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Adaptive Multirobot Formation Planning to Enclose
and Track a Target with Motion and Visibility

Constraints
Gonzalo López-Nicolás, Miguel Aranda and Youcef Mezouar

Abstract—Addressing the problem of enclosing and tracking a
target requires multiple agents with adequate motion strategies.
We consider a team of unicycle robots with a standard camera on
board. The robots must maintain the desired enclosing formation
while dealing with their nonholonomic motion constraints. The
reference formation trajectories must also guarantee permanent
visibility of the target by overcoming the limited field of view
of the cameras. We present a novel approach to characterize
the conditions on the robots’ trajectories taking into account the
motion and visual constraints. We also propose online and offline
motion planning strategies to address the constraints involved in
the task of enclosing and tracking the target. These strategies
are based on maintaining the formation shape with variable size
or, alternatively, on maintaining the size of the formation with
flexible shape.

I. INTRODUCTION

Many aspects and issues are involved in the topic of multi-
robot systems. These systems bring the ability to collectively
carry out complex tasks, despite the great variety of theoretical
and practical challenges they pose. Within the different related
topics in multirobot systems, there has been an increasing
interest in target tracking problems [1].

A novel application of multirobot systems is the monitoring
of a dynamic event. This application is highly related with
optical motion capture systems (MOCAP) [2]. The goal of
MOCAP, or motion tracking, is recording the movement of
objects or people. Usually, the acquired information is used to
animate digital models of human actors, where persistent full
coverage of the surface and shape of the target is an essential
requirement. In general, these systems consist of a set of fixed
calibrated cameras around a certain space. Therefore, the actor
is constrained to a limited workspace, with no flexibility to get
out of this sensing cage.

Motivated by this application, consider that mobile robots
with cameras on board are used instead of fixed cameras.
This allows flexible configurations of the cameras around the
target, with the possibility of handling occlusions. The cameras
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could then follow the target without space limitations. For
example, a set of robots could track a runner outdoors for
miles to produce a 3D model at any time. In this work,
we consider the target to be enclosed and tracked moves
with unicycle kinematics. This suits the envisioned application
since, in general, human locomotion can also be described
by nonholonomic kinematics [3]. In order to complete the
task, it is usual to assume that a global frame is available,
using for instance a GPS system, or to require an external
positioning system to reduce the uncertainty in estimating the
agents’ poses [4], [5]. However, this type of systems is again
restricted to limited setups (e.g. requiring GPS availability
outdoor or a local positioning system indoor) and cannot be
used to capture the dynamic target following long paths along
different environments. This problem of motion coordination
in the context of target tracking has been addressed in [6] by
using consensus algorithms to perform flocking, or in [7] by
filming a target through flying cameras.

Related to the tracking task, there is the problem of en-
closing a target [8]. In general, this involves a team of robots
maintaining a particular formation around the target. Usually,
circular formations are considered for the enclosing task in
2D space [9], [10] or in 3D space [11], [12]. The task of
circumnavigation around the target can also be included in
the enclosing problem with the goal of monitoring the target
by circling around it at a prescribed distance [13], [14]. This
allows to deal with particular motions of the target such as
pure rotations, which are not addressed in this paper. However,
circumnavigation methods are typically free from the motion
and visual constraints we consider here. They usually assume
single integrator model [14], [15], impose more restricted
bounds on the target motion (e.g. agents’ speeds required to
be much more greater than the target speed, whereas here
we consider same order of magnitude) [11], [16], [15], or do
not consider controlling the headings of the agents. Managing
simultaneously the shape of a formation and the headings of
its agents [17], as we do here, is not usual in the literature.
Related works to the task of enclosing are [16], where a
distributed method based on local sensing is presented, and
[14], [15], where distributed target enclosing is performed
with a coordinate-free approach. Distributed gradient-based
controllers to stabilize rigid formations were studied proving
local asymptotic stability [18] or exponential convergence
[19], [20]. A comprehensive survey of formation control of
multi-agent systems can be found in [21].

In the task we address here, it is required not only to enclose
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but also to monitor the target as it moves. Therefore, the goal
is to provide the system with the ability of perceiving the target
by means of multiple sensors (i.e. multiple robots) to obtain,
e.g., a complete representation of this target. Vision sensors
provide rich information while being widely available and
relatively inexpensive, which has made them a usual choice
in many robotic tasks. These features become particularly
relevant when dealing with multi-robot systems. Existing
approaches usually observe the target through vision sensors
[5], [6], [7], [10].

A main drawback of standard cameras for the considered
task is their limited field of view (FOV). This constraint is also
hardened by the unicycle motion constraints considered. The
problem of nonholonomic robot navigation while maintaining
visibility of a fixed landmark using an onboard camera with
a limited FOV was tackled in [22] and [23]. Optimality of
the paths that are achieved was later addressed in [24], [25]
and a visual servo control system based on homographies
was also proposed in [26] by following optimal paths while
taking care of the visual sensor constraints. These previous
works model the camera FOV as a symmetric and planar
cone aligned with the forward direction of motion. In [27],
the synthesis of shortest paths with general FOV (e.g. side
and lateral sensors) was provided. Time-optimality was also
considered when addressing both nonholonomic and FOV
constraints [28]. The problem of finding collision-free paths
in an environment with obstacles with both nonholonomic and
FOV constraints was tackled in [29].

These previous works consider only one robot and a static
target to maintain in the FOV. The work presented in [30] ad-
dressed the problem of real-time trajectory generation in aerial
videography with a single aerial vehicle that autonomously
records scenes with moving targets optimizing for visibility.
Regarding the multirobot approach, the control of multiple
robots with limited FOV was studied for a containment task
[31]. There, connectivity and consensus analysis were pro-
vided, although single-integrator robots are assumed and the
goal is to converge to a static configuration, which prevents
the application to a moving target. The work in [32] addressed
the problem of cooperative coordination of leader-follower
formations of mobile robots with visibility and communication
constraints. The proposal in [32] aims at controlling a tractor-
trailer formation in the presence of obstacles with forward-
looking sensors rather than performing target perception.

Building on the previous work [33], we address the problem
of enclosing and tracking a dynamic target with a team
of robots while guaranteeing persistent full coverage of the
surface and shape of the target along its motion. We consider
a circular pattern configuration to enclose the target as shown
in Fig. 1, but our framework allows flexibility to define the
formation shape or the number of robots. For example, a
critical application or hazardous environment may require to
have redundancy in the sensing and the number of required
enclosing robots could be increased. On the contrary, some
applications could require perception of only a part of the
target, allowing to reduce the number of robots to cover the
area of interest. In the proposed system, the robots rely only on
their onboard vision sensor without external input to complete
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Fig. 1. Example of a desired formation with pentagonal shape in a circle of
radius 10 m. The target to be observed is in the center of the formation. Each
robot mounts a camera with a fixed orientation. The wedged shapes represent
the angular limits of the camera FOV (visibility in distance is not constrained
and the arc closing each wedge is just depicted for ease of the representation).
The goal is to enclose and follow the target with the desired formation pattern
while keeping both motion and FOV constraints.

the task. Notice that the fixed camera each robot carries is not
necessarily forward-looking, but pointing in the direction as
defined in the desired configuration.

