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Abstract— In this work, we study the problem of recovering
the spatial layout of a scene from a collection of lines ex-
tracted from a single indoor image. Equivalent methods for
conventional cameras have been proposed in the literature,
but not much work has been done about this topic using
omnidirectional vision, particulary powerful to obtain the
spatial layout due to its wide field of view. As the geometry
of omnidirectional and conventional images is different, most
of the proposed methods for standard cameras do not work
and new algorithms with specific considerations are required.
We first propose a new method for vanishing points (VPs)
estimation and line classification for omnidirectional images.
Our main contribution is a new approach for spatial layout
recovery based on these extracted lines and vanishing points,
combined with a set of geometrical constraints, which allow
us to detect floor-wall boundaries regardless of the number of
walls. In our proposal, we first make a 4 walls room hypothesis
and subsequently we expand this room in order to find the
best fitting. We demonstrate how we can find the floor-wall
boundary of the interior of a building, even when this boundary
is partially occluded by objects and show several examples of
these interpretations.

I. INTRODUCTION

Indoor structure recovery from images is an easy task for

humans but not that easy for computers. At the same time, it

is a very useful task since knowing floor-wall boundaries can

give us valuable information for navigation, motion planning,

obstacle detection or 3D reconstruction.

This problem has been studied several times and still at-

tracts the effort of many researchers to implement each time

better algorithms. Most of these contributions work under

the Manhattan-World assumption [1], which assumes the

scene is composed of 3 main directions orthogonal to each

other. Indoor environment usually satisfies this condition so

is understandable this hypothesis is extensively used. Some

examples are [2], that uses extracted lines and geometric

reasoning to generate hypothesis and select the best fit, or

[3] which represents the room as a 3D box and tries to

recognize floor-wall boundary in cluttered rooms. There are

also other works as [4] that uses Bayesian filtering over a

set of floor-wall boundary hypotheses without the restriction

of Manhattan-World assumption, but there still being 3 main

directions without the imposition of orthogonality between

them.

Lately, research on omnidirectional vision is taking more

importance due to the wide range of vision of these images,

which helps in the detection of VPs and makes visible
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Fig. 1. In the sphere model, every line from the image is represented
by its normal on the sphere. The figure represents the sphere where
each point corresponds to a normal vector (Colorcode: X=Red,
Y=Green, Z=Blue). From left to right: Sphere with perfect data;
Sphere of a real image; classification of the previous data using
our algorithm in the horizontal plane. Big dots represent VPs.

lines much longer. However, in central catadioptric images,

straight lines from the real world become conics adding the

issue of geometrical complexity, implying that many of ex-

isting algorithms for conventional images are not applicable.

So it is needed to come up with new methods that take in

account characteristics of this kind of images.

Here, we present our work for structure recovery from

images. Starting from a single omnidirectional indoor image,

we extract lines from it, classify them depending on their

orientation. From this classification, we select a set of points

which will lead us to generate possible wall-floor boundaries,

and imposing geometrical constraints we generate a first 4

walls-room hypothesis to later on expand or not this room

according on how the data is distributed.

Inspired by [5], we propose a new method. This approach

is more robust since it does not rely in finding corners which

often are not easy to detect, also we do not need to specify the

number of walls we are looking for. In addition, it is much

faster, as trying every possible combination of normals vector

to classify the extracted lines or combination of corners to

find the room hypothesis was high time-consuming. With

our new approach we avoid all these long iterations making

viable its use in a sequence of images at real-time.

II. VANISHING POINT ESTIMATION THROUGH LINE

DETECTION

The first step of our proposal begins with extraction

of lines from the image. Regarding to line extraction for

catadioptric systems two methods are [6] [7]. Both start

using Canny edge detector and linking edge pixels. The

main difference is that [7] works on the catadioptric image,

where lines and VPs are extracted by RANSAC. Whereas

[6] uses the unitary sphere model proposed in [8] where

points from the image pI = (Xo, Yo, 1) are projected as
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pS = (XS , YS , ZS). By doing this, each chain of pixels from

a line in the image defines a great circle on the sphere which

can be represented by its normal vector n = (nx, ny, nz).
We use Bazin’s Matlab toolbox1, but adapting the equa-

tions from para-catadioptric (ξ = 1) to hyper-catadioptric

(0 < ξ < 1) system in order to generalize the method for

a more general mirror shape. From this point, [6] proposes

to test every possible combination between pairs of normal

vectors to identify main directions (1 vertical, 2 horizontal)

at the same time as the 3 corresponding VPs. However, this

method is time-consuming and sometimes comes up with

misclassifications.

