73 81.00 81.70
AC 89.63 90.34 85.90 87.43
OM 90.38 91.53 87.97 89.38

results for each evaluation criterion. In particular, Fig. 18 show
corridor scenes (with failure cases), which usually have com-
plex structure and may require to recover six corners. The
planes from depth are also displayed, to show how most of these
corners are recovered outside the depth field of view, and even
some that are hidden corners (see second row). While most
cases are successful, there are several failure cases representa-
tive of the evaluation criteria. For instance, SE is unable to get
the full length of the corridor as there are edges on the parquet
that fit better the criterion. SS chooses the hypothesis with high
valued corners disregarding any other information. The third
scene has an open door that misleads OM and eventually causes
wrong layout recovery. In Fig. 19 the scenes are more cluttered
and thus failure cases are more frequent and harder to analyze.
Nevertheless, there is a clear tendency: SS and SE tend to select
overly complex hypothesis and are more likely to fail than AC
and OM.

However, accuracy is not the only factor to compare meth-
ods, so we extend the experiments to test efficiency in terms of
computation time. In Table 3 there is a breakdown of the mean
times in our current implementation. The first three methods

Table 3: Comparison of computation time of each stage of the evalua-
tion for each criterion in our current implementation (in milliseconds).

Stage of evaluation SS SE AC OM
Generate orientation map − − − 18000
Generate 1 labeled image − − − 50
Evaluate 1 hypotheses 0.05 0.4 1.8 2.5
Total (1 hypotheses) 0.05 0.4 1.8 18052.5
Total (50 hypotheses) 2 20 90 20625

(SS, SE and AC) only require simple operations, and thus, are
extremely fast (less than 2 milliseconds). On the other hand,
the OM is very slow in comparison. Just to generate the map,
assuming we have the lines and vanishing points extracted, it
takes around 18 seconds. Then it needs to compute the cor-
responding labeled image per hypothesis, in order to find the
best fitting one. To save time we resize the orientation map and
labeled images by a scale of 0.25. Then, generating labeled im-
ages takes about 0.05 second/hypothesis and selecting the better
one takes 2.5 millisecond/hypothesis. Thus, for example, eval-
uating 50 hypotheses would take about 0.002 seconds to the
SS, 0.02 seconds to the SE and 0.09 seconds the AC. The OM
method would take 18 + 0.05× 50 + 0.0025× 50 = 20.625 sec-
onds. The difference between OM and the other three evalua-
tion criteria is of several levels of magnitude. Thus, considering
the small PA value shift between AC and OM, when time is a
requirement, AC is much better for the task.

Note that this comparison is performed within the context
of our scaled layout recovery method, and the results may not
concur when applied to other approaches. For example, AC
benefits from having wide FOV and thus it may not perform
as well in conventional images, or SS uses Scores particularly
defined in this work that require scaled values for computation.
Moreover, the criterion in the evaluation stage can be replaced
without affecting the rest of the pipeline, allowing to use new
criteria as the state of the art evolves (e.g. in [52] they use a
deep learning method to extract surface normals [53]).

5.3.3. Performance under different types of scenes
A breakdown of the results depending on the type of room

is provided in Table 4. In general we have experienced bet-
ter performance in environments where structural lines can be
easily seen. For example, corridors often have less objects oc-
cluding the important lines. On the other hand, corridors have
often more complex shapes. Our method is able to overcome
complex shapes in most cases as the high scores in corridors
show. In Fig. 18 there are some examples that support those
good results.