Here, the key problem resides in overcoming the motion
and visual constraints of the agents. In particular, the approach
presented deals with three different issues. First, the desired
geometric formation to enclose the target must be attained
and maintained during the tracking. Second, the nonholonomic
motion constraints of the enclosing robots must be taken into
account by designing feasible reference formation trajectories.
And third, visibility of the target must always be maintained
by overcoming the limited field of view of the cameras.
Addressing these three issues simultaneously represents an
important challenge and, to the best of our knowledge, this
is the first work dealing with them at the same time. In this
scenario, we present a novel approach to characterize and
analyze the conditions on the robots trajectories in order to
comply with these motion and visual constraints. Taking into
account this previous characterization, we also propose two
online and two offline motion planning strategies to carry out
the task of enclosing and tracking the target while addressing
the constraints involved.

The presented approach provides a novel strategy that has
the following advantages. The robots maintain a full repre-
sentation of the target, which is also very stable in terms
of sensing since the vantage angles are always maintained.
For example, this quality is interesting to perform persistent
monitoring of the entire target surface, which requires that
every camera must always retain visibility of the target to
avoid loss of coverage. The proposed strategy also guarantees
that the robot motions are smooth, safe and comfortable for
the target. Finally, the proposed strategy is also flexible in the
sense that it is not limited to a particular formation shape.

Starting from the desired formation, we show that the de-
sired task will be unfeasible in general. Then, we propose two
different alternatives. On the one hand, we enforce maintaining
the shape of the formation, but we allow variations in the
scale, or the size, of this formation to guarantee existence
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of solution to obtain the reference trajectories. On the other
hand, we propose another strategy in which the scale of the
formation must be kept equal to the desired value (i.e., the
distance between each robot and the target is fixed). In this
case, flexibility on the formation shape is allowed in order to
cope with the different constraints.

A preliminary version of the adaptive formation scale based
strategy was presented in [33] with the corresponding con-
ditions to respect the problem constraints. Here, we provide
more details of this approach and present an advanced version
of this strategy. We also extend that work by studying the
constraint conditions and the subsequent strategies when the
scale is prescribed and it is the formation shape that can be
adapted to fulfill the task.

This paper is organized as follows. Section II describes
and formulates the problem. In Section III we present and
analyze the conditions to address the different constraints
involved. These conditions are the basis in Section IV of
several strategies to define appropriate reference trajectories
for the robots. Finally, conclusions are provided in Section V.

II. PROBLEM FORMULATION

Let us consider a moving target to be enclosed and tracked
in R2 with position qt(t) = (xt(t), yt(t))

T and orientation
φt(t) ∈ R expressed in an arbitrary global reference frame.
We assume that the target follows unicycle kinematics ẋt

ẏt
φ̇t

 = vt

 cosφt
sinφt
0

+

 0
0
ωt

 , (1)

where vt(t) ∈ R and ωt(t) ∈ R are the linear and angular
velocity of the target. We define the signed curvature of the
target’s trajectory as kt(t) = ωt/vt and the curvature κt(t) =
|ωt/vt|.

Assumption 1: Bounded target path curvature. In order
for the tracking of the target to be feasible, we assume that
the target velocities (vt and ωt) are continuously differentiable
functions (i.e. of class C1) and that the curvature of the
target’s trajectory is upper bounded by some value κtmax .
Therefore 0 ≤ κt ≤ κtmax <∞.

Let us also consider N robots in R2 to generate the
formation for enclosing and tracking the target. Their position
and orientation are qi(t) = (xi(t), yi(t))

T and φi(t) ∈ R,
with i = 1, ..., N . These robots follow unicycle kinematics ẋi

ẏi
φ̇i

 = vi

 cosφi
sinφi
0

+

 0
0
ωi

 , (2)

where vi(t) ∈ R and ωi(t) ∈ R are the linear and angular
velocities of the robots. The different reference frames and
parameters introduced in this section are illustrated in Fig. 2.

Choosing a circular formation for enclosing the target in
the formation centroid entails advantages such as the lack of
occlusions. The shape of this formation can be represented by
a regular polygon with N robots evenly distributed along the
circumference. The size or scale of the formation is defined
by its radius

di = d(t) , ∀i , (3)
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Fig. 2. Reference frames and parameters involved in the problem formulation.
Our contribution resides in the definition of the reference trajectories qri
for the robots qi to maintain the formation enclosing the target qt while
respecting FOV constraints. Each robot qi (only one is shown) will follow
its reference trajectory qri using tracking control. The FOV of the onboard
fixed camera of one robot is also shown. The target is in the FOV when it is
inside the wedge (i.e. |βti| ≤ β).

with the distance of each robot to the target d of differen-
tiability class C2 or higher. Notice that this radius could be
constrained in practice, for instance, to avoid collision with
the target or to ensure a large enough target size in the image:
0 < dmin ≤ d ≤ dmax < ∞. In the following sections, we
consider several approaches: The general case with variable
scale d = dr(t), the case of constant arbitrary predefined scale
d = d0, given for example by the task definition, and the case
of constant scale to be determined with the proposed strategy
d = dc that guarantees the task feasibility. We also define the
inverse value of the radius of the formation κ as

κi = κ(t) = 1/d . (4)

In the following developments, this parameter will be used
profusely instead of directly using d, even if d may be more
intuitive to interpret. This is because κ always takes finite
values 0 ≤ κ < ∞ as d is never equal to zero, whereas
d is an unbounded variable that theoretically can reach an
infinite value (d > 0). Therefore, we use κ ∈ [0,∞) in the
development of the equations rather than the unbounded values
of d ∈ (0,∞].

The position of each robot in the circumference is defined
by angle θi(t) ∈ [−π, π] anticlockwise from the x-axis of the
local reference frame on the target, with θi of differentiability
class C2 or higher. The corresponding coordinates of each
robot with respect to the moving target reference are(

xi
yi

)
= d

(
cos θi
sin θi

)
. (5)
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When the robots in the desired formation are evenly distributed
around the target, the angles are denoted as θ0i with coordi-
nates x0i and y0i. In particular, we have

θ0i = π (2 i/N − 1) , with i = 1, ..., N . (6)

In the following sections, we also consider several approaches
regarding θi: The case of constant prescribed angles θi = θ0i,
evenly distributed as defined in (6), the general case with
variable angles θi = θri(t), and the case of constant angles
θi = θci to be defined by the proposed strategy guaranteeing
existence of solution of the task.

