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1 Introduction

It is generally accepted that machine vision is one of the most important sensory
modalities for navigation purposes. Visual control, also called visual servoing, is a
very extensive and mature field of research where many important contributions
have been presented in the last decade [Malis et al., 1999,Corke and Hutchinson,
2001, Conticelli and Allotta, 2001, Tsakiris et al., 1998, Ma et al., 1999]. Two
interesting surveys on this topic are [DeSouza and Kak, 2002] and [Hutchinson
et al., 1996]. In this work we present a new visual servoing approach for mobile
robots with a fixed monocular system on board. The idea of visual servoing is
used here in the sense of homing, where the desired robot position is defined
by a target image taken at that position. Using the images taken during the
navigation the robot is led to the target.

A traditional approach is to perform the motion by using the epipolar geom-
etry [Basri et al., 1999,Rives, 2000,López-Nicolás et al., 2006]. These approaches
have as drawback that the estimation of the epipolar geometry becomes ill con-
ditioned with short baseline or planar scenes, which are usual in human environ-
ments. A natural way to overcome this problem is using the homography model.
In [Malis and Chaumette, 2000] it is proposed a method based on the estima-
tion of the homography matrix related to a virtual plane attached to an object.
This method provides a more stable estimation when the epipolar geometry de-
generates. In [Benhimane et al., 2005] it is presented a visual tracking system
for car platooning by estimating the homography between a selected reference
template attached to the leading vehicle. A significant issue with monocular
camera-based vision systems is the lack of depth information. In [Fang et al.,
2005] it is proposed the asymptotic regulation of the position and orientation
of a mobile robot by exploiting homography-based visual servo control strate-
gies, where the unknown time-varying depth information is related to a constant
depth-related parameter.

These homography-based methods usually require the homography decompo-
sition, which is not a trivial issue. Two examples of approaches which do not use
the decomposition of the homography are [Sagüés and Guerrero, 2005] which is
based on a 2D homography and [Benhimane and Malis, 2006] which presents an
uncalibrated approach for manipulators. We present a novel homography-based
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approach by performing the control directly on the elements of the homogra-
phy matrix. This approach, denoted as ”Shortest Path Control”, is based on the
design of a specific robot trajectory which consists in following a straight line
towards the target. This motion planning allows to define a control law decou-
pling rotation and translation by using the homography elements. This approach
needs neither the homography decomposition nor depth estimation. In this work
we have developed three similar methods based on the particular selection of the
homography elements. Each method is suitable for different situations.

The chapter is divided as follows, Section 2 presents the homography model
developing its elements as a function of the system parameters to be used in
the design of the controllers. Section 3 presents the Shortest Path Control with
three different methods based on the elements of the homography. Sections 4 and
5 present the stability analysis of the controllers and the experimental results
respectively. Section 6 gives the conclusions.

2 Homography Based Model

The general pinhole camera model considers a calibration matrix defined as

K =




αx s x0

0 αy y0

0 0 1


 , (1)

where αx and αy are the focal length of the camera in pixel units in the x and y
directions respectively; s is the skew parameter and (x0, y0) are the coordinates
of the principal point. We have that αx = f mx and αy = f my , where f is the
focal length and mx, my are the number of pixels per distance unit. In practice,
we assume that the principal point is in the centre of the image (x0 = 0, y0 = 0)
and that there is no skew (s = 0).

A 3D point in the world can be represented in the projective plane with
homogeneous coordinates as p = (x, y, 1)T . A projective transformation H exists
from matched points belonging to a plane in such a way that p2 = Hp1 . The
homography between the current and target image can be computed from the
matched points, and a robust method like RANSAC should be used to consider
the existence of outliers [Hartley and Zisserman, 2004]. Taking advantage of
the planar motion constraint, the homography can be computed from three
correspondences instead of four, reducing the processing time.