The rest of the rooms are very scene dependent, and it is
harder to establish any correlation in type of room and results.
As mentioned in Section 5.2, the results depend on the specifics
of each scene, including parameters such as illumination. In
Fig. 19 there are some examples of layout retrievals in non-
corridor cluttered rooms. The first is a bedroom scene with
complex shape, which was recovered successfully and com-
pletely closed with AC and OM. The second and third one are

18

Contours and corners Sum of Scores Sum of Edges Angle Coverage Orientation Map

Figure 18: Examples of results from corridor scenes of our set with best layout proposal for each evaluation criterion. Those results with red
frame are failure cases. Note that in all these results the shapes of the layout are complex, with 6 wall structures.

rooms that include several major occlusions involving chairs,
tables, ironing boards. However, as shown in the results from
Table 4, bathrooms and kitchens are the most problematic.
They are usually crowded with objects and cabinets, even mir-
rors in the case of the bathroom, which are often problematic
in any computer vision algorithm. The two last examples from
Fig. 19 are from these types of scenes, with an observable high
failure rate and inaccuracies. In particular, the kitchen has a
countertop and cabinets that covers the entire left wall, mak-
ing extremely difficult to recover the structural layout with any
computer vision method.

5.3.4. 3D scaled reconstruction of scenes
In Fig. 20 there are some examples of 3D reconstructions

obtained with our method. We show the fisheye with the depth
information that we use as input of the system to visualize how
much the depth has been extended. It can be seen that the sys-
tem is able to reconstruct not only ‘box-shaped’ rooms, looking
at the corridor or bedroom scenes. These results are scaled with
the depth information provided, so in a single shot our system is
able to get the whole scene at once. We believe this information
could be valuable for many tasks.

We have to note that in all cases this is an estimation of the
layout, but the only information that is fully reliable all the time
is the one that comes from the depth information. Our layout

Table 4: Mean pixel accuracy depending on the type of scene tested
(%).

Room SS SE AC OM
Corridor 89.52 85.92 93.53 91.8
Bedroom 84.63 85.57 87.64 90.74
Bathroom 80.10 83.87 86.84 86.42
Living Room 85.03 85.70 89.03 90.18
Kitchen 73.02 79.77 82.87 87.61
Other 82.52 82.13 88.29 89.78

solution can be merged with the initial depth so we can actually
use both sources of data at the same time to our advantage. The
depth image provides a safe zone where we know for certain
what is in front of the camera, but we also have spatial context
of the room we are in, enabling many possibilities of higher
level reasoning that extends what a conventional depth camera
can do, without diminishing its advantages.

5.4. Advantages of the camera pairing

We explore the benefits of using our camera system com-
pared to merely using a fisheye camera. The main one is that
the scale of the scene would be lost without the depth camera.
Additionally, we repeated the experiments removing all depth

19

Contours and corners Sum of Scores Sum of Edges Angle Coverage Orientation Map

Figure 19: Examples of results from non-corridor scenes of our set with best layout proposal for each evaluation criterion. Those results with red
frame are failure cases.

information throughout the system in order to numerically ob-
serve how the results are affected. The absence of depth affects
the computation of the VPs, the scoring of lines, the retrieval
of the Hceil and the elimination of contradictory hypotheses. In
particular, in Fig. 15h there is an example of corner extraction
without depth failing at getting the ceiling plane.

A comparison of results with 50 hypotheses with and with-
out depth information is shown in the Figure 17 and Table 2.
It can be observed that the standard deviation of PA increases
since many cases result in much lower scores. Consequently,
the mean pixel accuracy decreases about 4%. However, ob-
serving the per-image values on the Fig. 17, in many cases the
results are not affected by the lack of depth, but in some others
the results are so bad that it is very noticeable in the mean value.
This is also observable on the median value, which does not ex-
periment so much decrease in comparison. Thus, the depth not
only provides scale, but it also helps in many individual cases.

5.5. Results with Google Tango
We want to show the applicability of the method with com-

mercial devices, such as the Google Tango (Fig. 13). Even
though the device at our disposal is a Development Kit, there
are several phones with the same technology already in the mar-
ket. Among other sensors, this device includes: a depth cam-
era which is similar to the other camera system but with less
resolution (320 × 180 instead of 640 × 480), and a motion-
tracking camera which basically is a fisheye of about 170◦ of
field of view and resolution of 640 × 480. The simultaneous
depth and fisheye image pairs have been captured using Tango
ROS Streamer1.

