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On Robust Pl Adaptive Observers for Nonlinear Uncertain Systems
with Bounded Disturbances

D. Paesa, C. Franco, S. Llorente, G. Lopez-Nicolas and C. Sagues

Abstract— Robust adaptive observers for uncertain systems first applied to linear systems [6], [7], [8] and recently to a
corrupted by bounded disturbances have to overcome two class of nonlinear systems [9].
main problems. They have to guarantee a bounded parameter  Njayertheless, all these adaptive observers can be unstable
estimation, because it is well known that an arbitrarily small . . N .
disturbance might drift to infinity the parameter estimation in the pres_ence of dlstqrbance_s. As _'t _'S_ shown in [10] a
error even if the state estimate error remains bounded, and bounded disturbance might drive to infinity the parameter
they have to ensure a robust state and parameter estimation estimation of an adaptive observer even if the state estimation
independently of the uncertainty of the system. The contribution  error remains bounded. Several modifications to the adaptive
of this paper is a solution of both issues. We present a robust law for updating unknown parameters have been proposed in

adaptive observer based on a normalized dead zone which der t this d back. All th thod
guarantees a bounded estimate dealing with noise corrupted order to overcome this drawback. ese new methods are

systems and on an adaptive gain which increases the robustnessPased on including an operator that constrains the parameter
against uncertain systems. Tuning parameters are computed estimation inside a bounded set [11], [10], [12], [9]. The

minimizing the effect of disturbances on the estimation error.  definition of this bounded set is based on the maximum
The performance and the stability of the proposed adaptive gjgtarence between the parameter estimation and the nominal
observer is analyzed and demonstrated through simulation .
examples. value of the parameter. Therefore, prior knowledge of the
system is required in order to define a proper nominal
I. INTRODUCTION parameter value. However, although the parameter estimation

An adaptive observer is an algorithm used to estima@ror is bounded, it does not mean that the parameter
the state as well as the unknown parameters of a systé&ftimation performance is reasonable. In [9] it is pointed out
from the information available (e.g. system input and outpdhat adaptive laws with projection operators may estimate
measurements). Therefore, this sort of algorithms represef@rameters completely different than the real values.

a useful tool in order to cope with problems that may appear This paper proposes a robust adaptive observer based on a
in any industrial application. For instance, they can be usetgad zone rather than on the addition of a projection operator
to deal with systems whose parameters are initially unknowand therefore it does not need any prior knowledge of the
due to modeling uncertainties and also to handle syster4griation range of the unknown parameter. It guarantees a
whose parameters are time variant. Additionally, they ha/eounded parameter estimate if the system is corrupted by
important applications not only in adaptive control but als¢ounded disturbances. Additionally, our proposal introduces
in fault detection and isolation. an adaptive gain in order to increase the robustness of the

Adaptive observers were applied to linear time invariangstimate independently of the system uncertainty.
systems at first [1], [2], and afterwards to nonlinear time This paper is organized as follows. In Section I, the
variant systems [3], [4], [5]. All those works were characnon linear system formulation is used as starting point to
terized by having only a proportional feedback term of th&levelop the proposed robust adaptive observer. Section llI
output observation error in both state observer and pararf2ows the convergence and stability analysis of our proposal
eter adaptation law. This proportional approach ensures€yen if the system is corrupted by bounded disturbances.
bounded estimation of the state and the unknown paramet@gditionally, a method to compute the optimal parameters of
assuming a persistent excitation condition as well as the laéite adaptive observer minimizing th& gain is described.
of disturbances. Some simulation examples are presented in Section IV in

Some authors have proposed adding an additional integfder to test the robustness of our proposed adaptive scheme.
term in the state adaptive law in order to improve the steadyinally, concluding remarks are outlined in Section V.
state accuracy and increase the robustness against modeling Il. PROBLEM STATEMENT
errors and disturbances. Such adaptive observers are known

as Proportional Integral Adaptive Observers. They were at In th|s paper we address th? problgm of designing grobust
adaptive observer for uncertain nonlinear systems which can
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is the unknown constant parameter vector which can lee
used to represent modeling uncertaintieg{) € R is the i - -
disturbance vectorA € R"*", B € R”Xl, C e Rmxn, F(t) /\F(t) —F(t)yQ(t)C CyQ(t)F(t)

