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Reset Adaptive Observer for a Class of is the main difference of [12], compared with other relevant time
; independent reset control works [13], [14].

Nonlinear SyStemS Although the research on reset elements is still an open and
) challenging topic, this research has been mainly focused on control

D. Paesa, C. Franco, S. Llorente, G. Lopez-Nicolas and C. Sagu‘??sues. The first application of the reset elements to the adaptive
observer framework is [15]. There, the authors proposed a new sort

Abstract—This paper proposes a novel kind of state estimator called of adaptive observer called reset adaptive observer (ReO). A ReO
reset adaptive observer (ReO). A ReO is an adaptive observer consisting js an adaptive observer whose integral term has been substituted for

of an integrator and a reset law that resets the output of the integrator 5 roqet element. The reset condition of the ReO is based on the
depending on a predefined condition. The main contribution of this paper

is that the reset element theory is applied for the first time to the nonlinear @PProach proposed by [12]. Since the integral term is reset as long as
adaptive observer framework. The introduction of the reset element in the output estimation error and the integrated estimation error have
the adaptive law can decrease the overshooting and settling time of the opposite sign, the reset time intervals are unknown a priori. The
estimation process without sacrificing the rising time. The stability and  jntroduction of the reset element in the adaptive laws can improve

convergence LMI-based analysis of the proposed ReO is addressed and,th £ f th b it i ible to d th
additionally, an easily computable method to determine theL. gain of € perlormance of the observer, as It IS possible (o decrease (he

the ReO dealing with noise-corrupted systems is presented. overshoot and settling time of the estimation process simultaneously.
Index Terms—Estimation, Reset Control, Output feedback and Ob- This paper extends the previous version [15], which now considers
servers, Hybrid systems. ' ' nonlinear formulation as well as joint state and uncertain parameter

estimation. In Section Il, the ReO formulation for a class of nonlinear
systems is presented. In Section Ill, a LMI-based stability condition
[. INTRODUCTION which guarantees the convergence and stability of the estimation

An adaptive observer is a recursive algorithm for joint state arRfocess is developed. Besides, an easily computable method to obtain
parameter estimation in dynamic systems. This kind of algorithfie £2 gain of the ReO dealing with noise-corrupted system is
plays a key role in many applications such as failure detectiopfesented. Simulation results are presented in Section IV to test the
monitoring, and fault tolerant control. The research on adaptiR€rformance of our proposed ReO compared with traditional PIAO.
observers started in the 1970s. Initially, it was focused on linear tiniénally, concluding remarks are given in Section V.
invariant systems [1], and afterwards on nonlinear systems [2], [3],Notation: In the following, we use the notationz,y) =
[4]. All those works were characterized by having only a proportionak” "]~ . Given a state variable of a hybrid system with switches,
feedback term of the output observation error in both state obser¥é@ Will denote its time derivative with respect to the time dyand
and parameter adaptation law. This proportional approach ensuregeawill denote the value of the state variable after the switch:by
bounded estimation of the state and the unknown parameter, assuriNaég that we omit its time argument and we writét) asz. Addi-

a persistent excitation condition as well as the lack of disturbancégnally, an input signab is persistently exciting if there exists three
The performance of proportional adaptive observers was improv@@sitive realsks, k2, 7, such thatk; < [**77 o™ (1)u(r)dr < ke
by adding an integral term to the adaptive laws, [5], [6], [7]. Thifor all ¢t > 0.

additional term can increase the steady state accuracy and improve

the robustness against modeling errors and disturbances. Il. RESETADAPTIVE OBSERVERFORMULATION

However, since the adaptive laws are still linear, they have the|n this paper we address the problem of joint state and unknown

inherent limitations of linear feedback control. Namely, they cannglrameter estimation for uncertain nonlinear systems which can be
decrease the settling time and the overshoot of the estimation procgsscribed by

simultaneously. Therefore, a trade-off between both requirements is
needed. Nevertheless, this limitation can be solved by adding a reset
element. A reset element consists of an integrator and a reset law y
that resets the output of the integrator as long as the reset conditigiiere z € R” is the state vectory € R is the input,y € R is
holds. Reset elements were introduced by Clegg in 1958 [8], whige output,d € R? is the unknown constant parameter vector which
proposed an integrator which was reset to zero when its inputgan be used to represent modeling uncertaintiess R™ is the
zero. In 1974, Horowitz generalized that initial work substituting theisturbance vectord € R™*”, B € R™*!, C € R'*", A € R™*!,
Clegg integrator by a more general structure called the first ordatid B,, € R™** are known constant matrices. The nonlinearity
reset element (FORE), [9]. During the last years, the research ¢ne R1*? is a time-varying matrix which depends on the input

