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Abstract— This paper proposes a novel kind of adaptive it would take two decades to find the first stability analysis
observer called reset adaptive observer (ReO). A ReO is an demonstrations [9], [10], [11]. The main contribution of those
adaptive observer consisting of an integrator and a reset s was a stability test applicable to reset control systems

law that resets the output of the integrator depending on a o : ..
predefined condition. The main contribution of this paper is the called the Hj; condition. Since thelf; condition can be

application of the reset element theory to the adaptive observer €xpressed as a linear matrix inequality problem (LMIP), it
LTI framework. The introduction of the reset element in the  can be easily solved.
adaptive laws can decrease the overshooting and settling time of A general analysis for reset control systems can be found

the estimation process without sacrificing the rising time. The [12]. There, the authors modified the reset condition

stability and convergence LMI-based analysis of the proposed . h that th t . t wh its i t
ReO is also addressed. Additionally, an easily computable In-such a manner that the system IS reset when 1ts inpu

method to determine the£ gain of the ReO dealing with noise- and output have different sign, rather than as long as its
corrupted systems is presented. A simulation example shows the input is equal to zero. This is the main difference of [12],
potential benefit of the proposed reset adaptive observer. compared with other relevant works [13], [14]. Indeed, this
approach addresses and solves the lack of robustness of
the original formulation, which cannot be implemented in
Adaptive observers for linear time invariant systems (LTIsimulation packages (e.g. Simulink), since the integrator state
have been widely studied since 1970s. Initially, those workis never reset due to the time discretization performed by the
were characterized by having only a proportional feedbackmulator.
term in the adaptive laws and were known as proportional Undoubtedly, during the last years there have been increas-
adaptive observers (PAO) [1], [2]. This approach guaranteédg research activities in the field of stability analysis and
a zero steady-state estimation error assuming a persistemtitching stabilization for reset systems [15], [16]. Neverthe-
excitation condition. Nevertheless, PAO showed a poor rdess, this research has been mainly focused on control issues
bustness dealing with noise corrupted systems. The perf@nd, as a consequence, there are no results of reset elements
mance of PAOs was improved by adding an integral terrapplied to adaptive observers so far. We propose in this paper
to the adaptive laws [3], [4], [5]. This kind of adaptive a new sort of adaptive observer called reset adaptive observer.
observer is known as proportional integral adaptive observés it has been pointed out, a ReO is an adaptive observer
(PIAO). This additional term can increase the steady statghose integral term has been substituted for a reset element.
accuracy and improve the robustness against modeling errdise reset condition of the ReO is based on the approach
and disturbances. proposed by [12], that is, its integral term is reset as long as
However, since the adaptive laws are still linear, they havée estimation error and the integrated estimation error have
the inherent limitations of linear feedback control. Namelyppposite sign. The introduction of the reset element in the
they cannot decrease the settling time and the overshoot agfaptive laws can improve the performance of the observer,
the estimation process simultaneously. Therefore, a tradéde to the fact it is possible to decrease the overshoot and
off between both requirements is needed. Nevertheless, tisigttling time of the estimation process simultaneously.
limitation can be solved by adding a reset element. A reset This paper is organized as follows. In Section Il, the ReO
element consists of an integrator and a reset law which reséegmulation for LTI systems is presented. In Section Ill, a
the output of the integrator as long as the reset conditideMI-based stability condition which guarantees the conver-
holds. Reset elements were introduced by Clegg in 1958 [@)ence and stability of the estimation process is developed.
who proposed an integrator which was reset to zero when fgesides, an easily computable method to obtaindhejain
input is zero. In 1974, Horowitz generalized that initial workof the ReO dealing with noise-corrupted system is presented.
substituting the Clegg integrator by a more general structufe Simulation example is presented in Section IV in order to
called the first order reset element (FORE) [7], [8]. Thdest the performance of our proposed ReO compared with

performance of those works were shown by simulations arttaditional PIAO. Finally, concluding remarks are given in
Section V.
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I. INTRODUCTION