We propose a new robust and fast method to classify lines

parallel to the 3 dominant directions, taking in consideration

two hypotheses: a) Manhattan-world assumption [1] which

states the scene is build on a cartesian grid, b) Z cam-

era’s axis is aligned with Z reference’s axis of the world,

since catadioptrical systems are mainly used in wheel-based

robots, so planar-motion is assumed. It is easily demonstrable

that under these assumptions and with perfect data, normal

vectors n = (nx, ny, nz) corresponding to the three different

directions X,Y,Z does not has its own component (i.e. line

from the real world belonging to direction X, has a normal

vector n whose component nx = 0 ), Fig. 1. However,

often data is not perfect so it will suffer deviations from this

configuration. The classification process for these normals is

done as follows:

1) Under assumption b, image lines whose normal vectors

has nz component below a threshold (experimentally we find

0.2 is a good value) are automatically classified as vertical

lines, and removed for next steps.

2) Suppress nz component of remaining normals so every

n = (nx, ny, 0) will fall in a 2D plane, and using RANSAC

we seek two orthogonal lines which minimize error
inliers

(with

number of inliers greater than a minimum). These lines will

define the two horizontal main directions.

3) Image lines are labeled depending on the distance

between its normal vector and one of the two main directions.

It is remarkable that normal vectors whose component nz '

1 are conflictive as they are conics which degenerate into

circles and can not be properly classified, so it is better

remove them to avoid errors.

4) Finally, VPs are estimated as the points where the lines

defining main directions cut the sphere at the hemisphere

(Z = 0), see Fig. 1.

III. HIERARCHICAL LAYOUT HYPOTHESIS METHOD

Due to noise and imperfections of real images often there

is not enough information to clearly define where the floor-

wall boundary is, so with the extracted lines and a set of

geometric constraints we must seek the best approach to find

where these boundaries are. In order to do this we generate

conics (possible boundaries) from a set of points belonging

to the lines previously classified.

1http://graphics.ethz.ch/˜jebazin

Fig. 2. Left: Lines extracted by Canny Edge detector after pruning
step. Right: Same lines grouped in the 3 dominant directions
according to our classification. Big dots represent VPs.

A. Selection of Set of Points

The first factor to notice is that information obtained by

vertical lines is more robust and less susceptible to noise than

horizontal lines, which sometimes are difficult to classify or

are not well detected. Furthermore, studying typical images

(see examples Fig. 6), we have noticed that in absence of

objects most of vertical lines have their origin around the

region that define floor-wall boundary, and if objects are

present, they are standing over the floor and use to be close

to the wall. So, unless these objects are placed all around

the room, the origin of the lines that define them still being

close to the desired boundary.

With these points of vertical lines we have to generate

conics which will define possible floor-wall boundaries. In

[9], it has been demonstrated how with a calibrated camera

it is possible to define a conic in the image from only two

points. If we apply the condition that every line in the image

must pass through a vanishing point, just one point belonging

to the floor-wall intersection is needed to define a conic in

the image being a boundary.

Due to these 2 facts, let us denote as group GZ the set of

points composed by the closest point from each vertical to the

center of the image. Additionally, we select a homogeneously

distributed set of points from horizontal lines situated at the

same height as the points in GZ . Carrying out this selection

for lines in X and Y direction, we obtain two more groups,

GX and GY , respectively. This is done in order to remove

noisy horizontal segments, such as those found in objects,

windows, doors,... and prevent them voting, Fig. 3(left).

B. Generation of Conics

Since we do not know which points of these groups are

situated in the floor area, we apply RANSAC to identify

the most voted conic, candidate to represent our desired

boundary.