the stability analysis and switching stabilization for reset systerasid/or the outpuy. In addition,u and ¢ are assumed persistently

is attracting the attention of many academics and engineers. Thiting, and the paif4, C) is assumed observable. As it is shown
main difference between the state-of-art reset control works is howito[2], a class of nonlinear systems can be formulated as the system
address the stability analysis. Although some authors have recenitscribed by (1) through a change of coordinates.

included the reset time intervals in the stability analysis [10], [11], The ReO dynamics are described as follows:

the reset time independent approach is still the most popular. A . N -
general analysis for such time independent reset control systems can =A% + Bu + é¢9 +KiC+ Kpg

be found in [12]. There, the authors modified the reset condition in =T¢"§—To,0 )
such a manner that the system is reset when its input and output have g =C%

different sign, rather than as long as its input is equal to zero. Thigere; is the estimated staté;; and K » represent the integral and
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which guarantees that the estimated paramétés bounded and (4) as follows:
remains within a predefined threshadld,, which is chosen to be

large enough in such a manner th&{ > ||§|| based on prior no= Anm+ Ba ¢0 + By w .
knowledge of the system, and whereis a small positive constant. 7 = 1 if neForr <p,
Although the discontinuity ofs may cause small oscillations on the §+ = G (8)
switching surfaceHéH = Ty, these oscillations never appear working 77+ = Arn .
on nominal conditions. They only appear after a failure when the T+ =0 if ne€ Jandr > p,
parameter estimate is drifting to infinity and it reaches the switching & = ¢
surface. This is an effective and simple method for eliminatingnere
parameter drift and keeping the parameter estimate bounded.
In addition, ¢ is the reset integral term which can be computed as 4, = { A ;[g}o _AKI VAR = [ I 0 ] 7
) ¢ ¢ 0 A, )
5_ _ 145(+B<y if (7,¢) e Forr < p, BA:[€:|,B77:|:BBU):|’CT]:[C 0].
¢t = A Lo “) _ .
= 0 } if (7,¢) € Jandr > p, Notice tha.t the parameter error dynamics does not change after
resets, that isf™ = 6. Only the reset ternt of the augmented

whereA; € R and B, € R are two tuning scalars which regulate thestate error dynamicg is modified throughAr after resets, since
transient response @f, and A, is the reset matrix. Specifically, we?” = Ar 7. It is also worth pointing out that the output of the
define 4, = 0, since the reset integral terthis reset to zero when augmented error dynamics (8) is equal to the output of the ReO
§-¢ < 0. To avoid Zeno solutions, the reset term dynamics (4) h@bserver (2), that isj = Cz = C, n = ¢&.
been modified imposing temporal regularization. We use the notationdnder normal conditions, the ReO flowsjife 7 and is reset when
proposed by [12], based on including an auxiliary variablehich 7 € J. However, due to the effect of the temporal regularization, if
guarantees that the time interval between any two consecutive redags ReO hits the reset surface and< p, it has to keep flowing
is not smaller thap which is a small enough positive number.  until 7 > p. Meanwhile, the statg might overflow into the adjacent
As it was shown in [15], the ReO can be regarded as a hybfigiset region. If so, the ReO has actually been flowing in the slightly
system with aflow setF and ajump or reset set7. On one hand, inflated flow regionZ. which considers the original flow regiof
when (§,¢) € F, that is, if § and ¢ have the same sign, the Reoand a slight portion of the jump set adjacent to the original flow
behaves as a proportional integral observer. On the other handS&f boundary. It is formally defined & := {n: n" Mn +en'n},
the pair (§,¢) € J, that is, if § and ¢ have different sign, the Wheree(p) > 0 represents how the set is inflated [12]. Sirce; 0
integral term is reset according to the reset mip According to asp — 0, an arbitrarily smallp can be chosen so that the effecteof
these statements and singe= C#, the definition of both sets can is sSmall enough to be neglected [17]. For stability purposes, we have

be formalized by using the following augmented representation: t0 prove that/ (n, ) is negative in any region wherein the statean
flow, and thatV’ (n*,6%) < V (5, §) for any region wherein the state

Fo= {77 " Mn > 0} . T = {77 T Mn < 0} 7 (5) misreset. In particular, sincE C F., we have to check’(n,6) < 0
for alln € F., andV(n*,0%) < V(n,0) foralne J.
wherer = [ C}T and M — MT — 0o CT . Given 'that..7-‘€ slightly overflows into the jump sef,. the fpllowmg
n c 0 assumption is needed to guarantee that the solution will be mapped

to the flow setF after each reset and, consequently, there are no
trajectories that keep flowing and jumping withif.