Il. RESETADAPTIVE OBSERVERFORMULATION formalize the definition of both sets by using the following
In this paper, we address the problem of the state esfPresentation:

mation of linear time invariant systems which are described 17 #

r = Ax+ Bu+ Byw i T e

) = Co & g = {(z,o-[g} M{C}go} @
wherex € R" is the state vecton, € R is the input vector, where M is defined as
w € R™ is the disturbance vectay, € R is the output vector, oT
A e R B e R B, € Rt and C € RY™*" are M= { g } (5)
known constant matrices. We consider single-input single- 0
output (SISO) systems only, since a suitable formulation of  Il. STABILITY AND CONVERGENCEANALYSIS
reset elements for multiple-input multiple-output (MIMO) |, this section we state computable sufficient conditions
systems is still an open research topic. for £, stability via quadratic Lyapunov functions for reset

The structure of our proposed ReO applied to a LTI systey,servers defined by (2) and (3) applied to LTI systems
(1) is given in Fig. 1. The ReO dynamics are described agascriped by (1).

follows:

A. State stability analysis

R R Let us begin analyzing the error system dynamics which
y = Ci (2)  can be obtained subtracting (2) from (1). Then, the state err
dynamicz = = — z is defined by

& = Ai+Bu+ K (+Kpj

where 2 is the estimated statd{; and Kp represent the

integral and proportional gain respectively afid= Cz = i = (A—KpC)i— K+ Byw (6)
C(x — ) is the output estimation error. In additiofijs the _ _ _
reset integral term which can be computed as This dynamic can be augmented by connecting (6) to (3)
. as follows:
= U TR >
CC* :i<g+34y gézg ®3) i =A,n+B,w neF
" - nt =Agn neJ @)
where A; € R and B, € R are two tuning scalars which & =Cyn
regulate the transient response @f and A, is the reset T
matrix. Specifically, we defined, —= 0, since the reset Wheren = [z (],
integral term( is reset to zero whefj - ¢ < 0.
| A-KpC —K;
o = Al ®
u y B
»| SYSTEM > - [ b } 7 ©)
¢ y W
RESET |« ) c,=[C 0], (10)
J y and
»| ADAPTIVE Y
»| OBSERVER > A — I 0 11
ReO R — 0 A’I‘ . ( )
Fig. 1. Reset adaptive observer applied to a LTI system. Additionally, we assume in the following that the reset

observer (2)-(3) holds the following assumptions
.The reset observer can be regarded as a hy.b”d Syst?b\ns1sum|otion 1. The reset observer described by (2)-(3) is
with a flow setF and ajump or reset set7. Regarding (3), suchthatn € 7 = Apne F
the two conditions at the right side are tth@w and thejump "l R '
condition respectively. On one hand, as long(a() € F This condition guarantees that after each reset, the soluti
the observer behaves as a proportional integral observer. @ill be mapped to the flow sef and, as a consequence, it
the other hand, if the paify, ¢) satisfies thgump condition, is possible flowing after resets.

th?l_;]r:Seg:ﬁletirbrzelfvﬁsﬁéﬁsccxgzg Eort?e>r%SiLﬁ2 if Assumption 2. The reset observer described by (2)-(3) is
! Ve — ' such that the reset timgs,; —t; > pVieN, p > 0.

y and ¢ have the same sign, whereas the observer jumps
whenevery - ¢ < 0, that is, if § and ¢ have different sign. This assumption ensures that the reset observer uses time
According to this statement and singe= CZ, we can regularization to avoid Zeno solutions. It guarantees that



the time interval between any two consecutive resets is nathich is equivalent to
smaller thanp € R which is a positive constant called the
dwell time.

Remark 1. It is important to note that both assumptions Rearranging terms, (20) can be also rewritten as an equiv-
are quite natural to assume for hybrid system [17], andlent LMI problem in the variable$ > 0 and7; > 0 as
consequently, these conditions are commonly used in mdsilows
of current reset system formulations available in literatu

[12], [14], [18].

