
On Robust PI Adaptive Observers for Nonlinear Uncertain Systems
with Bounded Disturbances

D. Paesa, C. Franco, S. Llorente, G. Lopez-Nicolas and C. Sagues

Abstract— Robust adaptive observers for uncertain systems
corrupted by bounded disturbances have to overcome two
main problems. They have to guarantee a bounded parameter
estimation, because it is well known that an arbitrarily small
disturbance might drift to infinity the parameter estimation
error even if the state estimate error remains bounded, and
they have to ensure a robust state and parameter estimation
independently of the uncertainty of the system. The contribution
of this paper is a solution of both issues. We present a robust
adaptive observer based on a normalized dead zone which
guarantees a bounded estimate dealing with noise corrupted
systems and on an adaptive gain which increases the robustness
against uncertain systems. Tuning parameters are computed
minimizing the effect of disturbances on the estimation error.
The performance and the stability of the proposed adaptive
observer is analyzed and demonstrated through simulation
examples.

I. I NTRODUCTION

An adaptive observer is an algorithm used to estimate
the state as well as the unknown parameters of a system
from the information available (e.g. system input and output
measurements). Therefore, this sort of algorithms represents
a useful tool in order to cope with problems that may appear
in any industrial application. For instance, they can be used
to deal with systems whose parameters are initially unknown
due to modeling uncertainties and also to handle systems
whose parameters are time variant. Additionally, they have
important applications not only in adaptive control but also
in fault detection and isolation.

Adaptive observers were applied to linear time invariant
systems at first [1], [2], and afterwards to nonlinear time
variant systems [3], [4], [5]. All those works were charac-
terized by having only a proportional feedback term of the
output observation error in both state observer and param-
eter adaptation law. This proportional approach ensures a
bounded estimation of the state and the unknown parameter,
assuming a persistent excitation condition as well as the lack
of disturbances.

Some authors have proposed adding an additional integral
term in the state adaptive law in order to improve the steady
state accuracy and increase the robustness against modeling
errors and disturbances. Such adaptive observers are known
as Proportional Integral Adaptive Observers. They were at
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first applied to linear systems [6], [7], [8] and recently to a
class of nonlinear systems [9].

Nevertheless, all these adaptive observers can be unstable
in the presence of disturbances. As it is shown in [10] a
bounded disturbance might drive to infinity the parameter
estimation of an adaptive observer even if the state estimation
error remains bounded. Several modifications to the adaptive
law for updating unknown parameters have been proposed in
order to overcome this drawback. All these new methods are
based on including an operator that constrains the parameter
estimation inside a bounded set [11], [10], [12], [9]. The
definition of this bounded set is based on the maximum
difference between the parameter estimation and the nominal
value of the parameter. Therefore, prior knowledge of the
system is required in order to define a proper nominal
parameter value. However, although the parameter estimation
error is bounded, it does not mean that the parameter
estimation performance is reasonable. In [9] it is pointed out
that adaptive laws with projection operators may estimate
parameters completely different than the real values.

This paper proposes a robust adaptive observer based on a
dead zone rather than on the addition of a projection operator
and therefore it does not need any prior knowledge of the
variation range of the unknown parameter. It guarantees a
bounded parameter estimate if the system is corrupted by
bounded disturbances. Additionally, our proposal introduces
an adaptive gain in order to increase the robustness of the
estimate independently of the system uncertainty.

This paper is organized as follows. In Section II, the
non linear system formulation is used as starting point to
develop the proposed robust adaptive observer. Section III
shows the convergence and stability analysis of our proposal
even if the system is corrupted by bounded disturbances.
Additionally, a method to compute the optimal parameters of
the adaptive observer minimizing theL2 gain is described.
Some simulation examples are presented in Section IV in
order to test the robustness of our proposed adaptive scheme.
Finally, concluding remarks are outlined in Section V.

II. PROBLEM STATEMENT

In this paper we address the problem of designing a robust
adaptive observer for uncertain nonlinear systems which can
be described by

ẋ(t) = Ax(t) +Bu(t) + ∆φ(t, y, u)θ +Bww(t)

y(t) = Cx(t) (1)

where x(t) ∈ R
n is the state vector,u(t) ∈ R

l is the
input vector, y(t) ∈ R

m is the output vector,θ ∈ R
p
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is the unknown constant parameter vector which can be
used to represent modeling uncertainties,w(t) ∈ R

n is the
disturbance vector,A ∈ R

n×n, B ∈ R
n×l, C ∈ R

m×n,
∆ ∈ R

n×m, andBw ∈ R
n×n are known constant matrices.

