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Abstract— This paper proposes a novel kind of adaptive
observer called reset adaptive observer (ReO). A ReO is an
adaptive observer consisting of an integrator and a reset
law that resets the output of the integrator depending on a
predefined condition. The main contribution of this paper is the
application of the reset element theory to the adaptive observer
LTI framework. The introduction of the reset element in the
adaptive laws can decrease the overshooting and settling time of
the estimation process without sacrificing the rising time. The
stability and convergence LMI-based analysis of the proposed
ReO is also addressed. Additionally, an easily computable
method to determine theL2 gain of the ReO dealing with noise-
corrupted systems is presented. A simulation example shows the
potential benefit of the proposed reset adaptive observer.

I. I NTRODUCTION

Adaptive observers for linear time invariant systems (LTI)
have been widely studied since 1970s. Initially, those works
were characterized by having only a proportional feedback
term in the adaptive laws and were known as proportional
adaptive observers (PAO) [1], [2]. This approach guaranteed
a zero steady-state estimation error assuming a persistent
excitation condition. Nevertheless, PAO showed a poor ro-
bustness dealing with noise corrupted systems. The perfor-
mance of PAOs was improved by adding an integral term
to the adaptive laws [3], [4], [5]. This kind of adaptive
observer is known as proportional integral adaptive observer
(PIAO). This additional term can increase the steady state
accuracy and improve the robustness against modeling errors
and disturbances.

However, since the adaptive laws are still linear, they have
the inherent limitations of linear feedback control. Namely,
they cannot decrease the settling time and the overshoot of
the estimation process simultaneously. Therefore, a trade-
off between both requirements is needed. Nevertheless, this
limitation can be solved by adding a reset element. A reset
element consists of an integrator and a reset law which resets
the output of the integrator as long as the reset condition
holds. Reset elements were introduced by Clegg in 1958 [6],
who proposed an integrator which was reset to zero when its
input is zero. In 1974, Horowitz generalized that initial work
substituting the Clegg integrator by a more general structure
called the first order reset element (FORE) [7], [8]. The
performance of those works were shown by simulations and
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it would take two decades to find the first stability analysis
demonstrations [9], [10], [11]. The main contribution of those
works was a stability test applicable to reset control systems
called theHβ condition. Since theHβ condition can be
expressed as a linear matrix inequality problem (LMIP), it
can be easily solved.

A general analysis for reset control systems can be found
in [12]. There, the authors modified the reset condition
in such a manner that the system is reset when its input
and output have different sign, rather than as long as its
input is equal to zero. This is the main difference of [12],
compared with other relevant works [13], [14]. Indeed, this
approach addresses and solves the lack of robustness of
the original formulation, which cannot be implemented in
simulation packages (e.g. Simulink), since the integrator state
is never reset due to the time discretization performed by the
simulator.

Undoubtedly, during the last years there have been increas-
ing research activities in the field of stability analysis and
switching stabilization for reset systems [15], [16]. Neverthe-
less, this research has been mainly focused on control issues
and, as a consequence, there are no results of reset elements
applied to adaptive observers so far. We propose in this paper
a new sort of adaptive observer called reset adaptive observer.
As it has been pointed out, a ReO is an adaptive observer
whose integral term has been substituted for a reset element.
The reset condition of the ReO is based on the approach
proposed by [12], that is, its integral term is reset as long as
the estimation error and the integrated estimation error have
opposite sign. The introduction of the reset element in the
adaptive laws can improve the performance of the observer,
due to the fact it is possible to decrease the overshoot and
settling time of the estimation process simultaneously.

This paper is organized as follows. In Section II, the ReO
formulation for LTI systems is presented. In Section III, a
LMI-based stability condition which guarantees the conver-
gence and stability of the estimation process is developed.
Besides, an easily computable method to obtain theL2 gain
of the ReO dealing with noise-corrupted system is presented.
A simulation example is presented in Section IV in order to
test the performance of our proposed ReO compared with
traditional PIAO. Finally, concluding remarks are given in
Section V.