The decrease in the resolution does not affect the quality of
the results notably. Note that one of the first operations with
the depth information consists on downsizing the point cloud.
In the fisheye camera the loss of information is not significant

1http://wiki.ros.org/tango_ros_streamer

20

http://wiki.ros.org/tango_ros_streamer

Image with depth map 3D Layout Image with depth map 3D Layout

Corridor Bedrooms

Living Room Other

Figure 20: Pair of images of fisheye images with the depth information from the depth camera overlaid and the 3D layouts we are able to retrieve
corresponding to each case.

21

Figure 21: Twelve examples of application of our method with a Google Tango device. At the left of each case the fisheye image with the depth
points projected in colors (variable color with depth). At the right, the resulting 3D point cloud. For visualization purposes, the initial 3D point
cloud is also displayed in color to show how the resulting cloud has been scaled and fits accordingly.

22

and it actually helps speeding up the algorithm. However, the
decrease in field of view is quite relevant for the task, since the
lesser spatial view of the environment we have, the lesser likeli-
hood of finding the most useful corners. In order to increase the
amount of lines from the ceiling (which usually belong to less
cluttered areas) the camera could be pointing slightly upwards
than the previous device. This may result in loss of floor plane
view, and thus scaled layout recovery. However, we can pro-
ceed with the non-scaled layout recovery and apply the scaling
procedure presented in Section 4.4 to recover the scaled layout.

In Fig. 21 we show several examples with images from the
Tango device in similar type of views to the first dataset, where
the non-scaled layout recovery with Angle Coverage method
and final scaling have been applied. This shows that our method
is able to estimate the scaled layout when the floor is not in the
image, and thus with no restrictions about how the camera is
posed in the scene. With the previous dataset most images had
views of the floor and we could not show this feature. While
this alternative approach to solve the problem works for most
scenes, it is still useful to have the floor and thus the scale since
the beginning. For example, the second example include depth
points out of the room through the open door, which breaks
condition E (Section 4.2.1). However, since when generating
hypotheses we have no scale, we cannot use that condition to
discard the hypotheses. Apart from these types of exceptional
cases, our method is able to extend the depth information by
extracting the correct layout. Notice that here there is also
some cases where only one Manhattan direction is observed
from depth (e.g. fifth row in first column or first row in sec-
ond column in Fig. 21). Our vanishing point extraction method
combines depth and fisheye (see Section 3.3) and thus is still
able to recover the main directions and carry on with the layout
estimation process.

6. Conclusion

In this work, we have developed a new method to extend the
3D information of a depth camera to a field of view of over
180 degrees. In particular, we propose a novel spatial layout
retrieval algorithm, whose main novelty is combining a fisheye
and a depth camera. The large field of view helps to use in-
formation from both the ceiling and the floor, which is helpful
when there is clutter in the scene. The depth information helps
by providing scale, necessary for the final 3D reconstruction,
and by enhancing the performance of the method. Experimen-
tal evaluation with real images of indoor environments shows
good results in terms of accuracy, improving the state of the art
in functionality: our method has less layout shape restrictions,
needs fewer hypotheses and provides full-scaled 3D models of
the scene in a single shot. One of the advantages of returning
a full-scaled reconstruction is that it complements the informa-
tion coming from the depth camera: besides the small part of
the scene reliably captured by the depth camera, now it is pos-
sible to have a good estimation of the surroundings to over 180
degrees. This kind of information could be useful in fields such
as robotics or augmented reality. Additionally, the method has

been tested with data from a portable consumer device success-
fully, showing great potential for the future, especially regard-
ing the possibility of using it in a wearable configuration.

Acknowledgments.

This work was supported by Projects DPI2014-61792-EXP
and DPI2015-65962-R (MINECO/FEDER, UE) and grant
BES-2013-065834 (MINECO).

References

[1] A. Perez-Yus, D. Gutierrez-Gomez, G. Lopez-Nicolas, J. J. Guerrero,
Stairs detection with odometry-aided traversal from a wearable RGB-D
camera, Computer Vision and Image Understanding 154 (2017) 192–205.

[2] J. M. Coughlan, A. L. Yuille, Manhattan world: Compass direction from
a single image by bayesian inference, in: IEEE International Conference
on Computer Vision (ICCV), Vol. 2, 1999, pp. 941–947.