A € R*™*™ andB,, € R"*" are known constant matrices. T-1(t) = =AI'(1t) + & (H)CT Cyalt) (5)
The nonlinearityp(t, y, u) € R™*P is a time-varying matrix

which depends on the input(¢) and/or the outpuf(t). In
P put(?) puy(t) is a dynamic transformation obtained@as= (A— Kp)ya+

addition, u(t) and ¢(t,y,u) are assumed persistently excit- C S . L o
ing, and the paif 4, C) is assumed completely observable.AQs and the initial valud’(ty) of the adaptive gain is positive

As it is shown in [13], [14], general nonlinear systems caf€finite-
be formulated as a system described by (1) through a change
of coordinates.

Let us consider the following robust adaptive observer for L€t us begin analyzing the error system dynamics which
systems described by (1) can be obtained subtracting (2) from (1). Then, the state err

dynamicz = z — z is defined by

where the forgetting factox > 0 is a scalar real numbeyq

IIl. STABILITY AND CONVERGENCEANALYSIS

b(t) = A#(t) + Bu(t) + Ad(t 0 : _
) #6) + Bult) + A(t4,) Bt) = AB(t)+ A1) — KpCi(t)
+Kp(y(t) —9) + Kp2(t)

N . —Ki2(t) + Byw(t)

o= et A i = ca) ©

) = Aua(t) +y(t) - () @ ] )

while the parameter errgt = 0 — 0 is described by

where, Kp € R™™ and K; € R"™™ can be regarded )
as the proportional observer gain and the integral observer  4(t) = —D(t)¢T(t)(y(t) — 9(t)) €>6
gain respectively. Both have to be tunned depending on the é(t) — 0 c<s ™

performance specifications. The vectgt) represents the
integral of the output estimation error whose time respons® Stability properties

can be modified usingl. € R™*™ which is a diagonal  Now, we present computable sufficient conditions for

exponentially stable matrix. _ stability via quadratic Lyapunov functions based on a linea
We propose a parameter adaptive law of the robust adaprtrix inequality approach.

tive observer (2) which is based on the addition of a de _ . .
zone and an adaptive gain. On one hand, the dead Za‘fg?gé?emAl.jozqvle}n é‘Z’thKeP érr[gg g{/]r?ajtzr){ égt;?g\lfvﬂr:% t(%()e
ensures that the parameter estimate is adjusted only wken gyq (7) are. quadraticaIPIy stable and have a £, gain from w
normalized estimation error is larger than a predeterminag ; which is smaller than ~, if there exist P = PT > 0,
value. Therefore it guarantees a bounded estimate dealiGg= Q7 > 0, and v > 0 subject to

with noise corrupted systems. On the other hand the adaptiv

T T To —
gain increases the robustness of the estimate coping wit Ac P+ PA+ OB C Q-PK; P

T T
uncertain systems. Unlike other proposals, like projectio @C PK’ P AZQ:)—QAZ _Szl ®)
operators [9], [10], our adaptive law does not need any prio <0,
knowledge of the system. The proposed parameter adaptive
law dynamic is described by PA=CT,and to AT~ > yLCT Cyq.

Proof. Let us consider the following quadratic Lyapunov

o) (3) function for the error dynamics described by (6) and (7):

o)