Notation: In the following, we use the notation(x, y) =
[

xT yT
]T

. Given a state variablex of a hybrid system with
switches, we will denote its time derivative with respect to
the time byẋ. Furthermore, we will denote the value of the
state variable after the switch byx+. Finally, we omit its
time argument and we writex(t) asx.
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II. RESETADAPTIVE OBSERVERFORMULATION

In this paper, we address the problem of the state esti-
mation of linear time invariant systems which are described
by

ẋ = Ax+Bu+Bww

y = Cx (1)

wherex ∈ R
n is the state vector,u ∈ R is the input vector,

w ∈ R
n is the disturbance vector,y ∈ R is the output vector,

A ∈ R
n×n, B ∈ R

n×1, Bw ∈ R
n×1 and C ∈ R

1×n are
known constant matrices. We consider single-input single-
output (SISO) systems only, since a suitable formulation of
reset elements for multiple-input multiple-output (MIMO)
systems is still an open research topic.

The structure of our proposed ReO applied to a LTI system
(1) is given in Fig. 1. The ReO dynamics are described as
follows:

˙̂x = Ax̂+Bu+KIζ +KP ỹ

ŷ = Cx̂ (2)

where x̂ is the estimated state,KI and KP represent the
integral and proportional gain respectively andỹ = Cx̃ =
C(x− x̂) is the output estimation error. In addition,ζ is the
reset integral term which can be computed as

ζ̇ = Aζζ +Bζ ỹ ỹ · ζ ≥ 0
ζ+ = Arζ ỹ · ζ ≤ 0

(3)

whereAζ ∈ R and Bζ ∈ R are two tuning scalars which
regulate the transient response ofζ, and Ar is the reset
matrix. Specifically, we defineAr = 0, since the reset
integral termζ is reset to zero wheñy · ζ ≤ 0.

Fig. 1. Reset adaptive observer applied to a LTI system.

The reset observer can be regarded as a hybrid system
with a flow setF and ajump or reset setJ . Regarding (3),
the two conditions at the right side are theflow and thejump
condition respectively. On one hand, as long as(ỹ, ζ) ∈ F
the observer behaves as a proportional integral observer. On
the other hand, if the pair(ỹ, ζ) satisfies thejumpcondition,
the integral term is reset according to the reset mapAr.

Thus, the observer flows wheneverỹ · ζ ≥ 0, that is, if
ỹ and ζ have the same sign, whereas the observer jumps
wheneverỹ · ζ ≤ 0, that is, if ỹ and ζ have different sign.
According to this statement and sincẽy = Cx̃, we can

formalize the definition of both sets by using the following
representation:

F :=

{

(x̃, ζ) :

[

x̃

ζ

]T

M

[

x̃

ζ

]

≥ 0

}

J :=

{

(x̃, ζ) :

[

x̃

ζ

]T

M

[

x̃

ζ

]

≤ 0

}

(4)

whereM is defined as

M =

[

0 CT

C 0

]

(5)

III. STABILITY AND CONVERGENCEANALYSIS

In this section we state computable sufficient conditions
for L2 stability via quadratic Lyapunov functions for reset
observers defined by (2) and (3) applied to LTI systems
described by (1).

A. State stability analysis

Let us begin analyzing the error system dynamics which
can be obtained subtracting (2) from (1). Then, the state error
dynamicx̃ = x− x̂ is defined by

˙̃x = (A−KPC)x̃−KIζ +Bww (6)

This dynamic can be augmented by connecting (6) to (3)
as follows:

η̇ = Aη η +Bη w η ∈ F
η+ = AR η η ∈ J
ξ = Cη η

(7)

whereη = [x̃ ζ]
T ,

Aη =

[

A−KPC −KI

BζC Aζ

]

, (8)

Bη =

[

Bw

0

]

, (9)

Cη =
[

C 0
]

, (10)

and

AR =

[

I 0
0 Ar

]

. (11)

Additionally, we assume in the following that the reset
observer (2)-(3) holds the following assumptions

Assumption 1. The reset observer described by (2)-(3) is
such thatη ∈ J ⇒ AR η ∈ F .

This condition guarantees that after each reset, the solution
will be mapped to the flow setF and, as a consequence, it
is possible flowing after resets.

Assumption 2. The reset observer described by (2)-(3) is
such that the reset timesti+1 − ti ≥ ρ ∀i ∈ N, ρ > 0.

This assumption ensures that the reset observer uses time
regularization to avoid Zeno solutions. It guarantees that



the time interval between any two consecutive resets is not
smaller thanρ ∈ R which is a positive constant called the
dwell time.

Remark 1. It is important to note that both assumptions
are quite natural to assume for hybrid system [17], and
consequently, these conditions are commonly used in most
of current reset system formulations available in literature
[12], [14], [18].