Let us suppose two images obtained with the same camera whose projection
matrixes in a common reference system are P1 = K[I|0] and P2 = K[R| −Rc],
being R the camera rotation and c the translation between the optical centres
of the two cameras. A homography H can be related to camera motion (Fig. 1a)
in such a way that

H = K (R− t
nT

d
)K−1 = K (R + Rc

nT

d
)K−1 = KR (I + c

nT

d
)K−1 (2)



where n = (nx, ny, nz)T is the normal to the plane that generates the ho-
mography and d is the distance between the plane and the origin of the global
reference.

(a) (b)

Fig. 1. (a) Homography from a plane between two views. (b) Coordinate system.

We consider a mobile robot in planar motion (Fig. 1b). In this case the robot
position is defined by the state vector (x, z, φ) and the planar motion constraint
gives:

R =




cosφ 0 sin φ
0 1 0

− sinφ 0 cos φ


 , c = (x, 0, z)T . (3)

Taking this into account, the homography corresponding to a planar motion
scheme can be written as

H =




h11 h12 h13

0 1 0
h31 h32 h33


 , (4)

The second row of the matrix will be ignored in the design of the control law
as it does not give useful information. Developing expression (2) we obtain the
homography elements as a function of the parameters involved:

h11 = cos φ + (x cos φ + z sin φ)nx

d
h12 = αx

αy
(x cosφ + z sin φ)ny

d

h13 = αx

(
sin φ + (x cosφ + z sin φ)nz

d

)
h31 = 1

αx

(− sin φ + (−x sin φ + z cosφ)nx

d

)
h32 = 1

αy
(−x sin φ + z cos φ)ny

d

h33 = cos φ + (−x sin φ + z cos φ)nz

d

(5)

The analysis of these homography elements will lead to the control law design.
After computing the homography from the image point matches it has to be



normalized. We normalize by dividing H/h22, given that h22 is never zero due
to the planar motion constraint.

3 Visual Servoing with Shortest Path Control

In this Section the Shortest Path Control is presented. The control law design is
directly based on the homography elements. Given that our system has two vari-
ables to be controlled (the velocities v and ω), we need at least two parameters of
the homography to define the control law. Several possibilities appear depending
on which homography elements are selected. In our approach we have developed
three similar methods which are suitable for different situations. In the experi-
mental results we show the performance of these methods as the calibration or
the scene change.

Let us suppose the nonholonomic differential kinematics to be expressed in
a general way as

ẋ = f(x,u) (6)

where x = (x, z, φ)T denotes the state vector and u = (v, ω)T the input vector.
The particular nonholonomic differential kinematics of the robot expressed in
state space form as a function of the translation and rotation robot velocities
(v, ω) is: 


ẋ
ż

φ̇


 =



− sin φ

cos φ
0


 v +




0
0
1


ω (7)

In the Shortest Path Control approach, we propose decoupling the motion,
rotation and translation, by following a specific trajectory. Then, we design a
navigation scheme in such a way that the robot can correct rotation and trans-
lation in a decoupled way. The resulting path of this motion is shown in Fig. 2.

Fig. 2. Motion trajectory of the robot consisting in three steps.

The motion can be divided in three sequential steps. In the first step the
robot rotates until the camera points to the target position. Then, the robot



performs a straight translation in the second step until the target position is
reached up to a rotation. Finally, the orientation is corrected in the third step.
The key point is to establish what conditions have to be held during each phase
of the navigation. When the motion starts, the initial homography is the general
case (5). It can be seen in Fig. 2 that during the second step the robot moves in
a straight line with a constant angle respect the global reference (φ = φt). From
our reference system we can obtain the geometrical expression x = −z tan φt.
Using this expression in (5) we obtain the particular form of the homography
that is held during the straight motion of the second step:

H(φ = φt) =




cos φt 0 αx sin φt

0 1 0
1

αx

(
− sin φt + z

cos φt

nx

d

)
1

αy

z
cos φt

ny

d cosφt + z
cos φt

nz

d


 (8)