T(t)o" (H)CT (y(t) —9(t) e>0
0 e<d

V(%,2,0)=i"Pi+27Qz+0"T710 (9)
wherej € R denotes the threshold of the dead zones
(Jy — 9)/(ly] + b) is the normalized estimation errdf,c¢ WhereP = P* > 0, Q = Q" > 0 andT = I'" > 0.
RP*P js an adaptive gain and is the normalization bias, The next step is to prove the stability of the error dynamics
which is typically chosen to be a small positive constan{6)-(7) and to ensure that th€, gain of our proposed

that prevents potential division by zero. adaptive observer is no more thanwhich guarantees that
Adaptive gain dynamics [15], [16](page 169), are generll estimates are bounded. Let us define fhegain of the
ally described by adaptive observer as:
I'(t) = Ap()T(t) — T()QT (H)Q()D (1), 4) 91l < llwll, (10)

where Ar is a matrix that regulates the transient response R€arranging terms, (10) can be written as:

of I'(t) whereas()(¢) is a diagonal positive matrix which
depends onp(t) and consequently, it depends also @(t)
and/ory(t). Specifically, we use an adaptive gain with expo- Consequently, to check the quadratically stability condi-
nential forgetting factor proposed by [15] whose dynamiction of our robust adaptive observer and to bound fhe

77y — 7w w < 0 (12)



gain of the error dynamics (6) and (7), we have to ensure Then (9) is a Lyapunov function when (19) holds. Con-

that the inequality sequently, the error dynamics (6) and (7) are stable outside
. oo 12 the dead zone.
VA g—vw w<0 12) Let us continue analyzing the behavior of our Lyapunov

is satisfied inside and outside of the dead zone. Let us bedhction (9) inside the dead zone. In this caseis defined
analyzing the behavior of (12) outside the dead zone. Let @

defineV; = 7 Pi, V, = 27Qz and V; = §7T—14. Then, Vi, = (A= KpC)TP + P(A - KpC))i
let us take derivative of (9) to obtain +#7 Pw +wT Pi — i PK, 2 — =" KT P3
V=V:+V. 4V (13) +3TPAGH + 6T ¢ AT Pz (20)
whereV; is defined as while V, is defined as
Vi = iT((A—KpC)TP+ P(A—KpC))Z V, = #7c"Qz+ Q0%

+iTPw +w' Pt — 3" PK;z — 2T KT Pz +27ATQz + 2T QA2 (21)
+i" PAGH + 6T T AT Pz (14)  and finally, V; is defined as

while V, is defined as Vi =0T (-0 4 yb 0T Cyo)o (22)
V. = #7C0TQz+2"7QCk Rearranging terms and usimgA = C7, HqﬁéH < Bz

T AT T
+27 A, Qz+ 2 QA2 (15)  andAr—! > yTCTCyq, the time derivative of the Lyapunov

function candidate (9) inside the dead zone is negative-semi

and finally, V; is defined as M N .
definite if the following inequality holds.

. _ _=TA~T —15 _ pTp—-1p T s
Vi = afTC."fFF 6-6I"Te 03 (A= KpC)'P+ P(A - KpC))i + i" Pw
0 (6 + wl'Pi—iT"PKz— "KT P +37C7TQz
= —3'CT¢0 - 0"  Cx Tz o T AT T
o . T - + 2 QRQCT+2 A, Qz+ 2 QA2
+0T(~AP ! 4 4L CT Oya)d (16) + 75— P w4 BiTE < 0 (23)

Rearranging terms an_d u_sin@A = OT and AT ! > By introducing A, = A — KpC andj’j = #7CTC#,
yh CTCyq, the time derivative of the Lyapunov function the above inequality can be also rearranged as an equivalent
candidate (9) outside the dead zone is negative semi-aefinkMI problem over the variable$ and @ as follows

if the following inequality holds. ATP 4+ PA, +CTC+BI CTQ-PK; P
T T
FT(A— KpC)TP + P(A— KpC))i + 37 Puw QC-KiP Aered o | @
+ w'Pz—iTPK;z — 2TKI'Pi + 70T Qx <0
T =~ T AT T
+ zTch:'ZT A Qz+ 2 QA2 Then (9) is a Lyapunov function when (24) is satisfied.
+ yy—vww<0 (17)  consequently, the error dynamics (6) and (7) are stabldensi

the dead zone.
Since (19) is always satisfied if (24) holds. We can ensure
the stability of our proposed robust adaptive observedmsi
17 and outside the dead zone by solving the LMI problem (24).
z
w