Let us now state a sufficient condition for the existence of
a quadratically stable ReO based on a LMI approach.

Theorem 1. For givenAη, Bη andAR the augmented error
dynamic shown in (7) withBw = 0 is quadratically stable,
if there exist a matrixP = PT > 0 and scalarsτF ≥ 0 and
τJ ≥ 0 subject to

AT
η P + PAη + τFM < 0, (12)

AT
RPAR − P − τJM ≤ 0 (13)

which is a linear matrix inequality problem in the variables
P , τF and τJ .

Proof. Let us begin considering the following quadratic Lya-
punov function for the augmented error dynamics described
by (7):

V (η) = ηT P η (14)

To prove the quadratically stability of our proposed reset
adaptive observer, we have to check that:

V̇ (η) < 0 η ∈ F
V (η+) ≤ V (η) η ∈ J

(15)

According to (4), sinceF :=
{

η : ηT M η ≥ 0
}

and
employing the S-procedure [19], the first term of (15) is
equivalent to the existence ofτF ≥ 0 such that

V̇ (η) < −ηT τFMη (16)

Then, let us take derivative of (14) to obtain

V̇ (η) = η̇TPη + ηTP η̇

= ηT (AT
η P + PAη)η (17)

Rearranging terms of equations (16) and (17), the first
term of (15) holds if the following inequality is satisfied

ηT (AT
η P + PAη)η + ηT τFMη < 0 (18)

which can be rearranged as an equivalent LMI problem in
the variablesP > 0 andτF ≥ 0

AT
η P + PAη + τFM < 0, (19)

which is analogous to (12) and consequently, proves the first
equation of (15).

Similarly, employing again the S-procedure, the second
term of (15) holds if there exitsτJ ≥ 0 such that

V (η+) ≤ V (η) + ηT τJMη (20)

which is equivalent to

ηTAT
RPARη − ηTPη − ηT τJMη ≤ 0 (21)

Rearranging terms, (20) can be also rewritten as an equiv-
alent LMI problem in the variablesP > 0 and τJ ≥ 0 as
follows

AT
RPAR − P − τJM ≤ 0 (22)

which is analogous to (13) and proves the second equation
of (15) and, as a consequence, completes the proof of the
theorem.

B. Input-output stability analysis

Now, we present our results on the input-output properties
of the ReO. For this reason, let us define theL2 o Root
Mean Square (RMS) gain of the system (7) as the following
quantity

L2 = sup
‖w‖

2
6=0

‖ξ‖
2

‖w‖
2

(23)

where theL2 norm ‖u‖
2

2
of a signalu is defined as follows

‖u‖
2

2
=

∫ ∞

0

uTu dt (24)

and sup meanssupremumwhich is taken over all non-zero
trajectories of (7).

Additionally, we present the following lemma that will be
used in the sequel [19].

Lemma 1. TheL2 gain of a LTI system with an input signal
w and an output signalξ is less thanγ, if there exists a
quadratic functionV (x) = xTPx, P > 0 and γ > 0 such
that

V̇ (x) < γ2wTw − ξT ξ (25)

Theorem 2. For givenAη, Bη, Cη andAR the augmented
error dynamic shown in (7) is quadratically stable and has
a L2 gain fromw to ξ which is smaller thanγ, if there exist
a matrix P = PT > 0 and scalarsτF ≥ 0, τJ ≥ 0 and
γ > 0 subject to

[

AT
η P + PAη + CT

η Cη + τFM PBη

BT
η P −γ2I

]

< 0, (26)

AT
RPAR − P − τJM ≤ 0 (27)

which is a linear matrix inequality problem in the variables
P , τF , τJ and γ.

Proof. To prove the stability of our proposed reset adaptive
observer and that theL2 gain fromw to ξ is smaller thanγ,
we have to check that:

V̇ (η) < γ2wTw − ξT ξ η ∈ F
V (η+) ≤ V (η) η ∈ J

(28)

The first equation of (28) relays on (25) and the second
equation of (28) is equal to the second equation of (15) which
has been already proved. Then, let us concentrate on the



first equation of (28). Again, sinceF :=
{

η : ηT M η ≥ 0
}

and employing the S-procedure, the first term of (28) is
equivalent to the existence ofτF ≥ 0 such that

V̇ (η) < γ2wTw − ξT ξ − ηT τFMη (29)