At the end of the second step the robot has an orientation error and no trans-
lation error (x = 0, z = 0, φ = φt). Taking this into account, the homography
matrix that results at the end of the second step (i.e. in the target position up
to orientation error) is:

H(x = 0, z = 0, φ = φt) =




cosφt 0 αx sin φt

0 1 0
− sin φt

αx
0 cos φt


 (9)

This previous expression also implies that det(H) = 1. Finally, at the end of
the navigation, when the robot reaches the target pose with the desired orien-
tation the homography will be the identity matrix,

H(x = 0, z = 0, φ = 0) = I . (10)

The particular expressions of the homography just deduced are related graph-
ically with its corresponding positions in Fig. 3. It can be seen that the goal of
each step is to move the robot having as reference the next desired expression
of the homography.

Step 1
(5) −→ (8)

Step 2
(8) −→ (9)

Step 3
(9) −→ (10)

(5) (8) (9) (10)

Fig. 3. The number below each figure denotes the equation of the homography that
holds in that position. In each step, the numbers give the homography equations at
the start and at the end of the step.

Now we briefly introduce the expressions used to define the controllers of
the three different methods of the Shortest Path Control. These are detailed



in the following subsections. From the previous particular expressions of the
homography, we can define the conditions that will be used in each step of the
navigation to drive the robot. In the first step we want to reach the orientation
φ = φt, where the robot points to the target. The forward velocity is set to zero
(v = 0) and from (8) we could use h11, h12 or h13 to set the angular velocity of
the robot in a proportional control:

ω = kω(h11 − cos φt) (11)
ω = kωh12 (12)

ω = kω(h13 − αx sin φt) (13)

In this step we have rejected elements h31, h32 and h33 because they require
knowledge about the plane and the robot position, which are unknown. Each one
of these expressions (11), (12) or (13) can be used to correct rotation in the first
step. The selection of the expressions for each of the three methods depending
on the calibration hypothesis is explained below. In method I camera calibration
is supposed to be known, while in Method II and III no specific calibration is
required.

Once the orientation φt is gained, the second step aims to get translation to
the target equal to zero (x = z = 0), keeping the orientation constant during
the motion (φ = φt). In this case we could use the parameters h31, h32 or h33

from (9) to set the robot velocity as

v = kv(h31 +
sinφt

αx
) (14)

v = kvh32 (15)
v = kv(h33 − cos φt) (16)

In this second step we have rejected elements h11, h12 and h13 for the cor-
rection of v because the value of these elements is constant during this step.
Any of the expressions (14), (15) or (16) can be used to compute v during this
step. Odometry drift or image noise appear in real situations, so the orientation
is corrected to avoid possible errors. Thus, in the three methods the rotation
during second step is corrected respectively with the same control of the first
step.

In the last step the robot has zero translation error and only needs to perform
a rotation in order to reach the target orientation,

ω = kω(hij − 1) with (i, j = 1, 3), (i = j) (17)
ω = kωhij with(j = 1, 2, 3), (i 6= j) (18)

Then, the velocity is set to zero in this step (v = 0) and the rotation can
be corrected with expressions of (17) or (18). We have selected ω = −kωh13 for
the three methods because of the robustness to noise of h13 with respect to the
rest of the homography elements. Experimental results presented support this
decision.



The control loop of the scheme presented is shown in the diagram of Fig. 4.
An image in the current position is taken at each loop of the control. The ho-
mography that links it with the target image is computed from the feature
matching. Using the homography, the control performs the three steps. When
the homography-based control loop finishes, the robot is in the target position,
the current and the target images are the same, and the homography is the iden-
tity matrix. Next, the details of the three methods of the Shortest Path Control
for visual servoing based on homographies for mobile robots are presented in
detail.

Target image

Current image

Features

matching

Homography

estimation
Control step 2 Robot

Switching

Control step 1

Control step 3

Fig. 4. Diagram of the control loop.