By introducing A, = A — KpC and 7y = z7CTCz,
the above inequality can be rewritten as

O

B. Optimal gain design
T T T
Ay P+ PA, +CTC C7Q— PE; f)) ] Since our proposed adaptive observers involves several

T T
QC *PKI P Az Q g QA tuning matrices, we give a method to compute the optimal

2
s parameters by minimizing the effect of disturbances on the
z estimation error. That is, minimizing thé, gain in (8).
z | <0 (18)

Theorem 2. There exist optimal parameters Kp, K; and
A, that minimize the £5 gain from w to g if there exist the
and consequently, it can be also rearranged as an equivalg@itrices P = P >0, Q =QT >0, R, S, U =U" <0

w

LMI problem over the variable® and @ as follows and the scalar v > 0 subject to
ATP 4+ PA,+CTC CTQ-PK, P E+BI-R"C-CT™R CTQ-S P
QC - Krp ATQ + QA, 0 (19) QC — ST 2U 0 (25)
P 0 —72I P 0 —2I

<0. <0,



PA=CT, X' > ylCTCyq, andto = = ATP+ PA+ and by using the relationkp = P! RT, K; = P71 S,
cTc. A, =V Q! we can obtain the optimal tunning parameters

Proof. By introducing the following new variable®? = of our robust adaptive observers which are:

KL P, S = P K;, U= A. Q and substituting them into Kp — [ 9.4211 }
(23), the following inequality is obtained: 6.9415
i (A"P+PA—-R"C—-C"R)Z + 3" Pw 0.6392
+ w'Pz—i"8z—2TSTi+iTCTQx Kr = { 0.0148 ]
+ 2'QCi+2TUz+TUT>
+ TG —*wTw + BiTE < 0 (26) Ao = [ -1.6513 ]

Finally, we chose the adaptive gain with an initial value
a1“(1? = 0) = 50 and a forgetting factoiA = 0.4.

Fig. 1 shows the estimation state errdft) while Fig.
shows the real parameter and the estimated parameter. As

which can be straightforwardly rearranged as the minimiz

tion LMI problem shown in (25) completing the proof.

Notice that once the solution of the minimization problerr%
c

has been obtained, the resulting optimal parameters can . .
1 pT _1 ong as we compare the results obtained by our observer with
be computed askp = P~' R', K; = P~' S, A, = ) .
VoL the results obtained in [9], we can conclude that both have
' a similar behavior since both guarantee a bounded state and
IV. SIMULATION RESULTS parameter estimation error. Nevertheless, since our gedpo

is based on a normalized dead zone rather than in a pro-

This section aims to show the potential benefit of cOMaction operator, our robust adaptive observer needs areith

bining a dead zone with an adaptive gain in the samg,, knowledge about the nominal value of the unknown
parameter adaptive law. The effectiveness of our proposed ameter nor the bound of the unknown parameter. This
robust adaptive observer is shown through two simulatioR sne of the main contributions of our proposal compared
examples. The first example was proposed by Bl [9],  \ith other robust adaptive observer [9], [10].

there, the authors pointed out that some adaptive observelj; js worth nothing that the parameter estimation error is
may estimate a non bounded parameter ef(o) although  c4,sed due to the fact that the system (27)dfas= 0. Our

the system disturbance(¢), the system input.(¢) and the proposed robust adaptive observer can achieve an accurate

state errorz(¢) are bounded. The second one is a fourthyarameter estimation for persistent excited systems as it
order nonlinear system with disturbances whose uncertagpown in the following example.

parameter vector is time varying. In this case, our adaptive
observers has to achieve a good performance for any value oa-
of the uncertain parameter.