Let us now state a sufficient condition for the existence dhich is analogous to (13) and proves the second equation

a quadratically stable ReO based on a LMI approach.  ©f (15) and, as a consequence, completes the proof of the
theorem. O
Theorem 1. For given4,,, B,, and A the augmented error

dynamic shown in (7) wittB,, = 0 is quadratically stable, B. Input-output stability analysis

nT ARPArn — 0Py — "1y Mn <0 (21)

AEPAR —P—7;M <0 (22)

if there exist a matrix? = P” > 0 and scalarsrp > 0 and Now, we present our results on the input-output properties
77 > 0 subject to of the ReO. For this reason, let us define the o Root
T Mean Square (RMS) gain of the system (7) as the following
A, P+ PAy+71pM <0, (12) quantity
. £2 — ||€||2 (23)
ARrPAr—P—-71;M <0 (13) l|w||, 70 [wlly

which is a linear matrix inequality problem in the variableswhere thel, norm Hu||§ of a signalu is defined as follows
P, and TJ.

2 T
. - . . ull; = u' udt (24)
Proof. Let us begin considering the following quadratic Lya- el /O

punov function for the augmented error dynamics describeagnd sup meansupremumwhich is taken over all non-zero

by (7): trajectories of (7).
V(n)=nT Py (14) Additionally, we present the following lemma that will be

used in the sequel [19].
To prove the quadratically stability of our proposed reset

adaptive observer, we have to check that: Lemma 1. The Lo ggin of a LTI system Wi_th an input_ signal
i w and an output signak is less thanv, if there exists a
Vi(n) <0 neFr (15) Quadratic functionV (z) = 2" Pz, P > 0 andy > 0 such
Vin")<V(m) ned that
According to (4), sinceF := {n:n” Mn >0} and Vi(z) < v?wTw—¢T¢ (25)
employing the S-procedure [19], the first term of (15) is .
equivalent to the existence of. > 0 such that Theorem 2. For given 4,,, B, C; and Ay the augmented
] error dynamic shown in (7) is quadratically stable and has
V(n) < —n"rpMn (16) a L, gain fromw to ¢ which is smaller thany, if there exist

a matrix P = PT > 0 and scalarstz > 0, 7y > 0 and

Then, let us take derivative of (14) to obtain .
~ > 0 subject to

3 o . T T .
V(n) = 10 Pn+n Pi AP+ PA + OTCy 4 7M. PBy ] (0 o
= UT(AgP + PAy)n (17) BE;P —2I ’
Rearranging terms of equations (16) and (17), the first
term of (15) holds if the following inequality is satisfied ALPAR—P -1/ M <0 (27)
n"(AF P+ PAy)n+n"reMn <0 (18)  which is a linear matrix inequality problem in the variables

which can be rearranged as an equivalent LMI problem iﬁ’ 7F, 7y andy.

the variablesP > 0 and7r > 0 Proof. To prove the stability of our proposed reset adaptive
observer and that thé; gain fromw to ¢ is smaller thany,

T
Ay P+ PAy +7pM <0, (19 \e have to check that:
which is analogous to (12) and consequently, proves the first V(n) < wlw—£€T¢ neF o8
equation of (15). Vint) <V(n) neJ (28)

Similarly, employing again the S-procedure, the second

term of (15) holds if there exits, > 0 such that The first equation of (28) relays on (25) and the second

equation of (28) is equal to the second equation of (15) which
V(™) < V(n) +ntryMn (20) has been already proved. Then, let us concentrate on the



first equation of (28). Again, sincg := {n :nT My > 0} of the reset adaptive observers, which are mainly nonlinear
and employing the S-procedure, the first term of (28) iand, as a consequence, it can achieve some specifications

equivalent to the existence ef- > 0 such that that cannot be achieved by pure linear observers.
V(n) <y*wTw—&"¢—nTrpMny (29) IV. SIMULATION RESULTS
In this case, the time derivative of (15) is In this section, an example is presented in order to show