Each robot in the formation has a camera on board, which
is fixed on the robot and pointing to the target with a constant
angle depending on θ0i. In particular, in the circular formation
considered for the enclosing task with all the robots equally
oriented as depicted in Fig. 1, we have that for robot at θ0i the
camera forms a fixed angle of (θ0i−π) if θ0i > 0, or (θ0i+π)
if θ0i ≤ 0, with respect to its forward motion direction. In this
nominal configuration, all the robots observe the target in the
center of their FOV.

The FOV of each camera is limited by angle βmini < 0
and βmaxi > 0. For simplicity, we assume symmetric FOV
(βi = −βmini = βmaxi ) and that all the cameras have the
same FOV (βi = β). For each robot, maintaining the target in
its field of view implies keeping the projection of target βti(t)
in robot’s camera i such that βti ∈ [−β, β].

Considering the framework described in the previous para-
graphs, we next define the problem to be addressed.

Problem definition: Given a unicycle-type moving target
(1) and a team of unicycle-type robots (2) enclosing that
target in circular formation, find an appropriate strategy for
the robots’ trajectories to maintain the shape (varying d
strategy) or the size (varying θi strategy) of the formation,
while guaranteeing that the target is always in the field of
view of all onboard cameras, i.e. βti ∈ [−β, β].

An illustration of this problem with an example is provided
in Fig. 3. In this example, the target follows an ellipsoidal
motion enclosed by five robots that form a regular pentagon.
Robot trajectories are defined so as to maintain a rigid forma-
tion with di = d0 = 5m without enforcing FOV constraints.
Although the robot formation is always maintained, the target
leaves the FOV of some robots during the sharper curves of
the motion. This can also be seen in the FOV plot around
t = 50 s and t = 150 s, where the projection of the target in
some robots’ cameras goes beyond the FOV limits, which have
been defined as β = 30 deg. The velocities of the target (vt,
ωt) and the robots (vri, ωri) , whose computation is presented
in the next section, are also shown in Fig. 3. In general, the
closer the robots’ velocities to the target velocity, the easier
it becomes to respect FOV constraints. The angular velocity
plot of ωri shows the sharper turns that allow maintaining the
formation but also causing the break of the FOV constraint.
Notice that the effect of changing the scale of the formation
may seem counter-intuitive. One may expect that the bigger
the formation size, the easier it is to keep the target in the
FOV. However, reality shows that as the distance between the
robot and the target grows, sharper velocities will be required
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Fig. 3. Example of enclosing and tracking a target with ellipsoidal motion.
Formation is compounded by 5 robots forming a pentagon with constant scale
d0 = 5m without considering FOV constraints. Top: motion of the robots.
Second row: Inverse radius κ0 = 1/d0 (left), and angle of the target in the
FOV of each camera βti (right). Bottom: velocities (vri, ωri) of all the robots
and the target (vt, ωt) (thicker line).

to track the target within the formation, and sharper motions
may lead to the FOV constraint break.

The next example in Fig. 4 shows the influence of the
formation scale in keeping the target within the FOV limits of
the cameras. We repeat the simulation of Fig. 3 with different
values of the formation scale d0 ∈ (0, 80]m . For each
simulation and over a complete ellipsoidal path, we compute
the time each robot kept the target in its FOV and depict this
value in percentage. It is clear that increasing the scale of
the formation leads to lower time percentages of maintenance
of the target in the FOV of the robots’ cameras. Notice that
depending on the robot location in the formation (θi) the
results are quite different. See for instance that one of the
robots always maintains the target in its FOV limits (100%),
this is the robot located in θ2 = −108 deg. In the opposite
situation is the robot located in θ4 = 36 deg, which is the
first in reaching 0% when increasing the formation scale. This
means that higher scales results in the computation of sharper
curves in the reference trajectories that may lead to the total
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Fig. 4. Example illustrating the effect of the scale of the formation (d0) in
keeping the FOV constraints. For the example of enclosing and tracking a
target with ellipsoidal motion (Fig. 3), different values of d0 are tested. For
each d0, we measure the percentage of time each robot keeps the target in
its field of view. With low d0 all of them hold FOV constraints all the time
(i.e. 100%) whereas using higher d0 reduces this percentage depending on
the robot location in the formation until reaching total loss of the FOV.

loss of the FOV. Since we do not assume the target is initially
in the FOV of the cameras, the 0% value can be found at initial
time in this example. Hereafter, we assume that the initial
configuration is the desired one and preliminary manoeuvres
are not required before starting the task. Then, the problem to
solve is to track the target maintaining this formation while
taking into account the constraints.

III. CONSTRAINTS ON REFERENCE FORMATION
TRAJECTORIES

In this section, we present the different constraints on the
robots’ reference trajectories to enclose and track the moving
target in rigid shape formation while taking into account the
motion and visibility limits.

The problem of finding appropriate trajectories to be tracked
by the robots of the formation while keeping the formation
shape geometry as well as motion and visibility constraints is
defined as the problem of finding a suitable reference trajectory
for each robot. These trajectories are defined for each robot by
its position qri(t) = (xri(t), yri(t))

T and orientation φri(t) ∈
R, with i = 1, ..., N . In order to create feasible trajectories
we impose unicycle kinematics ẋri

ẏri
φ̇ri

 = vri

 cosφri
sinφri
0

+

 0
0
ωri

 , (7)

where vri(t) ∈ R and ωri(t) ∈ R are the linear and angular
velocities that generate the reference trajectories to be tracked
by the robots.

For given target velocities vt and ωt or equivalently, the
target path (xt, yt) and φt, we express the coordinates of each
robot (5) with respect to the global reference frame(

xri
yri

)
=

[
cosφt − sinφt
sinφt cosφt

](
xi
yi

)
+

(
xt
yt

)
, (8)

which reduces to(
xri
yri

)
=

(
xt
yt

)
+ d

(
cos(φt + θi)
sin(φt + θi)

)
, (9)

where d = di is the common scale as defined in (3). So, if the
N robots follow the trajectories xri and yri, their positions
satisfy the desired formation geometry with respect to the
target. Calculating the time derivative of this vector yields

ẋri = vt cosφt − d(ωt + θ̇i) sin(φt + θi) + ḋ cos(φt + θi) ,

ẏri = vt sinφt + d(ωt + θ̇i) cos(φt + θi) + ḋ sin(φt + θi) . (10)

The reference orientation φri is then obtained as follows

tanφri = ẏri / ẋri . (11)