In this case, the time derivative of (15) is

V̇ (η) = η̇TPη + ηTP η̇

= ηTAT
η Pη + wTBT

η Pη + ηTPAηη + ηTPBηw

= ηT (AT
η P + PAη)η + wTBT

η Pη + ηTPBηw

(30)

Rearranging terms of equations (29) and (30), the first
term of (28) holds if the following inequality is satisfied

ηT (AT
η P + PAη)η + wTBT

η Pη + ηTPBηw

+ξT ξ + ηT τFMη − γ2wTw < 0 (31)

SinceξT ξ = ηT CT
η Cηη, (31) can also be rearranged as an

equivalent LMI problem in the variablesP > 0 andτF ≥ 0
as follows

[

AT
η P + PAη + CT

η Cη + τFM PBη

BT
η P −γ2I

]

< 0, (32)

which is analogous to (26) and proves the first equation
of (28) and, as a consequence, completes the proof of the
theorem.

C. Tuning guidelines

The proposed Reo mainly relays on four tuning gains.
Namely, the proportional gainKP and the integral gainKI ,
which modify the convergence speed of the state estimation
error, and the reset term gainsAζ andBζ , which regulate
the transient response of the reset term.

Before tuning the algorithm on a real system, it is strongly
recommended to first perform some simulations, and tune
the observer gains following the next guidelines. Firstly,
the gains of the reset termAζ andBζ have to be chosen.
Analyzing (3), it is evident that the reset termζ stands for
a low-pass filter whose cutoff frequency relays onAζ and
whose gain depends onBζ . Typically, it is selectedBζ = 1,
because the effect of the integral term can be increased by
tuning the integral gainKI , therefore the transient response
of the integral term only relays onAζ . To guarantee a proper
integration of the error dynamic,Aζ should be chosen to be
Hurwitch with |Aζ | at least 5 times lower than the minimum
absolute value of the eigenvalues ofA.

The second step is to find suitableKP and KI in such
a way that the response of the state estimation error is fast
enough but without overshooting. Since the pair(Aη, Cη) is
constant, it can be done by using any pole placement method.
Once both gains have been computed, it is time to exploit the
potential benefit of the reset element. The aim is to increase
the integral gain in order to obtain a quicker and oscillating
response due to the fact that most of the overshoots will be
removed by resetting the integral term. Consequently, we will
obtain a state estimation error response quicker than before
but without overshooting. This fact underlines the benefit

of the reset adaptive observers, which are mainly nonlinear
and, as a consequence, it can achieve some specifications
that cannot be achieved by pure linear observers.

IV. SIMULATION RESULTS

In this section, an example is presented in order to show
the effectiveness of our proposed reset adaptive observer.
Consequently, we compare the simulation results obtained
by our proposed ReO with two PIAOs. On the one hand,
the first PIAO will be tuned to minimize the overshooting
and, as a consequence, it provides a smooth response. On
the other hand, the latter PIAO will be designed to minimize
the rising time, and hence, it gives an oscillating and faster
response. The next simulation example will show that our
proposed ReO can achieve both requirements (i.e. a smooth
and quick response) simultaneously. These simulation results
have been obtained by using Simulink with the ode45 solver.

Let us consider the following third-order noise-corrupted
LTI system:

ẋ1 = −4.5x1 − 4x2 + 0.6x3 + 0.1u+ 0.5w

ẋ2 = 0.4x1 − 2x2 − 1.1u+ 0.5w

ẋ3 = −0.5x1 − 3x3 − 0.5u+ 0.5w

y = x1 (33)

with x(t = 0) = [−2.3; 1.5; 1.8]T , u(t) = sin(4t) and
w(t) = sin(15t). The aim is to develop an adaptive observer
for the system described by (33) which satisfies that the state
estimation error tends to zero without overshooting as fastas
possible. According to (1), (33) has the following parameters:

A =





−4.5 −4 0.6
0.4 −2 0

−0.5 0 −3



 ,

B =





0.1
−1.1
−0.5



 ,

Bw =





0.5
0.5
0.5



 ,

C =
[

1 0 0
]

.

Additionally, let us outline the tuning parameter for each
adaptive observer. Notice that when it is possible, the tuning
parameters are equal for each adaptive observer in order to
make the results more comparable.