=)

A. Jung Example [9]
Let us consider the scalar system

|
o
o

State estimation error x,
|

o

=

(1) = —z2(t) +y3 ()0 + 0.1w(t) 08
Z2(t) = —z1(t) — 2x2(t) + 0.1w(¥)
y(t) = a(t (27)

I
e

with (¢ = 0) = [-0.5,0.2], 6 = 1.1, andw(¢t) = sin(0.5¢t).
Solving the £; minimization problem shown in (26) we
obtain the optimal matrices of our observer:

_ 1 O —0‘20
Po= [0 0.1256}

Fig. 1. Estimation results of the state variable. From topdtidm, state
estimation erroiiy (t), Z2(t).

o

State estimation error x,

|
o
i

g - {0.6392]
0.0019 B. High order system
Let us now consider the following uncertain nonlinear
R = [94211 08719 | system

-2 1 2 1

Q = [08459 | 0 -3 1 9
z(t) = x(t)
3 0o -1 5

U = [ -16513 ] -1 0 -3 —4
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Fig. 2. Estimation results of the parameter. Solid lines ig¢aé parameter.

Dashed lines is the estimated parameter.

-1
0
+ 0 u(t) +
2
(08 0
0 0 yg’
Tlo o4 [o
0 0

y(t) =

with 2(t = 0) = [1.4,2,3, -1

100 0

[ 00 10 ]x(t)
], w(t) = 5eos(5t) + 4 and

w(t) = sin(50t). Moreover, to check the robustness of

10 0
01 0
00 1
00 0
0
e
yi‘]()

(28)

and by using the relation&p = P~ RT, K; = P~ ' S,
A, =V Q! we can obtain the optimal tunning parameters
of our robust adaptive observers which are:

18.2526  1.1563
K, _ | 181382 1doss
5.7816  17.3169
8.1923  5.8098
1.5506  0.0309
K, _ | 00274 —00845
0.3354  3.5978
0.0405  0.1084
A - [ s 0
| 0 —4.8878

Finally, we chose the adaptive gain with an initial value

I'(t = 0) = diag[0.5,0.5] and a forgetting factoA = 0.4.
Simulation results are shown in Fig. 3-4. Namely, Fig. 3

shows the estimation state ertoft) while Fig. 4 shows the

real parameter and the estimated parameter. It is evidanht th

our proposed adaptive observer guarantees a robust behavio

since state estimation error tends to zero independenttyeof

uncertain parametet(t). Additionally, it can be seen that,

for each parameter change, the convergence of the parameter

estimation error is reestablished after a brief transiene.t

V. CONCLUSION

our proposal dealing with uncertain systems the unknown

paramete will change during the simulation. At first, it is

defined ag) = [0.5, —0.5] and it switches td@ = [1.5, —2.5]

att = 10 seconds.

Classical proportional adaptive observers might suffer
large estimation errors in the presence of disturbances.
Consequently, different techniques have been introduced t

Our proposed robust adaptive observer is designed solviRgevent this situation and to ensure a bounded parameter es-
the £» minimization problem shown in (26). Specifically, thetimation error. All of these techniques modify the paramete

resulting optimal solutions are:

1.2500 0
0 0.0691
Po= 0 0
0 0
1.9383
—0.0019
s 0.0838
0.0054
22.8158 1.2534

1.4454  0.0974

-

2.5896

—4.8535
c- |

0
0
0.2500

0
0
0

0 0.1346

0.0386
—0.0058
0.8995
0.0146

1.4454
4.3292

0
2.9949

—4.8878

1.1030
0.7822

|

adaptive law using an operator defined in function of the
prior knowledge of the system. Therefore, information on
the nominal parameter values are required to guarantee a
bounded parameter estimation error.

To overcome this limitation, we have proposed a robust
adaptive observer based on a new formulation of the param-
eter adaptive law. It contains a dead zone which guarantees
a bounded estimate dealing with noise corrupted systems
and an adaptive gain which increases the robustness against
uncertain systems. Moreover, it also contains an additiona
integral term which increases the converge speed of the
estimation error. Unlike other proposals, this new design
does not need any initial knowledge of the nominal val-
ues of the system. Since our proposed adaptive observers
involves several tuning matrices, we have given a method to
compute the optimal parameters by minimizing the effect of
disturbances on the estimation error. The effectivenesdseof
proposed robust adaptive observer has been verified through
simulation examples, which confirm the good performance
of our algorithm.
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