3.1 Method I: Calibrated Method

In this method we suppose that the calibration matrix of the camera is known,
and therefore, the value of the focal length αx is given. In the first step v is set to
zero while the angular velocity could be corrected with (11) or (13), needing the
value φt. This approach is based on the key value φt, but this value is initially
unknown. From (8) we have that h11 = cos φt and h13 = αx sin φt. Taking this
into account, we can obtain the next equation, which is true when φ = φt,

h2
11 +

h2
13

α2
x

= 1 (19)

Using this expression we do not need to know the value of φt to correct the
orientation in the first step, and this is corrected until (19) is satisfied. In step
two, the orientation is corrected with the same expression to take into account
odometry drift or noise. The velocity v in the second step is corrected using (16)
which is combined with h11 from (9) to remove the unknown parameter φt from
the expression of the control. Third step is based on (17). Then, we define the



Method I as

Method I





Step 1 : v = 0 , ω = −kω(h2
11 + h2

13
α2

x
− 1) .

Step 2 : v = −kv(h11 − h33) , ω = −kω(h2
11 + h2

13
α2

x
− 1) .

Step 3 : v = 0 , ω = −kωh13 .

(20)

where kω and kv are the control gains.
We avoid the use of the parameter φt in the velocity v of the second step by

using the value of h11 from (9) as previously explained. In any case φt could be
computed easily when the first step is finished from (11) or (13). This method
needs to know the calibration of the camera (parameter αx) and this is its main
drawback. The next two methods proposed work without knowing this parameter
and they have shown to be independent of the focal length.

3.2 Method II: Uncalibrated Method

The previous method is calibrated. In a system, the need of calibration means dis-
advantages in terms of maintenance cost, robustness and adaptability. In Method
II the calibration camera is considered to be unknown, which has many advan-
tages in practice. We can define the control scheme of the Method II selecting
expressions where the calibration parameters do not appear explicitly. These
expressions are (12), (15) and (17). Then, the control is defined as

Method II





Step 1 : v = 0 , ω = −kωh12 .
Step 2 : v = −kvh32 , ω = −kωh12 .
Step 3 : v = 0 , ω = −kωh13 .

(21)

where kω and kv are the control gains. With this method the robot is controlled
by using a camera without specific calibration; although we assume that the
principal point is in the centre of the image, this is a good supposition in practise.
Method II requires the plane inducing the homography not to be vertical respect
our reference because it is needed ny 6= 0. This is due to the direct dependence
of the parameters used from the homography to ny. This could be a problem
since human environments are usually full of vertical planes (walls). In any case
the method works if we guarantee that vertical planes are not used, for example
constraining to the floor [Liang and Pears, 2002] or the ceiling plane [Blanc et al.,
2005].

3.3 Method III: Method with Parallax

The previous method works without specific calibration, but it requires the scene
homography plane not to be vertical and this could be a problem in man-made
environments, usually full of vertical planes. Method III uses the concept of
parallax relative to a plane and overcomes the problem of vertical planes. Using
the parallax [Hartley and Zisserman, 2004] the epipole in the current image can
be easily obtained from a homography H and two points not belonging to its



plane. In the first step of Method III the objective is to get orientation φ = φt.
In this position the robot points to the target, so the camera centre of the target
is projected to (x0, y0) in the current image and then ec = (0, 0). Given that
the robot moves in a planar surface we only need the x-coordinate of the epipole
(ecx). Then we define the correction of the orientation in step 1 and step 2 with
a proportional control to ecx. Once ecx = 0 the robot is pointing to the target
position. The other expressions of the control are obtained in a similar way to
the previous methods using (16) and (17). Then, we define the scheme of Method
III as

Method III





Step 1 : v = 0 , ω = −kωecx .
Step 2 : v = −kv(h11 − h33) , ω = −kωecx .
Step 3 : v = 0 , ω = −kωh13 .