PIAO for SISO LTI systems are described by:

˙̂x = Ax̂+Bu+KIz +KP ỹ

ŷ = Cx̂

ż = Azz +Bz ỹ (34)

whereAz ∈ R and Bz ∈ R are two tuning scalars which
regulate the transient response of the integral termz. As it



is said above, we have designed a conservative and non-
oscillating PIAO and a quicker and oscillating PIAO for
the system (33). Since the tuning process of each observer
involves several parameters, let us outline how all these
tuning parameters have been determined. Firstly, we have
designed the conservative PIAO in such a manner that its
rising time is equal to 0.6 seconds without overshooting.
After that, to design the oscillating PIAO we have increased
theKI gain until its rising time is equal to 0.2 seconds, that
implies an oscillating estimation process. Finally, to make
the results more comparable, the ReO has the sameKI and
KP than the oscillating PIAO.

Specifically, the parameters of the conservative PIAO are
x̂(t = 0) = [0; 0; 0]T , z(t = 0) = 0, Az = −0.5,
Bz = 1, KP = [2.65;−1.7525;−2.425]T , and KI =
[0.53;−0.35;−0.485]T , whereas the tuning parameters of
the oscillating PIAO arêx(t = 0) = [0; 0; 0]T , z(t = 0) = 0,
Az = −0.5, Bz = 1, KP = [2.65;−1.7525;−2.425]T , and
KI = [26.5;−12.2675;−19.4]T .

On the other hand, the ReO for the system (33) has
been designed according to (2)-(3) and it has the following
tuning parameters:̂x(t = 0) = [0; 0; 0]T , ζ(t = 0) = 0,
Aζ = −0.5, Bζ = 1, KP = [2.65;−1.7525;−2.425]T ,
KI = [26.5;−12.2675;−19.4]T and Ar = 0. Notice that
the KP andKI gains of the ReO are equal to the gains of
the oscillating PIAO.

The state estimation error̃x(t) = [x̃1(t); x̃2(t); x̃3(t)]
T

of all adaptive observers is shown in Fig. 2. It is evident
that our proposed ReO has a better performance compared
with traditional PIAOs, since it has a response as quick as
the oscillating PIAO but without overshooting. Notice thatif
we decrease the integral gainKI of the oscillating PIAO to
avoid overshooting it will behave as the conservative PIAO
and, thus, its rising time will be higher than the obtained
by the ReO. On the other hand, if we increase the integral
gainKI of the conservative PIAO to reduce its rising time,
it will behave as the oscillating PIAO and, as a consequence,
its response will be oscillating.

Additionally, our proposed ReO also obtains the best
performance as long as we compare the bound of theL2

gain of each adaptive observer. Indeed, the ReO has aγ

= 0.2675, whereas the oscillating PIAO has aγ = 0.3379
and the conservative PIAO has aγ = 0.3305. These values
have been obtained minimizing the value ofγ2 according to
Theorem 2. Namely, the matrices obtained for the ReO were

P =









0.146 0.014 −0.012 −0.003
0.014 0.350 −0.285 −0.000

−0.012 −0.285 0.270 −0.000
−0.003 −0.000 −0.000 4.086









,

τF = 0.0368,

τJ = 0.03,

while the optimal matrix obtained for the oscillating PIAO
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Fig. 2. State estimation error̃x(t) for each adaptive observer. (A) Dotted
lines have been obtained by using the conservative proportional integral
adaptive observer. (B) Dashed lines have been obtained by using the
oscillating proportional integral adaptive observer. (C)Solid lines have been
obtained by using the reset adaptive observer.



was

P =









0.635 0.145 −0.166 0.321
0.144 4.681 −5.595 13.423

−0.166 −5.595 6.982 −17.659
0.321 13.423 −17.659 73.288









,

and finally, the optimal matrix obtained for the conservative
PIAO was

P =









3.416 7.689 −9.831 3.6732
7.689 22.180 −27.957 10.601

−9.831 −27.957 35.537 −13.793
3.673 10.601 −13.793 10.972









.

V. CONCLUSION

This paper has presented a new adaptive observer called
reset adaptive observer (ReO). The stability and convergence
analysis of this novel proposal has been proved by using
quadratic Lyapunov functions. Additionally, a method to
determine theL2 gain of the proposed reset adaptive observer
has also been developed. This method is based on a linear
matrix approach which is easily computable.

Simulation results have been given to underline the poten-
tial benefit of including a reset element in the adaptive laws.
Namely, the reset element can decrease the overshoot and
settling time of the estimation process without sacrificing
the rise time for some kind of systems. Besides, a lower
bound of theL2 gain can also be achieved dealing with
noise corrupted systems.
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