The velocities vri and ωri can be expressed from (7), (10)
and derivative of (11) as v2ri = (ẋri)

2+(ẏri)
2 and ωri = φ̇ri =

cos2 φri (ẋriÿri − ẍriẏri)/(ẋri)2. Then, the forward velocity
for each robot is computed from (7) and (10) as follows

v2ri = d2 (ωt + θ̇i)
2 + ḋ2 + v2t

+ 2 vt

(
ḋ cos θi − d (ωt + θ̇i) sin θi

)
. (12)

On the other hand, the angular velocity from (7) and the time
derivative of (11) yield

ωri = ωt + d2 θ̇i (ωt + θ̇i)
2/v2ri

+ (ḋ2 + d ḋ ω̇t − d d̈)ωt/v2ri
+

(
d̈ vt − ḋ v̇t − d vt θ̇i (ωt + θ̇i)

)
sin θi/v

2
ri

+ d
(
vt (ω̇t + θ̈i)− v̇t (ωt + θ̇i)

)
cos θi/v

2
ri

+ (ḋ vt ωt − d v̇t ωt + d vt ω̇t) cos θi/v
2
ri . (13)

In order to define the particular velocities required to follow
the reference formation trajectories, we consider in the fol-
lowing proposition the general case in which both d and θi
are allowed to vary. Then we consider the particular cases in
which only d or θi is allowed to vary to fulfill the different
constraints. Finally, we present the cases in which either d
or θi is set to a constant value, dc or θci respectively, to be
determined with the proposed strategy.

Proposition 1: Field of view constraints with variable
scale and variable formation angles. The constraint that
guarantees that FOV limits are respected when letting di(t)
and θi(t) vary is the following∣∣∣∣∣vt sin θi − di (ωt + θ̇i)

ḋi + vt cos θi

∣∣∣∣∣ ≤ | tan(θ0i ± β)| , i = 1, ..., N.

Proof:
The velocities deduced in (12) and (13) allow tracking the

target with variable scale and formation angles but, since
no FOV constraint has been imposed yet, there is still no
guarantee of maintaining the moving target in the cameras’
FOV. Next we proceed to obtain the analytical expression of
the field of view constraint. First, we introduce (10) in (11)
removing explicit dependency on ẋri and ẏri obtaining the
following equation

di (ωt + θ̇i)− ḋi tan(φri − φt − θi) =
vt sin(φri − φt)
cos(φri − φt − θi)

.

(14)
Now, we look for the visual constraint on the relative angle
between each robot and the target. This relative angle plus the
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threshold provided by the limiting angle β of the FOV gives
the maximum orientation to maintain the target in the FOV of
each robot. In particular, this implies −β ≤ φt − φri + θi −
θ0i ≤ β. Therefore, denoting βri(t) = φt − φri + θi − θ0i in
(14), and βti = βri, we obtain

φri − φt = θi − θ0i − βri . (15)

Then, using (15) in (14) and solving for (θ0i + βri) gives the
following constraint

| tan(θ0i + βri)| ≤ | tan(θ0i ± β)| , (16)

with

tan(θ0i + βri) =
vt sin θi − di (ωt + θ̇i)

ḋi + vt cos θi
. (17)

Case 1: Field of view constraints with variable scale.
In this case, in order to respect FOV constraints we allow the

scale of the formation to change during the motion, di = dr(t),
whereas θi = θ0i are kept constant. Then, the forward and
angular velocities for each robot are computed from (12) and
(13), and the FOV constraint is deduced from (16) and (17).
Then, solving for βri yields the following constraint

− tanβ ≤ tanβri ≤ tanβ (i = 1, ..., N) (18)

which needs to hold for every robot, with

tanβri =
dr ωt cos θ0i + ḋr sin θ0i

dr ωt sin θ0i − ḋr cos θ0i − vt
. (19)

Then, the constraint that guarantees that FOV limits are
respected when letting di = dr(t) vary, while using the
prescribed fixed angles θi = θ0i, is the following∣∣∣∣∣ drωt cos θ0i + ḋr sin θ0i

drωt sin θ0i − ḋr cos θ0i − vt

∣∣∣∣∣ ≤ tanβ , i = 1, ..., N.

Case 2: Field of view constraints with constant formation
scale.

This is a particular case of Case 1 when considering a
constant value of the formation scale (di = dc) instead of
a variable one, while again θi = θ0i is constant. Analytical
expression of the field of view constraint in this case is
obtained from (14) with ḋi = 0 and θi = θ0i. Taking into
account the FOV constraint |φt − φri| ≤ β and (4) yields the
following limit constraint

dc =
1

κc
≤ di =

1

κi
=

∣∣∣∣ vt sin(±β)
ωt cos(±β − θ0i)

∣∣∣∣ . (20)

Let us denote the worst case of κi for all i with

κwc(t) = max
i

(κi) . (21)

We also define the maximum value of κwc as

κL = max
t

(κwc) = max
t

∣∣∣∣ ωt
vt sin(±β)

∣∣∣∣ , (22)

which is found when θ0i takes any of these values:

θ0i = {±β,±β − π} . (23)
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Fig. 5. Evolution of κ = 1/d for example in Fig. 3. The lower varying dashed
line corresponds to the limit κwc (18). Any value below this limit violates the
FOV constraint. Horizontal dashed line corresponds to the scale used in the
simulation: d0 = 5m (κ0 = 0.2m−1). It can be seen that around t = 50 s
and t = 150 s the FOV constraint is violated. The closest constant value that
guarantees FOV constraint corresponds with the top horizontal solid line at
κc = 0.31m−1 (dc = 3.2m) given by (22).

Then, the constraint that guarantees that FOV limits are
respected when imposing a constant di = dc to be defined
(i = 1, ..., N ), while using the prescribed fixed angles θi =
θ0i, is the following:

dc ≤ 1/κL = 1/max |ωt/(vt sin(±β) )| . (24)

Any constant value κc < κL will violate FOV limits.
Therefore, choosing κc = κL to define the inverse scale of the
formation guarantees that the target is always maintained in the
FOV. Notice that the computation of the limit value κL, and
consequently the maximum radius of the formation, involves
the maximum curvature of the target’s trajectory κtmax , whose
knowledge is thus needed in advance.

Following the example of Fig. 3, we illustrate the scale
constraints in Fig. 5. The evolution of the inverse formation
radius is plotted in three cases: κwc by using FOV constraint
(18) in the worst case (21), i.e. with (23); κL by using the
constant value computed with (22); and using an arbitrary
prescribed value κ0 = 1/d0 that violates the FOV constraint.
Notice that the higher the value above κc is, the closer to
the target the robots of the formation are. This eases the
FOV problem but practical considerations will require a safety
distance (in the limit κc → ∞ the robots overlap with the
target, i.e. dc = 0).