I1l. STABILITY AND CONVERGENCEANALYSIS _ ) _
Assumption 1. The reset observer described by (2)-(4) is such that

In this section we analyze the stability and convergence of thee 7 = Agrne F.
ReO defined by (2) and (4) applied to nonlinear systems described b;{ . hat thi L . |
(2). Firstly, the error dynamics which are involved in the estimation tis |mportant_ to note that this assumption is qu@e ”a“‘.“'?‘ tq
process are shown. Secondly, a computable method to deternfingume for hybrid systems [18], and consequently, this condition is

the stability of the ReO assuming absence of disturbances is givgﬂr_nmonly used in most of current reset system formulations available
Thirdly, stability results are extended to noise-corrupted systems. rl%lj"erat“re [12], [17], [19].

this reason, a method to compute the gain minimizing the effect
of the disturbances on the output estimation error is also providegy gtate stability analysis

Now, taking the augmented error dynamics (7) and (8) into account,
A. Observer error dynamics we state a sufficient condition to prove the quadratical stability of our

) ) ) ) roposed ReO assuming absence of disturbances, thatis). This
Let us begin analyzing the error system dynamics which can Ralysis is based on a LMI approach.

obtained subtracting (2) from (1). Then, the state error dynamics

% = — & is defined by: Theorem 1. For given A,,, B,, Cy, Ba, Ar ande, the augmented
. ~ error dynamics shown in (7) and (8) witlh = 0 is quadratically
z = (A-KpQ)i+ A¢d— Ki(+ Byw (6) stable, if there exist a matri® = PT > 0 and scalarsr» > 0 and

_ R 77 > 0 subject to
while the parameter error dynamifs= 6 — 6 is described by:

. AyP+ PA,+1r(M +el) < 0,
0= —T¢Tj+To.0 @) ARPAR—P-1;M < 0, (10
PBa = Cy.

The state error dynamics can be augmented by connecting (6) to



Proof: Let us begin considering the following quadratic Lya-C. Input-output stability analysis
punov function for the error dynamics described by (7) and (8): Now, we present our results on the input-output properties of

V(n,0)=n"Pn+6"T714 (11) the ReO. The aim is to develop a ReO such as the effect of
" " the disturbancev on the output estimation errag is minimized.
whereP = P~ >0 andl' =T" > 0. For this reason, let us define th&, gain of the system (8) as
T(:1 pr(lzvi th.e guadratically stability of our proposed ReO, we ha\@2 = SUP|, 1,20 \‘\‘S\‘\Z' where theZ, norm HUHZ of a signalu
to check that: L is defined||u|; = oF uTu dt, and sup meansupremumwhich is
Vi(n,0) <0 . neFe (12) taken over all non-zero trajectories of (8).
V(in*,07)<V(n,0) neJ Additionally, the following lemma that will be used in the sequel
Since . = {n:n" Mn+en'n>0}, employing the S- is enunciated [20],
procedure [20], the first term of (12) is equivalent to the existence pémma 1. The £» gain of a LTI system with an input signaland
Tr > 0 such that an output signaly is less thany, if there exists a quadratic function
V(n,0) < —ren™ (M + el)n (13) V(@) =2"Qx, Q=Q" > 0andy >0 such that
y 2. T T
Then, let us take derivative of (11) to obtain Viz) <vuwu—y'y (21)
V(n,8) = 7TPy+nTPh+ 9T -1 G4+ 47! 0 Now, we apply this lemma to the augmented error dynamics (7)
= Y(ATP 4+ PA 4+ 0T (PBAqs B CT¢) i (14) and (8) to obtain the following theorem.
- n n n
+ 0" (¢"BAP— ¢ Cy)n+o Theorem 2. For given A,,, B,,, C,,, Ba, Ar, ande, the augmented