[3] D. C. Lee, M. Hebert, T. Kanade, Geometric reasoning for single image
structure recovery, in: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2009, pp. 2136–2143.

[4] A. Perez-Yus, G. Lopez-Nicolas, J. J. Guerrero, Peripheral expansion of
depth information via layout estimation with fisheye camera, in: Euro-
pean Conference on Computer Vision (ECCV), Springer, 2016, pp. 396–
412.

[5] D. R. Walton, D. Thomas, A. Steed, A. Sugimoto, Synthesis of envi-
ronment maps for mixed reality, in: IEEE International Symposium on
Mixed and Augmented Reality (ISMAR), 2017, pp. 72–81.

[6] E. Delage, H. Lee, A. Y. Ng, A dynamic bayesian network model for au-
tonomous 3D reconstruction from a single indoor image, in: IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition
(CVPR), Vol. 2, 2006, pp. 2418–2428.

[7] V. Hedau, D. Hoiem, D. Forsyth, Recovering the spatial layout of clut-
tered rooms, in: IEEE International Conference on Computer Vision
(ICCV), 2009, pp. 1849–1856.

[8] D. Hoiem, A. A. Efros, M. Hebert, Recovering surface layout from an
image, International Journal of Computer Vision 75 (1) (2007) 151.

[9] A. G. Schwing, T. Hazan, M. Pollefeys, R. Urtasun, Efficient structured
prediction for 3D indoor scene understanding, in: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2012, pp. 2815–2822.

[10] S. Ramalingam, J. Pillai, A. Jain, Y. Taguchi, Manhattan junction cat-
alogue for spatial reasoning of indoor scenes, in: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2013, pp. 3065–3072.

[11] H.-C. Chang, S.-H. Huang, S.-H. Lai, Using line consistency to estimate
3D indoor Manhattan scene layout from a single image, in: IEEE Inter-
national Conference on Image Processing (ICIP), 2015, pp. 4723–4727.

[12] V. Hedau, D. Hoiem, D. Forsyth, Thinking inside the box: Using appear-
ance models and context based on room geometry, in: European Confer-
ence on Computer Vision (ECCV), Springer, 2010, pp. 224–237.

[13] D. C. Lee, A. Gupta, M. Hebert, T. Kanade, Estimating spatial layout
of rooms using volumetric reasoning about objects and surfaces, in: Ad-
vances in Neural Information Processing Systems 23, 2010, pp. 1288–
1296.

[14] L. Del Pero, J. Guan, E. Brau, J. Schlecht, K. Barnard, Sampling bed-
rooms, in: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2011, pp. 2009–2016.

[15] L. Del Pero, J. Bowdish, D. Fried, B. Kermgard, E. Hartley, K. Barnard,
Bayesian geometric modeling of indoor scenes, in: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2012, pp. 2719–2726.

[16] W. Choi, Y.-W. Chao, C. Pantofaru, S. Savarese, Understanding indoor
scenes using 3D geometric phrases, in: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2013.

[17] A. G. Schwing, S. Fidler, M. Pollefeys, R. Urtasun, Box in the box: Joint
3D layout and object reasoning from single images, in: IEEE Interna-
tional Conference on Computer Vision (ICCV), 2013, pp. 353–360.

[18] A. Flint, D. Murray, I. Reid, Manhattan scene understanding using
monocular, stereo, and 3D features, in: IEEE International Conference
on Computer Vision (ICCV), 2011, pp. 2228–2235.

23

[19] A. Furlan, S. D. Miller, D. G. Sorrenti, F.-F. Li, S. Savarese, Free your
camera: 3D indoor scene understanding from arbitrary camera motion,
in: British Machine Vision Conference (BMVC), 2013.

[20] Y. Zhang, F. Yu, S. Song, P. Xu, A. Seff, J. Xiao, Large-scale scene un-
derstanding challenge: Room layout estimation, in: Computer Vision and
Pattern Recognition Workshop, 2015.