In the previous cases, we let dr vary along time or we define
a constant value dc. However, in some applications the scale of
the formation may be defined in advance with the requirement
of keeping it fixed (for example to keep a safety distance with
the target). Then, we may consider some flexibility on the
shape of the formation allowing variations of θi with respect
to θ0i. Following this idea we present the next case.

Case 3: Field of view constraints with variable formation
angles.
In this case, the forward and angular velocities for each robot
are computed from (12) and (13) with di = d0 constant and
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θi = θri(t) variable. These velocities guarantee that the robots
follows θri and maintain the prescribed formation scale around
the target during the tracking, but there is still not guarantee
of maintaining the moving target in the cameras’ FOV. The
analytical expression of the FOV constraint is defined from
(17) with ḋi = 0. This gives the following constraint

| tan(θ0i+βri)| =

∣∣∣∣∣tan θri − d0 (ωt + θ̇ri)

vt cos θri

∣∣∣∣∣ ≤ | tan(θ0i±β)| .
(25)

Finally, solving for βri results in

|βri| =

∣∣∣∣∣arctan
(
vt sin θri − d0 (ωt + θ̇ri)

vt cos θri

)
− θ0i

∣∣∣∣∣ ≤ β ,
(26)

which is the constraint that guarantees that FOV limits are
respected when imposing a prescribed constant di = d0 and
letting θi = θri(t) vary. In this case, we let θri vary along
time to overcome the situation in which the prescribed angles
of the desired formation θ0i violate the problem constraints.
In the next case, we define a set of constant angles θci that,
unlike the prescribed formation angles θ0i, respect the different
constraints of the problem.

Case 4: Field of view constraints with constant formation
angles.

This is a particular case of Case 3 considering constant
values of the formation angles θci that can be different from
the prescribed angles θ0i of the desired formation. Considering
θi = θci to be defined with a constant value for each robot i,
and di = d0 also constant (with a previously given value), after
some development and taking into account FOV constraint
|φt − φri + θci − θ0i| ≤ β and considering both limit values
±β, we obtain from (14)

sin θci − tan(θ0i ± β) cos θci = d0 ωt / vt . (27)

Then, the constraint that guarantees that FOV limits are
respected when imposing a prescribed constant di = d0, and
letting θi = θci to be defined using constant values, is

θci ∈ [θi, θi] , ∀i , (28)

where θi and θi are given by atan2(1,− tan θβ) ∓
arccos(d0ωt cos(θβ)/vt) with θβ = (θ0i ± β − π) if (π/2 ∓
β) < θ0i < (−π/2∓ β), and θβ = (θ0i ± β) otherwise.

Equation (27) yields the interval of θci ∈ [−π, π] defined
in the constraint with θi the lower bound along time and θi
the upper bound. Notice that there are two possible solutions
of θi and θi so the correct pair is selected by checking the
smallest interval [θi, θi] solution around θ0i. Notice also that
the FOV constraint in (28) depends on the value of θ0i. Then,
the values of θ0i given in (23) refer to the worst case for the
FOV constraint in the sense that they make the interval of the
constraint [θi, θi] smaller. Then, θci ∈ [θi, θi] is a necessary
condition to satisfy FOV constraints.

Considering again the example in Fig. 3, the latter con-
straints on the angles θci are illustrated in Fig. 6. The evolution
of the lower θi and upper θi bounds (28) are plotted for each
robot showing the intervals that constrain the values of θci to
guarantee visibility of the target. The constant values of θ0i
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Fig. 6. Evolution of the FOV constraints defined for θri in Case 4 using
example in Fig. 3. For each robot (a different color per robot), the upper bound
of the constraint θi is plotted in dashed line, the lower bound θi is plotted
in dotted line, and the actual value used in the simulation θ0i is plotted in
solid line (better seen in color). Around t = 50 s and t = 150 s some of the
robots go beyond the bounds breaking the FOV constraint.

are also plotted showing that two of the robots respect the
FOV constraint (with values −108 deg and −36 deg) whereas
the rest of the robots lose visibility of the target at some times.
Note that if variable θri is considered, the designed value of
θri not only must be inside the interval defined by (28) but
also must obey constraint (26).

Remark 1: Indeterminate terms.
Notice that there can be indeterminate terms of the form 0/0

in the computation of ωri in (13) for some i when vri = 0.
The indeterminate term appears in the different Cases 1 to 4
when any of the following two sets of conditions holds:

di (ωt + θ̇i) = vt sin θi ∧ ḋi = −vt cos θi , (29)
di ωt = ±vt ∧ θi = ±π/2 ∧ ḋi = 0 , (30)

or also in the trivial case

vt = 0 ∧ (ωt + θ̇i) = 0 ∧ ḋi = 0 . (31)

In all the previous cases, the indeterminate terms tend to zero
and then ωri = ωt. All these indeterminate terms come from
the following cases. On the one hand, the indeterminate form
appears with null velocities of the robots and the target. On
the other hand, the indeterminate form appears when the target
rotates around robot i, requiring a pure rotation of the robot
i reference trajectory. The problem of these indeterminate
terms can be easily avoided if the target trajectory curvature
is bounded (Assumption 1), such that κtmax < 1/di.

Remark 2: Existence of solution. Given a desired shape
formation, Cases 1 and 2, in which the scale of the formation
is set to maintain FOV constraints, are guaranteed to have
solution (i.e., we can find a motion strategy that guarantees
FOV). This is trivial from (22) where, given β and a bounded
value of ωt/vt, the value of κL can be directly found.

Regarding the existence of solution when the scale is not
allowed to change, and only the values of θi can be modified
(Cases 3 and 4), we have that existence of solution is not
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guaranteed. In particular, the solution provided in Case 4 only
exists when the following condition holds

v2t ≥ d20 ω2
t cos2(θ0i ± β) , (32)

Otherwise, there is no value of θci to satisfy the FOV con-
straints. In that case, it would be necessary to modify the
parameters of the problem: Increase β, reduce d0, or limit the
target path curvature κt.

IV. STRATEGIES FOR REFERENCE FORMATION
TRAJECTORIES

In the previous section, the constraints that allow to keep the
target within the camera FOV limits have been presented. In
the following, we propose several strategies to define particular
reference trajectories that are compliant with these constraints,
the unicycle motion constraints, and the maintenance of the
formation pattern.