(22)

When the robot is close to the target position and the translation is nearly
zero, all the points in the scene can be related by the homography. In this
situation the parallax is not useful to correct the orientation. Before this happen
we change the orientation control at the end of step 2 to the expression (11).
This expression needs the value of φt, which can be computed previously with
the same equation while the rotation is corrected with the parallax procedure.
Here, we use neither expression (15) because vertical planes can be easily found
in human environments nor expression (19) because it needs specific calibration.
We can detect easily when the parallax is not useful to work with by measuring
the parallax of the points not belonging to the plane of the homography. If the
result is under a threshold, the parallax procedure is not used anymore. In the
simulations presented with this approach the threshold is set to 5 pixels.

In the three methods presented the homography is not decomposed, and
neither the robot coordinates nor the normal of the plane are computed. This
approach requires the selection of the signs of some of the control gains depending
on where is the initial robot position and what is the orientation of the plane
detected. This can be easily done by taking advantage of the parallax relative to
the plane by computing it once at the start. Thus, the sign of the gains is easily
determined.

4 Stability Analysis

We define the common Lyapunov function expressing the robot position in polar
coordinates (r(t), θ(t), φ(t)), with the reference origin in the target and θ positive
from z-axis anticlockwise, as

V = Vr + Vθ + Vφ =
(r − rGi)2

2
+

(θ − θGi)2

2
+

(φ− φGi)2

2
. (23)

This is a positive definite function, where rGi , θGi and φGi denote the desired
value of the parameter in the subgoal position for each step (i = 1, 2, 3). Due to
the designed path, the value of θ is constant during the navigation. Although in
the case of noisy data the value of θ could vary, it does not affect the control,



because the path is defined towards the target independently of the value of θ,
thus Vθ = 0. After differentiating we obtain:

V̇ = V̇r + V̇φ = (r − rGi) v cos(φ− θ) + (φ− φGi) ω . (24)

We analyze the derivative Lyapunov candidate function in each step to show
it is strictly negative. This analysis is valid whether if the goal is behind or in
front of the initial position.

Step 1 Here the robot performs a rotation with v = 0. Thus, we only need to
consider V̇ = V̇φ. The desired orientation is φG1 = φt . V̇φ < 0 is guaranteed if
(φ − φG1) > 0 and then ω < 0; or else, if (φ − φG1) < 0 and then ω > 0. In
Method I and II, the sign of ω is guaranteed to be correct, given that the sign
of kω is selected as previously explained. In Method III, ω = −kωecx and, when
(φ−φG1) > 0 then ecx > 0 and ω < 0, or ecx < 0 and ω > 0 when (φ−φG1) < 0.
Therefore V̇ < 0.

Step 2 In this step the robot moves towards the target in a straight line path
and we have V̇ = V̇r + V̇φ. The sign of (r − rG2) is always positive. Then, with
cos(φ− θ) < 0 we have v > 0 and with cos(φ− θ) > 0 we have v < 0. In Method
II, the sign of v is guaranteed to be correct, given that the sign of kv is properly
selected. In Method I and III, the velocity given by the control and with (8) is
v = kvznz/(d cos φt), which gives the expected signs. Therefore V̇r < 0. With V̇φ

we have the same reasoning of step 1.

Step 3 Similar to the reasoning of step 1, in this case, the sign of ω can be
easily checked taking into account that φG3 = 0 and h13 = αx sin φt. Therefore
V̇ < 0.

So, we have shown that V̇ < 0 for the controllers of the three methods. We
have also asymptotic stability given that V̇ is negative definite in all the steps.