error dynamics shown in (7) and (8) is quadratically stable and have

wherep = 20,676. Notice thato, should be designed in such a ) N . . .
manner that, becomes non-positive in the space of the parameta L gain fromw to £ which is smaller thany, if there exist a matrix
= P% > 0 and scalarsr > 0, 7; > 0 and~ > 0 subject to

estimates. Thus, let us prove thathas an upper non-positive bound

by using the Cauchy-Schwarz inequality &fig > ||6)| { AYP+ PA,+ CyCy+7r(M +€el) PB, < 0
. R U BTP —~2T ’
— Ty T T n
¢ = 20.0%0=20. (60 -070) ) ALPAn—P—mil < 0, @
A AlILA A A T
< 20, (161161 — 161181) < 20 (181 (T — 141)) PBx = Cj.

According to the first term of (3), ifid]| < Th, o =0 sinceos = 0.
On the other hand, whef¥| > T, ¢ < 0 sinceT,, — ||6]| < 0.
Consequentlyy < 0 is proved.

Proof: To prove the stability of our proposed ReO and that the
L2 gain fromw to £ is smaller thany, we have to check that:

Rearranging terms of equations (13) and (14), and by using V(n,é) <ywTw - €T¢ neF 23

PBa = Cy, the first term of (12) holds if the following inequality V(nt,0%) < V(n,0) neJg (23)
IS Satlsnid " " The first equation of (23) relies on (21) and the second equation
n (Ay P+ PAg)n+71em (M +el)n+ ¢ (16) Of (23) is equal to the second equation of (12) which has been
<" (Ay P+ PAy)n+7en" (M + el)n <0, already proved. Then, let us concentrate on the first equation af (23)

that can be rearranged as an equivalent LMI problem in the variabRgain, sinceZ. := {n:n" M 1+ en"n > 0} and employing the
P>0andrr >0 S-procedure, the first term of (23) is equivalent to the existence of
T 7r > 0 such that
A, P+ PA, +7r(M+€l) <0, a7
V(1,0) <7*w'w — €€ —men" (M + el)n (24)

which is the first term of (10) and consequently, proves the first
equation of (12). Similarly, employing again the S-procedure, the In this case, the time derivative of (11) is
second term of (12) holds if there exits > 0 such that

; 5 Vn0) = 9TPn+n " Pij+8 T §+0TT10
V(n™,0%) <V(n,0) +mm" Mn, (18) = 0" (AJP L PAY +w BI Pyt 0" PByw (g
which is equivalent to + nTPBa¢d+0T¢TBE Py

— 0Oy 0 — 0T Com + ¢

Rearranging terms of equations (24) and (25), and by using

Rearranging terms, (18) can be also rewritten as an equivalent LWBA _ C,T, the first term of (23) holds if the following inequality
problem in the variable® > 0 and7; > 0 as follows is satisfied

nTATRPARn — nTPn — TJ?']TMT] <0. (29)

ARPAR — P —7;M <0, (20) n"(AYP + PA))n +w"BY Pn+n" PByw

T T 2 T
which is the second term of (10) and proves the second equation of 15 &+ 77 (M +el)n =y w w+ ¢

(12) and, as a consequence, completes the proof of the theorem. < "I(AEP +TPA")77 T wTB’ZPQ +n' PByw
Since the Lyapunov function candidate (11) relies on the the FEEH e (M +el)n — 77w w <0,

augmented state errgrand the parameter erréf we can prove the that can also be rearranged as an equivalent LMI problem in the

asymptotic convergence of and ¢ and the boundedness of all thevariablesP > 0 andr > 0 as follows

signals involved in the estimation process by satisfying the conditions

shown in Theorem 16 does not appear explicitly on the resultant Ay P+ PAy + C’?FC” +7r(M +el) PBQ"

LMls, since the matching conditio? Bao = C’E and the fact that By P -

o has an upper non-positive bound allows us to remove some termwtsich is the first inequality of (22) and proves the first equation of

from the Lyapunov function. m (23) and, as a consequence, completes the proof of the theomem.