The scale of the formation di and its derivative ḋi (angles
θi and θ̇i alternatively) give the degrees of freedom needed to
define an appropriate reference tracking trajectory to guarantee
keeping both motion and FOV constraints. However, it is im-
portant to notice that both constraints must be checked because
obeying any of them does not guarantee obeying the other. In
particular, one could define an arbitrary strategy to choose the
value of di (the same for all i) satisfying (18), but we need
also to check if di allows to follow the unicycle kinematics
(9) and (11). Otherwise, the defined value of di may be
incompatible with some constraints (unless the strategy is to
assign a constant value to di, or θi, obeying FOV constraint,
which trivially also holds motion constraints). Similarly, one
could define an arbitrary strategy to choose the value of di
satisfying unicycle kinematics, (9) and (11), but obviously this
does no guarantee maintaining FOV constraints and therefore
(18) needs to be checked. Once the appropriate strategies
give the values of di (or θi) to fulfill simultaneously all the
constraints, the robots’ velocities can be directly computed
from (12) and (13).

Four different strategies are presented in the next sections
by defining an appropriate constant formation scale or constant
formation angles, and variable formation scale or variable
formation angles.

A. Constant formation scale: di = dc and θi = θ0i

In order to fulfill the FOV constraint, we let the scale of
the enclosing formation as a free parameter while the shape
of the formation is enforced to be fixed. Then, the simplest
strategy is to define the scale of the formation with the limit
value of the FOV constraint for the full target trajectory. As
previously commented the constant formation scale strategy is
also guaranteed to respect the motion constraints of the robots.
In particular, a constant scale of the formation is defined as
computed in (22), (Case 2):

dc = 1/κL . (33)

By doing so, we maximize the scale of the formation with
a constant value from constraint dc ≤ 1/κL. This choice is
illustrated in Fig. 5 where the selected κL is always above κwc

guaranteeing maintenance of FOV constraints. Notice that any
smaller scale will also guarantee the FOV constraint, whereas a
higher constant value of dc (such as d0, i.e. κ0, in the example)
will violate this constraint some time.

In the example provided in Fig. 3, in which the target
follows an ellipsoidal motion and the robots form a regular
pentagon with β = 30 deg., no strategy is applied and the
vision constraint is violated during the motion when the target
leaves the FOV of some cameras. Following this example, we
now present the result of using the presented constant forma-
tion scale strategy with dc = 3.2m to obey the constraints in
Fig. 7 (top-left, and second row). This is the simplest strategy
that guarantees maintaining the dynamic target in the FOV of
the cameras. It can be noticed that the higher the curvature
of the target’s motion (κt), the smaller the value of dc has to
be in order to keep FOV constraints. This means that sharp
motions of the target imply sharp reactions of the robots. That
is to say, for a given β, smaller scale in the formation allows
more leeway for keeping the FOV during the enclosing motion
and hence allowing for sharper motions of the target. On the
other hand, when the value of κt is low, the minimum required
scale of the formation can be higher. For example, a particular
case is when the target follows a straight line, in that case the
scale of the formation could be arbitrarily high.

B. Variable formation scale: di = dr(t) and θi = θ0i

The strategy proposed in the previous section is based on
a constant value of the formation scale. This value dc is
the maximum without violating the FOV constraints when
the target is turning with its maximum curvature κtmax .
Nevertheless, dc can still be increased when κt < κtmax while
maintaining FOV constraints (Case 1). In fact, any reference
trajectory (9), (11) with corresponding velocities (12) and (13),
that obeys the constraint in (18), and follows an appropriate
strategy for dr (and ḋr ) is a suitable solution of the enclosing
and tracking problem considered.

The next strategy we propose is based on maximising the
distance between the enclosing robots and the target. This
strategy can be useful for example to increase the safety
distance between robots to prevent collisions.

We will define the reference evolution of κ, denoted κr.
In order to do so, we set a constant upper bound given by
κL (22), and a lower bound provided by κwc (18). Thus, any
valid reference trajectory is constrained between κL, which
is limiting the scale of the formation when the curvature of
the target trajectory is maximum, and the value given by κwc,
which gives the scale that reaches the FOV limits.

Any function of differentiability class C2 or higher and with
enough degrees of freedom could be used to define κr. For
instance, typical choices that will result in similar performance
can be polynomial, sinusoidal, or exponential functions. Since
there are many possible choices, we look for smooth simple
functions that can be defined with few parameters such that the
involved computations can be more efficient. Inspired by the
optimal paths presented in [24], which consisted in exponential
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Fig. 7. Example of Fig. 3 using constant scale formation strategy presented in Section IV-A (top-left and second row) and variable formation scale strategy
presented in Section IV-B (top-right and third row). Top: motion of the robots. Second and third row, from left to right: evolution of κ; projection angle
of the target in the FOV of each camera βti; linear velocities vri of all the robots and the target vt; and angular velocities ωri of all the robots and the
target ωt. Target velocities are in thicker line. In the first strategy (22), we draw in solid line the selected constant value of κL = 0.31m−1 (dc = 3.2m).
Respectively in the second strategy, the selected varying value κr is given by (34). Both strategies obey the FOV constraint κwc (18), in dashed line.

functions, we propose to use Gaussian type functions to define
κr (with dr = 1/κr):

κr = κL +
∑
b=tδ

a (κwc − κL) ◦ exp

(
−
(
t− b
c
√
2

)2
)
, (34)

with “◦” the Schur product (or entry-wise product). This
function is defined in the time interval t ∈ (ti, tf ) where the
target motion occurs. Parameter tδ is defined as the sampled
time with Nδ the number of samples between ti and tf :

tδ = ti + δ (tf − ti)/Nδ , with δ = 0, ..., Nδ . (35)

The value of κwc over time is computed from (18) with ḋr = 0
as shown in Fig 5. Parameters a and c are real constants to
be found with the following optimization

argmax
a,c

∫ tf

ti

(κL − κr) dt , (36)

subject to: a, c ∈ R+, |βri| ≤ β .

The goal of this optimization is to find the values of a and
c that bring κr closer to the constraint limits (18) without

violating formation and motion constraints (i.e., to maximize
the area between κr and the value of κL). Notice that
κr = κwc is not a valid option since κwc does not comply
with motion constraints (the orientation is decoupled from the
motion).

This variable formation scale strategy is illustrated in Fig. 7
(top-right, and third row) in which the target follows an
ellipsoidal motion and the robots form a regular pentagon with
β = 30 deg. The difference between this strategy (varying κr)
and the previous one in Section IV-A (κL = 0.31m−1) can
be clearly seen in the left plots in second and third row of
Fig. 7, where the solid line represents the proposed evolution
of κL and κr, and the dashed line is the FOV limit (18).

C. Constant formation angles: di = d0 and θi = θci

Previous strategies in Sections IV-A and IV-B maintain
the formation shape but assuming its scale di = dc can be
adapted. However, some applications may require a particular
prescribed fixed scale d = d0 to maintain, for instance, this
particular distance between the robots and the target for safety
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or accuracy reasons. Here, we propose a different strategy in
which the robots are allowed to modify their relative position
in the formation while keeping the prescribed constant distance
with the target.