The nonlinearityφ(t, y, u) ∈ R
m×p is a time-varying matrix

which depends on the inputu(t) and/or the outputy(t). In
addition,u(t) andφ(t, y, u) are assumed persistently excit-
ing, and the pair(A,C) is assumed completely observable.
As it is shown in [13], [14], general nonlinear systems can
be formulated as a system described by (1) through a change
of coordinates.

Let us consider the following robust adaptive observer for
systems described by (1)

˙̂x(t) = Ax̂(t) +Bu(t) + ∆φ(t, y, u)θ̂

+KP (y(t)− ŷ) +KIz(t)

ŷ(t) = Cx̂(t)

ż(t) = Azz(t) + y(t)− ŷ(t) (2)

where, KP ∈ R
n×m and KI ∈ R

n×m can be regarded
as the proportional observer gain and the integral observer
gain respectively. Both have to be tunned depending on the
performance specifications. The vectorz(t) represents the
integral of the output estimation error whose time response
can be modified usingAz ∈ R

m×m which is a diagonal
exponentially stable matrix.

We propose a parameter adaptive law of the robust adap-
tive observer (2) which is based on the addition of a dead
zone and an adaptive gain. On one hand, the dead zone
ensures that the parameter estimate is adjusted only when the
normalized estimation error is larger than a predetermined
value. Therefore it guarantees a bounded estimate dealing
with noise corrupted systems. On the other hand the adaptive
gain increases the robustness of the estimate coping with
uncertain systems. Unlike other proposals, like projection
operators [9], [10], our adaptive law does not need any prior
knowledge of the system. The proposed parameter adaptive
law dynamic is described by

˙̂
θ(t) = Γ(t)φT (t)CT (y(t)− ŷ(t)) ǫ > δ
˙̂
θ(t) = 0 ǫ ≤ δ

(3)

where δ ∈ R denotes the threshold of the dead zone,ǫ =
(|y − ŷ|)/(|y| + b) is the normalized estimation error,Γ ∈
R

p×p is an adaptive gain andb is the normalization bias,
which is typically chosen to be a small positive constant
that prevents potential division by zero.

Adaptive gain dynamics [15], [16](page 169), are gener-
ally described by

Γ̇(t) = AΓ(t)Γ(t)− Γ(t)ΩT (t)Ω(t)Γ(t), (4)

whereAΓ is a matrix that regulates the transient response
of Γ(t) whereasΩ(t) is a diagonal positive matrix which
depends onφ(t) and consequently, it depends also onu(t)
and/ory(t). Specifically, we use an adaptive gain with expo-
nential forgetting factor proposed by [15] whose dynamics

are

Γ̇(t) = λΓ(t)− Γ(t)yTΩ(t)C
TCyΩ(t)Γ(t)

˙(Γ−1)(t) = −λΓ−1(t) + yTΩ(t)C
TCyΩ(t) (5)

where the forgetting factorλ > 0 is a scalar real number,yΩ
is a dynamic transformation obtained asẏΩ = (A−KP )yΩ+
∆φ and the initial valueΓ(t0) of the adaptive gain is positive
definite.

III. STABILITY AND CONVERGENCEANALYSIS

Let us begin analyzing the error system dynamics which
can be obtained subtracting (2) from (1). Then, the state error
dynamicx̃ = x− x̂ is defined by

˙̃x(t) = Ax̃(t) + ∆φ(t)θ̃ −KPCx̃(t)

−KIz(t) +Bww(t)

ỹ(t) = Cx̃(t) (6)

while the parameter error̃θ = θ − θ̂ is described by

˙̃
θ(t) = −Γ(t)φT (t)(y(t)− ŷ(t)) ǫ > δ
˙̃
θ(t) = 0 ǫ ≤ δ

(7)

A. Stability properties

Now, we present computable sufficient conditions forL2

stability via quadratic Lyapunov functions based on a linear
matrix inequality approach.

Theorem 1. For given Az , KP , KI and by introducing the
variable Ax = A−KPC, the error dynamics shown in (6)
and (7) are quadratically stable and have a L2 gain from w
to ỹ which is smaller than γ, if there exist P = PT > 0,
Q = QT > 0, and γ > 0 subject to




AT

xP + PAx + CTC + βI CTQ− PKI P

QC −KT

I P AT

z Q+QAz 0

P 0 −γ2I



 (8)

< 0,

P∆ = CT , and to λΓ−1 > yT
Ω
CTCyΩ.