5 Experimental Results

Several experiments have been carried out with the controllers of the three meth-
ods presented by using virtual data. The simulated data is obtained by gener-
ating a virtual planar scene consisting of a distribution of random 3D points.
The scene is projected to the image plane using a virtual camera, the size of
the images is 640× 480 pixels. In each loop of the control, the homography be-
tween the current and target image is computed from the matched points and
the control law send the velocities (v, ω) to the robot. In the experiments, we
assume that the camera is centred on the robot pointing forwards. Figure 5
shows the resulting path from different initial positions. The target is placed in
(x(m), z(m), φ(deg)) = (0, 0, 0◦). The different initial positions behind the target
are: (−3,−10,−30◦), (0,−8,−40◦) and (6,−6, 0◦). The results also show that



the method works properly when the target is behind the initial robot position,
moving the robot backwards in that case. The different initial positions used in
this case are: (−6, 4, 20◦), (6, 8, 10◦) and (5, 2,−50◦).

−4 −2 0 2 4 6 8

−10

−8

−6

−4

−2

0

x (m)

z 
(m

)

−6 −4 −2 0 2 4 6

0

2

4

6

8

x (m)
z 

(m
)

Fig. 5. Simulations with target position at (0, 0, 0◦) and different initial positions.

The performance of the three methods is exactly the same when using perfect
data and quite similar when there is image noise. In Fig. 6 two simulations are
compared, one without noise, and the other, adding white noise to the image
points with a standard deviation of σ = 1 pixel using Method III. The evolution
along time of the robot position and the homography elements is drawn.

We have tested the controllers with odometry drift and with different values
of image noise. The first row of Fig. 7 shows the resulting evolution of the robot
position when there is odometry drift in rotation of 1 deg/m. As it can be seen
the controllers can cope properly with the drift error. Simulations with each
method have been carried out using different levels of image noise. The results
are shown in the second row of Fig. 7 and it can be seen that the methods
converge properly in spite of image noise.

The control law of Method I needs the calibration parameter αx of the camera
whereas Method II and III do not use it. In Fig. 8 we show the performance of
the control to calibration errors. The value of the focal length of the controllers
is fixed to f = 6 mm while its real value is modified to see the final position error
obtained for each Method, (first row of Fig. 8). Besides, we have assumed that
the principal point is in the centre of the image. In the second row of Fig. 8, the
value of x0 used in the controllers is supposed to be zero while its real value is
changed. Performance of Method I is sensitive to calibration errors as expected,
this is because this control law is related directly with αx and depends highly
on its accuracy. The simulations show that Method II works properly in spite of
calibration errors. Finally, results using Method III show that a rough calibration
is enough for the convergence, because it is robust to focal length inaccuracy and
it is only affected by calibration errors in the principal point.



0 50 100 150
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Time (s)

x 
(m

)

0 50 100 150
−12

−10

−8

−6

−4

−2

0

Time (s)

z 
(m

)

0 50 100 150
−30

−25

−20

−15

−10

−5

0

Time (s)

φ 
(d

eg
)

(a) Lateral motion (b) Forward motion (c) Robot rotation

0 50 100 150

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

Time (s)

h 11

0 50 100 150
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time (s)

h 12

0 50 100 150
−350

−300

−250

−200

−150

−100

−50

0

50

Time (s)

h 13

(d) h11 (e) h12 (f) h13

0 50 100 150
−2

0

2

4

6

8
x 10

−4

Time (s)

h 31

0 50 100 150
−1.5

−1

−0.5

0

0.5

1
x 10

−3

Time (s)

h 32

0 50 100 150
0.95

1

1.05

1.1

1.15

Time (s)

h 33

(g) h31 (h) h32 (i) h33

Fig. 6. Simulation without noise (thick line) and with image white noise of σ = 1 pixel
(thin line). The initial position is (x, z, φ) = (−3,−10,−30◦) and the target (0, 0, 0◦).
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simulation in x, z and φ is shown for each method. (Second row) Final error of different
simulations varying the image noise.
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Fig. 8. Final error for each method in x, z and φ varying the focal length (first row)
and varying the principal point coordinates (second row).