[21] A. Mallya, S. Lazebnik, Learning informative edge maps for indoor scene
layout prediction, in: IEEE International Conference on Computer Vision
(ICCV), 2015, pp. 936–944.

[22] W. Zhang, W. Zhang, K. Liu, J. Gu, Learning to predict high-quality
edge maps for room layout estimation, IEEE Transactions on Multime-
dia 19 (5) (2017) 935–943.

[23] S. Dasgupta, K. Fang, K. Chen, S. Savarese, Delay: Robust spatial layout
estimation for cluttered indoor scenes, in: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 616–624.

[24] C.-Y. Lee, V. Badrinarayanan, T. Malisiewicz, A. Rabinovich, Roomnet:
End-to-end room layout estimation, 2017, pp. 4875–4884.

[25] H. Jia, S. Li, Estimating the structure of rooms from a single fisheye im-
age, in: IAPR Asian Conference on Pattern Recognition (ACPR), IEEE,
2013, pp. 818–822.

[26] G. Lopez-Nicolas, J. Omedes, J. J. Guerrero, Spatial layout recovery from
a single omnidirectional image and its matching-free sequential propaga-
tion, Robotics and Autonomous Systems 62 (9) (2014) 1271–1281.

[27] H. Jia, S. Li, Estimating structure of indoor scene from a single full-view
image, in: IEEE International Conference on Robotics and Automation
(ICRA), 2015, pp. 4851–4858.

[28] K. Fukano, Y. Mochizuki, S. Iizuka, E. Simo-Serra, A. Sugimoto,
H. Ishikawa, Room reconstruction from a single spherical image by
higher-order energy minimization, in: IAPR International Conference on
Pattern Recognition (ICPR), 2016, pp. 1768–1773.

[29] Y. Zhang, S. Song, P. Tan, J. Xiao, PanoContext: A whole-room 3D con-
text model for panoramic scene understanding, in: European Conference
on Computer Vision (ECCV), Springer, 2014, pp. 668–686.

[30] J. Xu, B. Stenger, T. Kerola, T. Tung, Pano2CAD: Room layout from a
single panorama image, in: IEEE Winter Conference on Applications of
Computer Vision (WACV), 2017, pp. 354–362.

[31] H. Yang, H. Zhang, Efficient 3D room shape recovery from a single
panorama, in: IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2016, pp. 5422–5430.

[32] R. Cabral, Y. Furukawa, Piecewise planar and compact floorplan recon-
struction from images, in: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2014, pp. 628–635.

[33] F. Endres, C. Sprunk, R. Kummerle, W. Burgard, A catadioptric extension
for RGB-D cameras, in: IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 2014, pp. 466–471.

[34] J. Iglesias, P. Mirado, R. Ventura, Towards an omnidirectional catadiop-
tric RGB-D camera, in: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2016, pp. 2506–2513.

[35] R. Tomari, Y. Kobayashi, Y. Kuno, Wide field of view Kinect undistortion
for social navigation implementation, in: Advances in Visual Computing,
Springer, 2012, pp. 526–535.

[36] E. Fernandez-Moral, J. Gonzalez-Jimenez, P. Rives, V. Arevalo, Extrinsic
calibration of a set of range cameras in 5 seconds without pattern, in:
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2014, pp. 429–435.

[37] I. Armeni, S. Sax, A. R. Zamir, S. Savarese, Joint 2D-3D-Semantic data
for indoor scene understanding, arXiv preprint arXiv:1702.01105 (2017).

[38] A. Perez-Yus, G. Lopez-Nicolas, J. J. Guerrero, A novel hybrid camera
system with depth and fisheye cameras, in: IAPR International Confer-
ence on Pattern Recognition (ICPR), 2016, pp. 2789–2794.

[39] A. Perez-Yus, E. Fernandez-Moral, G. Lopez-Nicolas, J. J. Guerrero,
P. Rives, Extrinsic calibration of multiple RGB-D cameras from line ob-
servations, IEEE Robotics and Automation Letters 3 (1) (2018) 273–280.