As we mentioned before, only two points are needed, one

Vanishing Point and one point from the previous sets. Cross

product between VP and each of these points pi generates a

normal vector ni, which defines a conic Ω finally obtaining

Ω̂ after a projective transformation HC[10].
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Fig. 3. Left: Selection of points as explained in Section III-A. Right:
Graphic explanation for distance measurement between point and
conic in Section III-B.
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Now, distance between conic and every point pj is com-

puted using an approximation [9] to [11]. We compute

the polar line of a point pj in the conic Ω̂, calculate the

perpendicular specifying it lies over pj. This perpendicular

line intersects the conic in two points q+ and q−, the

minimum Euclidean distance between pj and q+ or q−

corresponds to distance from point to conic, Fig. 3.

A new normal vector is estimated from the average of all

points with minor distance than a threshold, and we iterate

the whole process until its convergence (no more points are

added). Points voting for this conic are removed from the list,

and one of the remaining is chosen to generate an new conic,

repeating the procedure and stopping when every point has

been assigned.

C. Initial Boundaries Hypothesis

Computers cannot tell from a bunch of raw data how

many walls a room is made of, but it is known that the

most common indoor places are halls and rooms with similar

shape to those shown in Fig. 4. All these geometrical shapes

can be depicted by a central square with branches arising

from all or some of its faces which at the same time must

meet a geometric constraint: Parallel faces have to be one

at each side of the imaginary line formed by joining their

two corresponding VPs. This comes from the definition of

vanishing point as the geometric place where parallel lines

appear to converge.

Due to this constraint, the searching algorithm to extract

conics (Section III-B) is executed for four different cases, in

order to find the first four boundaries (better seen in Fig. 5):

• Boundaries 1 and 3: Are sought using points of GZ and

GX at each sides of the imaginary line defined by V Ps

in direction X (Fig. 5 (left)) .

• Boundaries 2 and 4: Are sought using points of GZ and

GY at both sides of the imaginary line defined by V Ps

in direction Y (Fig. 5 (center)) .

Another property is that the four vanishing points define a

conic which corresponds to points situated at the same height

as the camera, so every point falling within the conic might

Fig. 4. Most common room/hall shapes (top view). Red grid
represents the basic square we are seeking in section III-C.

be on the floor and will be a possible candidate, while the

ones out of the conic are automatically eliminated.

Remaining points are projected onto the sphere for each of

the four cases previously defined, and we proceed to generate

conics with these points.

Conics more voted are now selected as possible candidates

and the nearest to the center of the image is chosen. We rather

chose this closest line to other which might be more voted

because it will have chance to be selected in the expansion

process (Section III-D), and if chosen now, it would be

possible the loss of information. Once the four boundaries

have been found, they are combined to conform walls and

floor of our first hypothesis (Fig. 5).

D. Hierarchical Expansion Process

Let us denote as B1, B2, B3 and B4 the four boundaries

defined in previous section III-C. The area between those

and the end of the image defines four sectors. These sectors

may correspond to actual walls or may exist the possibility

they can be expanded, understanding expand as replacing

the boundary Bi for others which enlarge the area of the

first-hypothesis room layout. For each of these sectors we

repeat the same method described in Section III-C, obtaining

a maximum of 3 new boundaries. Let them be BL
i , BM

i and

BR
i in clockwise order as shown in Fig. 7.

When looking for expansion three cases can happen:

• Enough data is available to define the 3 boundaries BM
i ,

BL
i and BR

i ; so there will be expansion in the current

sector.

• BM
i is very close to Bi, this means the most voted wall

still being the same and will not be expansion.

• Data only allow us to find 1 or 2 boundaries. This last

case can be originated for different situations and should

be studied.
Third case is present when we lack of data, caused by lines

not detected or by an occluded corner (Fig. 7(left)). Both

cases imply expanding floor area but results are completely

different, therefore care must be taken.