. .7 T the effectiveness of our proposed reset adaptive observer.
V) = i Pntn P Consequently, we compare the simulation results obtained
= " Al Pn+w"BIPn+n"PAm+n"PByw by our proposed ReO with two PIAOs. On the one hand,
= nT(AZP + PA,)n+ wTBZ;Pn + nTanw the first PIAO will be tuned to minimize the overshooting
(30) and, as a consequence, it provides a smooth response. On
the other hand, the latter PIAO will be designed to minimize
Rearranging terms of equations (29) and (30), the firghe rising time, and hence, it gives an oscillating and faste
term of (28) holds if the following inequality is satisfied response. The next simulation example will show that our
T, AT T T T proposed ReO can achieve both requirements (i.e. a smooth
m Ay Pt PAy)n +w? By P+ 7 PByw and quick response) simultaneously. These simulatiortsesu
+e" e+ "My — yww <0 (31)  have been obtained by using Simulink with the ode45 solver.

Since¢T¢ = 7T CnTCnn, (31) can also be rearranged as an Let us consider the following third-order noise-corrupted

equivalent LMI problem in the variableB > 0 and 7z > 0 LTI system:
as follows i1 = —4.5z1 —4xs + 0.623 + 0.1u + 0.5w
AgP + PA, —|—TC'$C,, +7rM PB;, <0, (32 Ty = 04z —2z9 — 1.1u+ 0.5w
B, P -7 &3 = —0.521 —3x3 —0.5u + 0.5w

which is analogous to (26) and proves the first equation = (33)
of (28) and, as a consequence, completes the proof of the
theorem. O with z(t = 0) = [-2.3;1.5;1.8]T, u(t) = sin(4t) and
. - w(t) = sin(15t). The aim is to develop an adaptive observer
C. Tuning guidelines for the system described by (33) which satisfies that the stat
The proposed Reo mainly relays on four tuning gainsestimation error tends to zero without overshooting asdast

Namely, the proportional gaii’» and the integral gaitk’;,  possible. According to (1), (33) has the following paramete
which modify the convergence speed of the state estimation

error, and the reset term gaink and B¢, which regulate —45 -4 06

the transient response of the reset term. A= 04 -2 01,
Before tuning the algorithm on a real system, it is strongly —0.5 0 -3

recommended to first perform some simulations, and tune

the observer gains following the next guidelines. Firstly, 0.1

the gains of the reset terrd; and B, have to be chosen. B=| -11 |,

Analyzing (3), it is evident that the reset ternstands for —0.5 |

a low-pass filter whose cutoff frequency relays dp and

whose gain depends dB.. Typically, it is selectedB, =1, 05 ]

because the effect of the integral term can be increased by B, = | 05

tuning the integral gairf(;, therefore the transient response 0.5 ’

of the integral term only relays oA.. To guarantee a proper N

integration of the error dynamicl, should be chosen to be C=[10 0]

Hurwitch with | A, | at least 5 times lower than the minimum

absolute value of the eigenvalues 4f _ Additionally, let us outline the tuning parameter for each
The second step is to find suitahlé» and K in such  adaptive observer. Notice that when it is possible, thengini

a way that the response of the state estimation error is fgsdrameters are equal for each adaptive observer in order to

enOUgh but without OverShOOting. Since the F(ah}], CW) is make the results more Comparab|e_

constant, it can be done by using any pole placement method.p|AQ for SISO LTI systems are described by:
Once both gains have been computed, it is time to exploit the

potential benefit of the reset element. The aim is to increase & = Ai+4Bu+Kiz+ Kpj
the integral gain in order to obtain a quicker and oscilatin 7 = C#
response due to the fact that most of the overshoots will be i — A.2+B.j (34)

removed by resetting the integral term. Consequently, vile wi
obtain a state estimation error response quicker than éefovhere A, € R and B, € R are two tuning scalars which
but without overshooting. This fact underlines the benefitegulate the transient response of the integral terrs it



is said above, we have designed a conservative and non-
oscillating PIAO and a quicker and oscillating PIAO for
the system (33). Since the tuning process of each observer
involves several parameters, let us outline how all these
tuning parameters have been determined. Firstly, we have
designed the conservative PIAO in such a manner that its
rising time is equal to 0.6 seconds without overshooting.
After that, to design the oscillating PIAO we have increased
the K; gain until its rising time is equal to 0.2 seconds, that
implies an oscillating estimation process. Finally, to mak
the results more comparable, the ReO has the samand

Kp than the oscillating PIAO.