[40] Q. Zhang, R. Pless, Extrinsic calibration of a camera and laser range
finder (improves camera calibration), in: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), Vol. 3, 2004, pp. 2301–
2306.

[41] D. Scaramuzza, A. Harati, R. Siegwart, Extrinsic self calibration of a cam-
era and a 3D laser range finder from natural scenes, in: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), 2007, pp.
4164–4169.

[42] A. Geiger, F. Moosmann, O. Car, B. Schuster, Automatic camera and
range sensor calibration using a single shot, in: IEEE International Con-
ference on Robotics and Automation (ICRA), 2012, pp. 3936–3943.

[43] L. Puig, J. Bermudez-Cameo, P. Sturm, J. J. Guerrero, Calibration of om-
nidirectional cameras in practice: A comparison of methods, Computer
Vision and Image Understanding 116 (1) (2012) 120–137.

[44] D. Scaramuzza, A. Martinelli, R. Siegwart, A toolbox for easily calibrat-
ing omnidirectional cameras, in: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2006, pp. 5695–5701.

[45] D. Herrera C, J. Kannala, J. Heikkilä, Joint depth and color camera cali-
bration with distortion correction, IEEE Transactions on Pattern Analysis
and Machine Intelligence 34 (10) (2012) 2058–2064.

[46] J. Bermudez-Cameo, G. Lopez-Nicolas, J. J. Guerrero, Automatic line
extraction in uncalibrated omnidirectional cameras with revolution sym-
metry, International Journal of Computer Vision 114 (1) (2015) 16–37.

[47] J.-C. Bazin, I. Kweon, C. Demonceaux, P. Vasseur, A robust top-down
approach for rotation estimation and vanishing points extraction by cata-
dioptric vision in urban environment, in: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2008, pp. 346–353.

[48] R. B. Rusu, S. Cousins, 3D is here: Point cloud library (PCL), in: IEEE
International Conference on Robotics and Automation (ICRA), 2011, pp.
1–4.

[49] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
A. Y. Ng, Ros: an open-source robot operating system, in: ICRA work-
shop on open source software, Vol. 3, Kobe, Japan, 2009, p. 5.

[50] R. G. Von Gioi, J. Jakubowicz, J.-M. Morel, G. Randall, Lsd: A fast line
segment detector with a false detection control, IEEE Transactions on
Pattern Analysis and Machine Intelligence 32 (4) (2010) 722–732.

[51] Q. Zhang, X. Shen, L. Xu, J. Jia, Rolling guidance filter, in: European
Conference on Computer Vision (ECCV), Springer, 2014, pp. 815–830.

[52] C. Fernandez-Labrador, A. Perez-Yus, G. Lopez-Nicolas, J. J. Guerrero,
Layouts from panoramic images with geometry and deep learning, IEEE
Robotics and Automation Letters 3 (4) (2018) 3153–3160.

[53] D. Eigen, R. Fergus, Predicting depth, surface normals and semantic la-
bels with a common multi-scale convolutional architecture, in: IEEE In-
ternational Conference on Computer Vision, 2015, pp. 2650–2658.

24

	Introduction
	Related work
	Depth and fisheye images processing
	System calibration
	Line extraction in the fisheye image
	Estimation of the vanishing points
	Initial estimate with depth information
	Final estimate with lines in the fisheye image

	Depth information processing
	Plane extraction
	Floor detection and scene pose

	Classification of lines

	Layout estimation
	Corner extraction
	Floor plan projection
	Ceiling plane projection
	Corner definitions
	Corner scoring

	Layout hypotheses generation
	Conditions for a valid layout
	Generation of layout hypotheses
	Pre-filtering of corner connections

	Evaluation of the Hypotheses
	Scaling of hypotheses

	Experiments
	Implementation details
	Parameters and thresholds
	Time analysis

	Corner extraction
	Layout estimation
	Number of hypotheses
	Comparison of evaluation criteria
	Performance under different types of scenes
	3D scaled reconstruction of scenes

	Advantages of the camera pairing
	Results with Google Tango

	Conclusion