If missing boundary is a lateral (BL
i , BR

i ) or lateral plus

middle (BM
i ), and points from well-detected boundaries only

fall at one side from the VP within the current sector, this is

due to an occluded corner. Thus the missing border is defined

as a radial line through the center of the image and the point,

belonging to the well-detected boundary, whose angle is the

closest to the angle defined by the VP.

On the other hand, if previous conditions are not satisfied,

we assume some line was not detected, hence if the missing

boundary is any of BL
i or BR

i , it will be defined as the



Fig. 5. First two images show points from groups GZ , GX and GY under constraints exposed in section. III-C, where blue, red and
green dots correspond to GZ , GX and GY points respectively. Dashed red and green lines are the imaginary lines, going through the
VPs, which divide the image in 2 parts. Finally, black conics represent the most voted boundaries for each case. Right image shows the
result of combining those boundaries to generate the first hypothesis.

Fig. 7. Left: Synthetic example depicting the possible cases (B1

and B2 are expandable regions, B3 will not be expanded, and
B4 corresponds to an occluded corner). Black line represents the
actual room boundaries, first hypothesis in dashed blue, and final
expansions in dashed red. Right: final result of a real example.

resulting conic passing through its corresponding VP and

the last point belonging to BM
i . By contrast, if the missing

edge is BM
i , we consider it should be no expansion except

if there are a relevant number of voting points in the lateral

boundaries BL
i and BR

i .

IV. RESULTS

Our experiments have been performed using Matlab, run-

ning at 3 sec per frame, and with the dataset COGNIRON

composed of indoor images (768×1024) with a wide variety

of rooms. These images were taken by a camera with a

hyperbolic mirror spotted on a mobile robot. The calibration

of the camera is also available online [12].

We show some of our results in different kind of indoor

situations Fig. 6. First two examples correspond to T and L

shape halls (like the ones shown in Fig. 4), walls are not too

saturated with objects so the result is accurate. In this second

example we also observe an occluded corner at the superior

part of the image. Third picture is taken in a room where

walls are made of glass (top and bottom of the image); due

to these walls very bright areas appear in the scene, but we

still achieve a good approximation of its structure.

Forth case shows a hall with a desk and a shelf, where

our algorithm is able to recognize these obstacles. However,

it does not detect the open door situated at the top part of

the image, probably due to all the light going through it.

Image1 Image2 Image3 Image4 Image5

Precision 0.973 0.984 0.896 0.964 0.904

Recall 0.887 0.969 0.992 0.937 0.878

F1 0.928 0.977 0.942 0.950 0.891

TABLE I

Performance values obtained for images of Fig. 6

Last scene correspond to a room with many objects, colors

are very dark, which makes difficult line extraction at some

areas. At the same time, most of the longest detected lines

fall over the objects, what might lead to misclassify wall-

floor boundaries, but as we can see, we are still achieving

good results.

Comparing results from our algorithm with their respective

ground truth, we define as true positives (tp) the number

of pixels both have in common, false positives (fp) the

number of pixels identified as floor by our method but do

not correspond to the floor in the ground truth, and false

negatives (fn) the number of pixels identified as not floor

when they result to be floor in the ground truth. With these

values we compute precision ( tp
tp+fp

), recall ( tp
tp+fn

) and

F1 ( 2 precision recall
precision+recall

) for several images, Table I.

V. CONCLUSION AND FUTURE WORK

We have proposed a new method to extract vanishing

points from an omnidirectional image and to perform line

classification. Since for the database of images the Z axis

from camera and world reference were aligned, our proposal

have been designed with this constraint, but we believe this

can be extended for the general case where the alignment of

axis is not known. We also have proposed a new simple and

robust method for scene layout recovery and we have shown

its performance in experimental results. This is useful in

many applications, since knowing where floor-wall boundary

are and the height of the camera, we can known exactly

where every point of the scene is. Currently we are working

into spread out this method for a whole sequence of images

in order to improve accuracy in those images with possible

misclassifications.



(a) (b) (c) (d)

Fig. 6. Examples of experimental results obtained for five different images. (a)Input images. (b) Line classification and extracted points
which vote for boundary selection. (c) Output images by our algorithm. (d) Ground truth, manually labeled.
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