Proof. Let us consider the following quadratic Lyapunov
function for the error dynamics described by (6) and (7):

V (x̃, z, θ̃) = x̃TP x̃+ zTQz + θ̃TΓ−1θ̃ (9)

whereP = PT > 0, Q = QT > 0 and Γ = ΓT > 0.
The next step is to prove the stability of the error dynamics
(6)-(7) and to ensure that theL2 gain of our proposed
adaptive observer is no more thanγ, which guarantees that
all estimates are bounded. Let us define theL2 gain of the
adaptive observer as:

‖ỹ‖
2
< γ ‖w‖

2
(10)

Rearranging terms, (10) can be written as:

ỹT ỹ − γ2wTw < 0 (11)

Consequently, to check the quadratically stability condi-
tion of our robust adaptive observer and to bound theL2



gain of the error dynamics (6) and (7), we have to ensure
that the inequality

V̇ + ỹT ỹ − γ2wTw < 0 (12)

is satisfied inside and outside of the dead zone. Let us begin
analyzing the behavior of (12) outside the dead zone. Let us
defineVx̃ = x̃TP x̃, Vz = zTQz andVθ̃ = θ̃TΓ−1θ̃. Then,
let us take derivative of (9) to obtain

V̇ = V̇x̃ + V̇z + V̇θ̃ (13)

whereV̇x̃ is defined as

V̇x̃ = x̃T ((A−KPC)TP + P (A−KPC))x̃

+x̃TPw + wTP x̃− x̃TPKIz − zTKT
I P x̃

+x̃TP∆φθ̃ + θ̃TφT∆TP x̃ (14)

while V̇z is defined as

V̇z = x̃TCTQz + zTQCx̃

+zTAT
z Qz + zTQAzz (15)

and finally, V̇θ̃ is defined as

V̇θ̃ = −x̃TCTφΓΓ−1θ̃ − θ̃TΓ−1ΓφTCx̃

+θ̃T ˙(Γ−1)θ̃

= −x̃TCTφθ̃ − θ̃TφTCx̃

+θ̃T (−λΓ−1 + yTΩC
TCyΩ)θ̃ (16)

Rearranging terms and usingP∆ = CT and λΓ−1 >
yT
Ω
CTCyΩ, the time derivative of the Lyapunov function

candidate (9) outside the dead zone is negative semi-definite
if the following inequality holds.

x̃T ((A−KPC)TP + P (A−KPC))x̃+ x̃TPw

+ wTP x̃− x̃TPKIz − zTKT
I P x̃+ x̃TCTQz

+ zTQCx̃+ zTAT
z Qz + zTQAzz

+ ỹT ỹ − γ2wTw < 0 (17)

By introducingAx = A − KPC and ỹT ỹ = x̃TCTCx̃,
the above inequality can be rewritten as





x̃
z
w





T

·





AT
xP + PAx + CTC CTQ− PKI P

QC −KT
I P AT

z Q+QAz 0
P 0 −γ2I



 ·





x̃
z
w



 < 0 (18)

and consequently, it can be also rearranged as an equivalent
LMI problem over the variablesP andQ as follows




AT
xP + PAx + CTC CTQ− PKI P

QC −KT
I P AT

z Q+QAz 0
P 0 −γ2I



 (19)

< 0.

Then (9) is a Lyapunov function when (19) holds. Con-
sequently, the error dynamics (6) and (7) are stable outside
the dead zone.

Let us continue analyzing the behavior of our Lyapunov
function (9) inside the dead zone. In this caseV̇x̃ is defined
as

V̇x̃ = x̃T ((A−KPC)TP + P (A−KPC))x̃

+x̃TPw + wTP x̃− x̃TPKIz − zTKT
I P x̃

+x̃TP∆φθ̃ + θ̃TφT∆TP x̃ (20)

while V̇z is defined as

V̇z = x̃TCTQz + zTQCx̃

+zTAT
z Qz + zTQAzz (21)

and finally, V̇θ̃ is defined as

V̇θ̃ = θ̃T (−λΓ−1 + yTΩC
TCyΩ)θ̃ (22)

Rearranging terms and usingP∆ = CT ,
∥

∥

∥
φθ̃

∥

∥

∥
< β ‖x̃‖

andλΓ−1 > yT
Ω
CTCyΩ, the time derivative of the Lyapunov

function candidate (9) inside the dead zone is negative semi-
definite if the following inequality holds.

x̃T ((A−KPC)TP + P (A−KPC))x̃+ x̃TPw

+ wTP x̃− x̃TPKIz − zTKT
I P x̃+ x̃TCTQz

+ zTQCx̃+ zTAT
z Qz + zTQAzz

+ ỹT ỹ − γ2wTw + βx̃T x̃ < 0 (23)

By introducingAx = A − KPC and ỹT ỹ = x̃TCTCx̃,
the above inequality can be also rearranged as an equivalent
LMI problem over the variablesP andQ as follows




AT

xP + PAx + CTC + βI CTQ− PKI P

QC −KT

I P AT

z Q+QAz 0

P 0 −γ2I



 (24)

< 0.