(26)

<0, (27)



Remarkl. It is worth noting that there are several ways to implememesults have been obtained by using Matlab-Simulink with the ode45
the equality constraint of Theorems 1-2. One solution consists solver and a fixed step equal3e10~3[sec]. Testing the performance
rewriting that equality into a minimization problem and obtainingf ReOs applied to real hybrid systems (e.g. bipedal robots [24])
the global infimum. If this infimum equals zero, the resultant LMtather than to simulation examples remains for future research.
variables will satisfy all the inequalities and equalities constraints Let us consider the following third-order noise-corrupted nonlinear
[21]. Following this approach, the equali)BA = C,? of Theorems system according to (1):

1-2 can be replaced by the following LMI,

SI PBa — CT ‘7:61 i —211 +2z2 — (2):2355 + uOJ; 0.2w
BIp-C oI 20, R v (29)
A K 3 =x2 —x3+ 0.2(y° + w)f 4+ 0.5u + 0.2w
where § € R is the term to be minimized. If the problem has Yy =3

solutiond = 0, the resultant?, 77, 7; will satisfy the inequalities

of Theorems 1-2 as well as the equality constraftBy = CI. Wwith z(t = 0) = [1.5;0.5; 1], u(t) = sin(t), w(t) = sin(10t) and

The previous minimization problem is the standard solution in tH uncertain parametér= 1.

literature [21]. Another approach is to particularize by finding an A low-time-varying disturbances(t) is preferred rather than white
special structure of the matriR such thatPBa = C, is always noise in order to represent changes on the operating point or gradual
guaranteed under some conditionsi®R andC,,. To this end, let us decalibration of the system which are issues that usually arise in the
suppose without loss of generality that the system (1) is in observabldaptive observer framework [25].

canonical form so that = [0,—: 1], and that the nonlinearity Then, the aim is to develop an adaptive observer for the system
affects only the outpuy so thatA = [0,—1 ko|T with ko >0 € R, described by (29) which estimates all the state variables as well as
and B = [0,—1 ko 0]T. Under these conditions, the equalitythe uncertain parameter without overshooting as fast as possible. Let
constraintPBa = C, of Theorems 1-2 can be substituted for theus begin showing the potential benefit of using a reset element in
following constraint over the structure of the matix the state adaptive law. For this reason, we compare a ReO with the
Py 0n1 P Std-PIAO, which is designed with t_he same tuning parameters than

P=pPT—| 0,, ke 0 |, (28) the ReO. Both observers are applied to the nonlinear system (29).

pr 0 P Generally, PIAO for nonlinear systems are described by:
2 5
with Py € R* "1 P, € R"!, P5 € R. Under the previously & =A%+ Bu+ Krz+Kpy, 3§ =C&,
commented conditions orBa and C,, Theorems 1-2 obtain a 0 :r¢Tg_rasé7 2 = A.z+ B.j,
symmetric matrixP > 0 with the structure presented in (28) that
satisfies PBAr = C’E. This can be seen, simply multiplying anwhere A, € R and B. € R are two tuning scalars which regulate
arbitrary P > 0 with the structure of (28) by the predefinggly  the transient response of the integral terpandos is defined as in
to obtain the desired,. (3).
Remark2. Notice thate — 0 asp — 0, thus, an arbitrarily smalp Fig. 1 shows how the reset element can be used to minimize
can be chosen to minimize the effect obn the stability analysis. the rise time without overshooting. It is evident that the ReO has
In practice, the limit case — 0 is chosen so that the effect efis & Much better performance compared with the Std-PIAO, since it
small enough to be neglected [12], [17]. _has a response as qL_uck as Std-PIAO but without overshooting. The
integral gain is too high for the Std-PIAO and, as consequence, it
causes an oscillating estimation process. If we decrease the integral
gain of the Std-PIAO to avoid overshooting it will give a slower
Analyzing the dynamics of the ReO, it is evident that there ai@sponse. However, the overshoots associated with the high integral
several matrices that affect the performance of the ReO. Namej4in are almost removed by reseting the integral term of the ReO.
Kp, K1, A¢, and Bc. In [15] tuning guidelines about how to selectThat result underlines the potential benefit of the reset element, due to
these parameters are given. After that, we can focus on designing@ fact that we can decrease the settling time as long as we increase
appropriate parameter galh Typically, I' is chosen to be a positive the integral gain, while we can remove the overshoots resetting the
diagonal matrix in such a manner that the convergence speedsr@égral term. Fig. 1 also shows that Assumption 1 is satisfied since
each estimated parameter can be tuned separately. Although s each reset the solution is mapped to the flow set.
authors have proposed to use time varylng) matrix [22], [23], e also present a different tuning maximizing the performance
we consider only constant parameter gaimAfter tuning the ReO in  of the observers in order to compare the ReO with an optimal PIAO
nominal conditions, the last step is to guarantee a bounded es“”}i"égigned according to [6]. Now, the ReO for the nonlinear system (29)
in presence of unmodeled disturbances by choosing the thregholdpas peen tuned following the guidelines given in Section 111, while the
and the leakage term. T}, should be chosen large enough so thaarameters of the J-PIAO are obtained by solving the minimization
T, > ||0]| based on prior knowledge of the system. Finallyis proplem that appears in [6]. These tuning parameters as well as the