Next we search for constant values of θci such that FOV
constraints are guaranteed with the limits presented in Case 4.
If we already have the prescribed values θ0i ∈ [θi, θi] for some
i, then there is no need to define other value for θ0i since FOV
constraints will be respected by robot i. Otherwise, we choose
a value between the global minimum and maximum values of
the bounds as follows

θci =

 θminci if θ0i < θminci

θmaxci if θ0i > θmaxci

θ0i if θminci ≤ θ0i ≤ θmaxci

(37)

for i = 1, ..., N , and where the global minimum and maximum
values are defined as

θminci = max
t

(θi) , θmaxci = min
t
(θi) , i = 1, ..., N . (38)

Any constant value inside the range in (28) will be valid to
hold FOV constraints. Here, we choose for θci the closest
constant value to the prescribed formation values θ0i. Then,
we are deforming the prescribed formation as little as possible.
Note that there is no guarantee that a solution exists for
choosing a constant value for θci (Remark 2). The more
contorted the target trajectory is, the fewer chances to find
a solution. If no solution is found, but the application still
requires constant values θci, then the target motion should be
limited (κtmax ) or the system parameters modified (scale d0
of the formation or cameras FOV β).

Following again the example provided in previous figures in
which the target follows an ellipsoidal motion and the robots
form a regular pentagon with β = 30 deg., we present the
result of using this constant formation angles strategy, with
θci = (−108.00,−36.00, 57.36, 102.29, 167.14) deg. in Fig. 8
(top-left, and second row). It can be seen that the formation
is no longer a regular pentagon, but the scale of the formation
(distance of each robot to the target d0 = 5m) is kept fixed
as pointed out with the plotted circle.

D. Variable formation angles: di = d0 and θi = θri(t)

Instead of just using constant values for θi to respect the
problem constraints, we propose another strategy in which
the reference values of θri are allowed to vary with time.
Then, they will only need to be modified when the constraints
are violated with the predefined values of θ0i. This strategy
preserves the desired formation shape when possible by only
adapting it to keep the FOV constraints when necessary.

Given the lower bound θi and upper bound θi of θi to
obey FOV constraints (Case 4) , we need to define smooth
functions for these angles such that θi ∈ [θi, θi] for all times.
The evolution of the values to be defined for θi not only must
be within the bounds (28) but their derivative must also not
violate constraint (25). The FOV constraint is violated for
any t in which θi > θi or θi < θi. In order to define the
reference evolution θri, if the constraint is respected, we keep

the predefined value θ0i. Otherwise, we define a function θgi
to compute θri:

θri =

{
θgi if θ0i > θmaxci or θ0i < θminci

θ0i if θminci ≤ θ0i ≤ θmaxci
(39)

for i = 1, ..., N . The global minimum and maximum values
along time are defined as in (38). Similarly to the strategy in
Section IV-B, we use Gaussian type functions to define θgi:

θgi = θ0i +
∑
b=tδ

a (θxi + θxi) ◦ exp

(
−
(
t− b
c
√
2

)2
)
, (40)

with “◦” the Schur product. This function is defined in the
time interval t ∈ (ti, tf ) where the target motion occurs, and
tδ is defined in (35). The value of θxi and θxi over time are

θxi = (θi − θ0i + |θi − θ0i|) / 2 ,
θxi =

(
θi − θ0i −

∣∣θi − θ0i∣∣) / 2 . (41)

These values represent the area between θi and the limits of
the FOV constraints, θi and θi, when θi is outside these limit
constraints. Parameters a and c are real constants to be found
with the following optimization

argmin
a,c

∫ tf

ti

|θ0i − θgi| dt , (42)

subject to: a, c ∈ R+, |βri| ≤ β .

The goal of this optimization is to find the values of a and c
that bring θgi as close as possible to the predefined value θ0i
within the limits of FOV constraints (25) and without violating
formation and motion constraints.

This variable formation angles strategy is illustrated in
Fig. 8 (top-right, and third row) following again the previous
example in which the target follows an ellipsoidal motion and
the robots form a regular pentagon with β = 30 deg. and
d0 = 5m. This strategy performs similar to the previous
one (Section IV-C) and the main difference can be seen in
the left plots in second and third row of Fig. 8, where the
thin solid lines represent the proposed evolution of θci and
θri, respectively. It can be seen that the FOV constraints are
respected and, in the second strategy, some values of θri are
constant since their adaptation from their predefined values
(θ0i) is not required to satisfy the FOV constraints.

The previous strategies are based either on adaptive scale or
on adaptive angles. Therefore, while we adapt the formation in
order to fit the problem’s constraints, we still preserve either
the size or shape of the formation. This fits the assumption
that lies at the core of formation control problems, that the
geometric parameters that define the prescribed formation
provide key advantages. However, other alternatives can be
devised, such as adapting scale and angles simultaneously
to increase the flexibility of the method. For example, the
optimization problem could be defined with a combination of
the corresponding cost functions (36) and (42) as follows

argmax
a,c

∫ tf

ti

α (κL − κr) + (1− α) |θ0i − θgi| dt , (43)

subject to: a, c ∈ R+, |βri| ≤ β ,
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Fig. 8. Example of Fig. 3 using the strategy of constant formation angles presented in Section IV-C (top-left and second row) and the strategy of variable
formation angles presented in Section IV-D (top-right and third row). Top: motion of the robots. Second and third row, from left to right: (first column)
evolution of the FOV constraints defined for θi in Case 4 and the proposed strategies: θci (37) and θri (39). For each i, the lower and upper limits are
plotted in dotted and dashed lines, respectively. Thin lines are the proposed evolution of θi that must be within these limits; (second column) projection angle
of the target in the FOV of each camera βti; (third column) linear velocities vri of all the robots and the target vt; (fourth column) angular velocities ωri of
all the robots and the target ωt. Target velocities are in thicker line. It can be seen that both strategies, using respectively constraints (37) and (39), respect
the FOV limits.

where α ∈ [0, 1] is a real number to weight the influence of
each term. Note that the case of α = 0 and α = 1 corresponds
to the strategies IV-B and IV-D, respectively.