Then (9) is a Lyapunov function when (24) is satisfied.
Consequently, the error dynamics (6) and (7) are stable inside
the dead zone.

Since (19) is always satisfied if (24) holds. We can ensure
the stability of our proposed robust adaptive observer inside
and outside the dead zone by solving the LMI problem (24).

B. Optimal gain design

Since our proposed adaptive observers involves several
tuning matrices, we give a method to compute the optimal
parameters by minimizing the effect of disturbances on the
estimation error. That is, minimizing theL2 gain in (8).

Theorem 2. There exist optimal parameters KP , KI and
Az that minimize the L2 gain from w to ỹ if there exist the
matrices P = PT > 0, Q = QT > 0, R, S, U = UT < 0
and the scalar γ > 0 subject to




Ξ + βI −RTC − CTR CTQ− S P
QC − ST 2U 0

P 0 −γ2I



 (25)

< 0,



P∆ = CT , λΓ−1 > yT
Ω
CTCyΩ, and to Ξ = ATP + PA+

CTC.

Proof. By introducing the following new variablesR =
KT

P P , S = P KI , U = Az Q and substituting them into
(23), the following inequality is obtained:

x̃T (ATP + PA−RTC − CTR)x̃+ x̃TPw

+ wTP x̃− x̃TSz − zTST x̃+ x̃TCTQz

+ zTQCx̃+ zTUz + zTUT z

+ ỹT ỹ − γ2wTw + βx̃T x̃ < 0 (26)

which can be straightforwardly rearranged as the minimiza-
tion LMI problem shown in (25) completing the proof.
Notice that once the solution of the minimization problem
has been obtained, the resulting optimal parameters can
be computed asKP = P−1 RT , KI = P−1 S, Az =
V Q−1.

IV. SIMULATION RESULTS

This section aims to show the potential benefit of com-
bining a dead zone with an adaptive gain in the same
parameter adaptive law. The effectiveness of our proposed
robust adaptive observer is shown through two simulation
examples. The first example was proposed by Junget al. [9],
there, the authors pointed out that some adaptive observer
may estimate a non bounded parameter errorθ̃(t) although
the system disturbancew(t), the system inputu(t) and the
state errorx̃(t) are bounded. The second one is a fourth
order nonlinear system with disturbances whose uncertain
parameter vector is time varying. In this case, our adaptive
observers has to achieve a good performance for any value
of the uncertain parameter.

A. Jung Example [9]

Let us consider the scalar system

ẋ1(t) = −x2(t) + y3(t)θ + 0.1w(t)

ẋ2(t) = −x1(t)− 2x2(t) + 0.1w(t)

y(t) = x1(t) (27)

with x(t = 0) = [−0.5, 0.2], θ = 1.1, andw(t) = sin(0.5t).
Solving theL2 minimization problem shown in (26) we
obtain the optimal matrices of our observer:

P =

[

1 0
0 0.1256

]

S =

[

0.6392
0.0019

]

R =
[

9.4211 0.8719
]

Q =
[

0.8459
]

U =
[

−1.6513
]

and by using the relationsKP = P−1 RT , KI = P−1 S,
Az = V Q−1 we can obtain the optimal tunning parameters
of our robust adaptive observers which are:

KP =

[

9.4211
6.9415

]

KI =

[

0.6392
0.0148

]

Az =
[

−1.6513
]

Finally, we chose the adaptive gain with an initial value
Γ(t = 0) = 50 and a forgetting factorλ = 0.4.

Fig. 1 shows the estimation state errorx̃(t) while Fig.
2 shows the real parameter and the estimated parameter. As
long as we compare the results obtained by our observer with
the results obtained in [9], we can conclude that both have
a similar behavior since both guarantee a bounded state and
parameter estimation error. Nevertheless, since our proposal
is based on a normalized dead zone rather than in a pro-
jection operator, our robust adaptive observer needs neither
any knowledge about the nominal value of the unknown
parameter nor the bound of the unknown parameter. This
is one of the main contributions of our proposal compared
with other robust adaptive observer [9], [10].