The performance of the methods can be spoiled in some cases by the par-
ticular plane that generates the homography. Simulations using different planes
are presented in Table 1. The planes are defined by the normal vector n =
(nx, ny, nz)T , and a list of unitary normal vectors is selected to carried out
the simulations with ‖n‖ = 1. The final error obtained with each method is
shown. The initial position is (−3,−10,−30◦) and the target is (0, 0, 0◦). The
results show that Method I and III need nz 6= 0 to work properly. On the other
hand, Method II needs ny 6= 0. This is because the Methods are directly related
with these parameters of n. Vertical planes are usually common in human en-
vironments; besides, in our monocular system, planes in front of the robot with
dominant nz will be detected more easily. Methods I and III work properly in
this case. If we constraint the homography plane detected to be the floor or the
ceiling (any plane with ny 6= 0 is enough) the Method II will also work properly.

Table 1. Final error for each method in x(m), z(m) and φ(deg) varying the normal of
the plane that generates the homography: n = (nx, ny, nz)

T .

n Method I Method II Method III

nx ny nz x z φ x z φ x z φ

0 0 -1.00 0 0 -0.09 -3.00 -10.00 -3.12 0 0 -0.09
-0.20 0.57 -0.80 0.03 -0.00 -0.09 -0.00 -0.00 -0.09 0 0 -0.09
-0.40 0.69 -0.60 -0.00 -0.00 -0.09 -0.00 -0.00 -0.09 -0.00 -0.00 -0.09
-0.60 0.69 -0.40 -0.00 -0.01 -0.09 -0.00 -0.00 -0.09 -0.00 -0.01 -0.09
-0.80 0.57 -0.20 -0.10 -0.34 -0.03 -0.00 -0.00 -0.09 -0.10 -0.34 -0.03
-1.00 0 0 -3.00 -10.00 0 -3.00 -10.00 0 -3.00 -10.00 0

1.00 0 0 -3.00 -10.00 0 -3.00 -10.00 0 -3.00 -10.00 0
0.98 -0.20 0 -3.00 -10.00 0 -0.15 -0.62 0 -3.00 -10.00 0
0.92 -0.40 0 -3.00 -10.00 0 -0.01 -0.04 -0.09 -3.00 -10.00 0
0.80 -0.60 0 -3.00 -10.00 0 -0.00 -0.00 -0.09 -3.00 -10.00 0
0.60 -0.80 0 -3.00 -10.00 0 0 -0.00 -0.09 -3.00 -10.00 0
0 -1.00 0 -3.00 -10.00 0 0 0 -0.09 -3.00 -10.00 0

0 -1.00 0 -3.00 -10.00 0 0 0 -0.09 -3.00 -10.00 0
0.57 -0.80 -0.20 -0.10 -0.34 -0.03 0 -0.00 -0.09 -0.10 -0.34 -0.03
0.69 -0.60 -0.40 -0.00 -0.01 -0.09 -0.00 -0.00 -0.09 -0.00 -0.01 -0.09
0.69 -0.40 -0.60 -0.00 -0.00 -0.09 -0.01 -0.04 -0.10 -0.00 -0.00 -0.09
0.57 -0.20 -0.80 0 0 -0.09 -0.15 -0.62 -0.15 0 0 -0.09
0 0 -1.00 0 0 -0.09 -3.00 -10.00 -3.12 0 0 -0.09

6 Conclusions

We have presented a new homography-based approach for visual control of mo-
bile robots. The control design is directly based on the homography elements
and deals with the motion constraints of the differential drive vehicle. In our ap-
proach, called Shortest Path Control, the motion is designed to follow a straight



line path. Taking advantage of this specific trajectory we have proposed a control
law decoupling rotation and translation. Three different methods have been de-
signed by choosing different homography elements. Their performance depends
on the conditions of the plane or the calibration. The methods use neither the
homography decomposition nor any measure of the 3D scene. Simulations shows
the performance of the methods with odometry drift, image noise and calibra-
tion errors. Also, the influence of the plane that generates the homography is
studied.
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