Specifically, the parameters of the conservative PIAO are
2t = 0) 0;0;0]7, 2(t = 0) = 0, A, —0.5,

B, = 1, Kp = [2.65;—1.7525; —2.425]7, and K; =
[0.53; —0.35; —0.485]T, whereas the tuning parameters of
the oscillating PIAO aré:(t = 0) = [0;0; 0], 2(t = 0) = 0,

A, = —05, B, =1, Kp = [2.65; —1.7525; —2.425]", and
K = [26.5; —12.2675; —19.4]T.

On the other hand, the ReO for the system (33) has
been designed according to (2)-(3) and it has the following
tuning parametersi(t = 0) = [0;0;0]7, ((t = 0) = 0,

Ac = =05, B = 1, Kp = [2.65; —1.7525; —2.425]7,
K; = [26.5;-12.2675; —19.4]T and A, = 0. Notice that
the Kp and K7 gains of the ReO are equal to the gains of
the oscillating PIAO.

The state estimation errok(t) [T1(t); T2(t); 23 (t)]T
of all adaptive observers is shown in Fig. 2. It is evident
that our proposed ReO has a better performance compares
with traditional PIAOSs, since it has a response as quick as
the oscillating PIAO but without overshooting. Notice tlifat
we decrease the integral gaity of the oscillating PIAO to
avoid overshooting it will behave as the conservative PIAO
and, thus, its rising time will be higher than the obtained
by the ReO. On the other hand, if we increase the integral
gain K of the conservative PIAO to reduce its rising time,
it will behave as the oscillating PIAO and, as a consequence,
its response will be oscillating.

Additionally, our proposed ReO also obtains the best
performance as long as we compare the bound ofdhe
gain of each adaptive observer. Indeed, the ReO has a
= 0.2675, whereas the oscillating PIAO hasya 0.3379
and the conservative PIAO hasya= 0.3305. These values
have been obtained minimizing the valueydfaccording to
Theorem 2. Namely, the matrices obtained for the ReO were

estimation error

X

X, estimation error

Xy estimation error

25

21

151

1t

0.5

0.8 1 1.2 1.4 1.6
Time [sec]

0.4 0.6

0.8 1
Time [sec]

0.2 0.4 0.6

-2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 16

0.146  0.014 —0.012 —0.003 Time ]
p— 0.014 0.350 —0.285 —0.000
—0.012 —-0.285 0.270  —0.000 Fig. 2. State estimation errai(t) for each adaptive observer. (A) Dotted
—0.003 —0.000 —0.000 4.086 lines have been obtained by using the conservative propaitiintegral
adaptive observer. (B) Dashed lines have been obtained mg uke
oscillating proportional integral adaptive observer. 80)id lines have been
5 = 0.0368 obtained by using the reset adaptive observer.
77 = 0.03,

while the optimal matrix obtained for the oscillating PIAO



[14]

[15]

[16]

(18]

was
0.635  0.145 —0.166 0.321
p— 0.144 4.681  —5.595 13.423
- | —0.166 —5.595 6.982 —17.659 |’
0.321 13.423 —17.659  73.288
and finally, the optimal matrix obtained for the consenativ ;7
PIAO was
3.416 7.689  —9.831 3.6732
p_ 7.689 22180 —27.957  10.601
| —9.831 —27.957  35.537 —13.793
3.673  10.601 —13.793  10.972

V. CONCLUSION

[19]

This paper has presented a new adaptive observer called
reset adaptive observer (ReO). The stability and convemen
analysis of this novel proposal has been proved by using
qguadratic Lyapunov functions. Additionally, a method to
determine the, gain of the proposed reset adaptive observer
has also been developed. This method is based on a linear
matrix approach which is easily computable.

Simulation results have been given to underline the poten-
tial benefit of including a reset element in the adaptive laws

Namely, the reset element can decrease the overshoot and

settling time of the estimation process without sacrificing
the rise time for some kind of systems. Besides, a lower

bound of thel, gain can also be achieved dealing with

noise corrupted systems.
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