It is worth nothing that the parameter estimation error is
caused due to the fact that the system (27) hasu(t) = 0. Our
proposed robust adaptive observer can achieve an accurate
parameter estimation for persistent excited systems as it
shown in the following example.
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Fig. 1. Estimation results of the state variable. From top to bottom, state
estimation error̃x1(t), x̃2(t).

B. High order system

Let us now consider the following uncertain nonlinear
system

ẋ(t) =









−2 1 2 1
−0 −3 1 2
3 0 −1 5
−1 0 −3 −4









x(t)
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Fig. 2. Estimation results of the parameter. Solid lines is thereal parameter.
Dashed lines is the estimated parameter.

+









−1
0
0
2









u(t) +









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









w(t)

+









0.8 0
0 0
0 4
0 0









[

y33 0
0 y31

]

θ(t)

y(t) =

[

1 0 0 0
0 0 1 0

]

x(t) (28)

with x(t = 0) = [1.4, 2, 3,−1], u(t) = 5cos(5t) + 4 and
w(t) = sin(50t). Moreover, to check the robustness of
our proposal dealing with uncertain systems the unknown
parameterθ will change during the simulation. At first, it is
defined asθ = [0.5,−0.5] and it switches toθ = [1.5,−2.5]
at t = 10 seconds.

Our proposed robust adaptive observer is designed solving
theL2 minimization problem shown in (26). Specifically, the
resulting optimal solutions are:

P =









1.2500 0 0 0
0 0.0691 0 0
0 0 0.2500 0
0 0 0 0.1346









S =









1.9383 0.0386
−0.0019 −0.0058
0.0838 0.8995
0.0054 0.0146









R =

[

22.8158 1.2534 1.4454 1.1030
1.4454 0.0974 4.3292 0.7822

]

Q =

[

2.5896 0
0 2.9949

]

U =

[

−4.8535 0
0 −4.8878

]

and by using the relationsKP = P−1 RT , KI = P−1 S,
Az = V Q−1 we can obtain the optimal tunning parameters
of our robust adaptive observers which are:

KP =









18.2526 1.1563
18.1382 1.4088
5.7816 17.3169
8.1923 5.8098









KI =









1.5506 0.0309
−0.0274 −0.0845
0.3354 3.5978
0.0405 0.1084









Az =

[

−4.8535 0
0 −4.8878

]

Finally, we chose the adaptive gain with an initial value
Γ(t = 0) = diag[0.5, 0.5] and a forgetting factorλ = 0.4.

Simulation results are shown in Fig. 3-4. Namely, Fig. 3
shows the estimation state errorx̃(t) while Fig. 4 shows the
real parameter and the estimated parameter. It is evident that
our proposed adaptive observer guarantees a robust behavior
since state estimation error tends to zero independently ofthe
uncertain parameterθ(t). Additionally, it can be seen that,
for each parameter change, the convergence of the parameter
estimation error is reestablished after a brief transient time.

V. CONCLUSION

Classical proportional adaptive observers might suffer
large estimation errors in the presence of disturbances.
Consequently, different techniques have been introduced to
prevent this situation and to ensure a bounded parameter es-
timation error. All of these techniques modify the parameter
adaptive law using an operator defined in function of the
prior knowledge of the system. Therefore, information on
the nominal parameter values are required to guarantee a
bounded parameter estimation error.

To overcome this limitation, we have proposed a robust
adaptive observer based on a new formulation of the param-
eter adaptive law. It contains a dead zone which guarantees
a bounded estimate dealing with noise corrupted systems
and an adaptive gain which increases the robustness against
uncertain systems. Moreover, it also contains an additional
integral term which increases the converge speed of the
estimation error. Unlike other proposals, this new design
does not need any initial knowledge of the nominal val-
ues of the system. Since our proposed adaptive observers
involves several tuning matrices, we have given a method to
compute the optimal parameters by minimizing the effect of
disturbances on the estimation error. The effectiveness ofthe
proposed robust adaptive observer has been verified through
simulation examples, which confirm the good performance
of our algorithm.
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Fig. 3. Estimation results of the state variable. From top to bottom, state
estimation error̃x1(t), x̃2(t), x̃3(t) and x̃4(t).
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Fig. 4. Estimation results of the parameter. Solid lines are the real
parameter. Dashed lines are the estimated parameter.
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