(30)

D. Reset observer gains. Tuning and design

chosen to be any small positive scalar. state estimation errck(t) = x(t) — #(t) = [%1(t); #2(t); &3(t)]T of
both adaptive observers are shown in Fig. 2.
IV. SIMULATION RESULTS Comparing the results of the ReO with the J-PIAO, it can be

In this section, the performance of the ReO applied to an uncertai@en that both observers achieve a fast estimation of the measured
high-order nonlinear plant is shown. It can achieve a zero steatly-steariablexs. Nevertheless, there are significant differences in how the
estimation error for all the state variables as well as for the uncertaihservers estimate the non-accessible variables.. As before, the
parameter. After that, the results obtained by the ReO are compaRe=D exploits the reset element properties to estimate, as fast
with a PIAO with the same tuning parameters than the ReO, whichas the J-PIAO but without overshooting. Fig. 2 also points out that
denoted by Std-PIAO, and with an optimal PIAO designed accordifigpth observers could achieve zero steady-state error once they have
to [6], which is denoted by J-PIAO. Notice that all these simulatioheen properly tuned.
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Fig. 1. Estimation results of Example 1. (a), (b), and (c) shbe $tate Fig. 2. Estimation results of Example 1. (a), (b), and (c) shbwe t
estimation errorz;, Z2, and Z3 respectively. Dash-dot lines have beerstate estimation erraf;, Z2, andZ3 respectively. (d) shows the parameter
obtained by using the Std-PIAO with(t = 0) = [0;0;0]7, z@r: 0) =0, estimation errord. Dashed lines have been obtained by using the J-PIAO

A, = 01, B, =1, Kp = [5;1;5]T, K; = [80;25;60]T, ' = 12, with &(t = 0) = [0;0;0]T, 2(t = 0) = 0, A, = —0.1, B, = 1,
Ty, = 3.5, ando = 10. Solid lines have been obtained by using the ReG{p = [400;856;200]T, K; = [—0.0007;0.0006;1.14]T, T' = 720,
with #(t = 0) = [0;0;0]T, ¢((t = 0) = 0, Ac = —0.1, B = 1, T, = 3.5, ando = 10. Solid lines have been obtained by using the ReO
Kp = [5;1;5]T, K; = [80;25;60]T, A, = 0, T = 12, T}, = 3.5, with £t = 0) = [0;0;0]T, ¢(t = 0) = 0, Ar = —0.1, B, = 1,

o = 10, andp = 10~ 2[sec]. Note that the system is perturbed by a periodidp = [210;60;150]T, K; = [2100;600;1125]T, A, = 0, ' = 165,
disturbance, being this the reason of the oscillatory biehaw the steady Tj, = 3.5, o = 10, andp = 10~ ?[sec].

state. (d) shows the status of the ReO (i.e. 0: the ReO is irfldheset, 1:

the ReO is in the jump set) and the temporal regularizatiorakiir.



This paper addresses the application of the ReOs to the nespj
linear framework. The proposed algorithm can jointly estimate the
unknown states and the uncertain parameters of a dynamic syst&®l.
The stability and convergence analysis of this novel proposal has
been proved by using quadratic Lyapunov functions. Moreover,[@]
method to determine th&, gain of the proposed ReO has also been
developed. This method is based on a linear matrix approach which
is easily computable. Simulation results have been given to highlig[ﬁ?]
the potential benefit of including a reset element in the adaptive
laws. Since the ReO is mainly nonlinear it can meet requirements
that cannot be satisfied by pure linear observers. Namely, the reset
element can decrease the overshoot and settling time of the estimation
process without sacrificing the rise time. The proposed ReO is

V. CONCLUSION

computationally simple and easy to implement in practice.
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