E. Analysis of robustness

In this section, we study empirically the effect of noisy
measurements and latency in the method performance. For
simplicity, we consider the previous example in which the
target follows an ellipsoidal motion and the robots form a
regular pentagon with β = 30 deg, but note that the results
are consistent with different number of robots or target tra-
jectories. The following tests are performed adding Gaussian
random noise with mean 0 and standard deviation σ to the
target evolution estimation used in the proposed strategies.
In particular, we add noise to vt with σv = σ/103 and
to ωt with σω = σ/104 for σ = 0, 1, ..., 10. For example,
σ = 10 produces a perturbation of 1 cm/s and approximately
0.06 deg/s (note that the maximum values of vt and ωt are
respectively around 0.8m/s and 3.5deg/s as can be seen, for

example, in Fig. 3). For each value of σ, 100 repetitions are
performed and the statistical results are represented with box-
plots. Each box-plot shows the median of the data, the lower
and upper quartiles, two whiskers representing the variability
outside quartiles, and the outliers as individual crosses.

The results using the four different strategies proposed in
Sections IV-A to IV-D are presented in Fig. 9. These strategies
were designed to adjust exactly to the limits of the FOV
constraints (see case of σ = 0 in Fig. 9(a)(c), where the
minimum values of the difference between β and |βri(σ)| are
given). As the results show, due to the presence of noise, in
practice the strategies need to be more conservative to fulfill
the constraints. That is to say, the value of FOV limit used to
compute the parameters (dr or θri) of the strategies has to be
smaller than the nominal one (β). This smaller FOV provides
a safety margin. In particular, the higher the noise the more the
formation scale needs to be reduced by the strategy. This can
be seen in Fig. 9(b), where for each repetition the maximum
values of the difference between dc(σ = 0) and dc(σ) are
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depicted (i.e., it represents the reduction of the formation
scale that maintains FOV constraints). This reduction of the
scale implies larger margins with respect to the FOV limits,
whereas the strategy adjusts the FOV limits with σ = 0,
see (a). Similar reasoning can be made in (c)-(d), where
this time, the maximum values of the difference between
θci(σ = 0) and θci(σ) are depicted in (d). In these previous
tests, the strategies tackle the presence of noise by adapting
the formation parameters to respect FOV limits. A different
test is presented in the last row of Fig. 9. There, the strategies
are calculated with ideal data with zero noise despite the actual
noise of the target velocities. Then, since the effect of noise is
not taken into account, performance deteriorates with respect
to the previous tests. These last tests illustrate what happens
if the strategy is computed with a priori information about the
target motion without taking into account noise and without
using safety margins in the FOV limits. The minimum values
of β minus |βri(σ)| are given in (e)-(f). Negative values mean
that the target leaves the FOV. In summary, the tests show that
more noise requires increasing the safety margin by reducing
the nominal FOV and then, the flexibility of the strategy is
reduced. The data in Fig. 9(a) and (c) also shows the reduction
in degrees of the FOV that allows to deal with noise. In other
words, it gives an idea of the safety margin in the FOV that
should be used in the presence of noise.

Another perturbation that may affect the performance of the
system is the latency of the estimations. Time delays arising
in practice include those associated with the acquisition of
information through the camera and its processing. The results
of the proposed strategies in the presence of time delays (τ =
0, 1, ..., 10 s) are given in Fig. 10. For each value of time delay
τ , the box-plots show the angular position of the target in the
cameras’ FOV along the simulation without delays, βri(τ =
0), minus the case with delays βri(τ). The simulation time
was 200s with time step of 0.1s. When time delay increases,
it can be seen that the values of βri(τ) grow with respect to
βri(τ = 0), i.e. the image projection of the target approaches
to the FOV limits. Eventually, the target may leave the FOV
for some time as shown in the plotted lines with dots, which
show for each τ the maximum value of |βri|. For τ = 0,
the target projection does not exceed the FOV limits (β =
30deg), whereas for increasing τ the target will leave the FOV
at some instants. Therefore, due to the presence of time delays,
the strategies also need to be more conservative to fulfill the
constraints by reducing the effective FOV to provide a safety
margin. Note that the effect of time delays is directly related
with the target trajectory. If the target motion is smooth the
perturbation effect is reduced whereas aggressive manoeuvres
of the target produce greater changes in vt and ωt and a higher
deterioration of the system performance due to time delays.

F. Constraints with target size and collision avoidance

In practical applications, the size of the target may require to
be considered. Next, we extend the proposed strategies taking
into account the size of the target. Let us consider the target
size is defined with a circle of radius R. This magnitude
is projected in the robot’s camera as βR. Considering the
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Fig. 9. System performance in the presence of noise for each strategy. Box-
plots in (a), (c), (e) and (f) show the minimum values of the difference between
β and |βri(σ)|. Box-plots in (b), and (d) respectively, represent the maximum
differences between dc(σ) (θci(σ)) with respect to the case without noise
dc(σ = 0) (θci(σ = 0)). Positive values in (a) and (c) mean the FOV
constraint is respected, whereas negative values in (e) and (f) mean that FOV
constraint is violated. See the text for detailed interpretation.
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Fig. 10. Performance in the presence of time delays. Each figure (a)-(d)
corresponds to a different strategy. For each value of time delay τ , the box-
plot shows the difference between the angular position of the target in the
cameras’ FOV along the simulation without delays, βri(τ = 0), with respect
to the case with delays βri(τ). Additionally, the line with dots shows the
maximum value of |βri| for each τ .



13

triangle defined by the camera and target with opposite side
R and hypotenuse di, the value of βR can be computed as
tan(βR) = R/

√
d2i −R2 with di the distance to the target.

Then, to ensure the target will remain within view, we reduce
the limit angle β of the FOV as (β − βR).

On the one hand, this constraint limits the minimum dis-
tance of the robot to the target since with small distances the
target may fill the full FOV of the camera. In particular, this
imposes an upper limit κU , given by κU = sin(β)/R. On the
other hand, taking into account this additional constraint in
(20) yields

dc =
1

κc
≤ di =

1

κi
=

∣∣∣∣ vt sin(±(β − βR))
ωt cos(±(β − βR)− θ0i)

∣∣∣∣ . (44)

The worst case of κi is κwc(t) = maxi(κi) and its maximum
value is κL = maxt(κwc). Then, extension of strategy in
Section IV-A yields that any constant value κc such that
κL ≤ κc ≤ κU will obey FOV constraints. Implementation
of strategy in Section IV-B also requires to modify constraint
(18) as | tanβri| ≤ | tan(±(β − βR))| with i = 1, ..., N .
Regarding strategies in Section IV-C and IV-D they can be
directly applied by considering the new FOV limits ±(β−βR).

Since, in reality, robots and target will have a certain
physical size, collisions between them must be prevented.
We define the additional constraints to guarantee collision
avoidance with the target and between the robots. Collision
of the robots with the target is avoided if di ≥ dmin where
dmin = Rt +Rr is the required minimum distance for safety
between the centers of the agents, where Rt and Rr are the
safety radii around the target and robot, respectively. Inter-
robot collisions need to be considered only between robots that
are physical neighbors in the formation, with dmin = 2Rr,
and there are two different cases. The first is the case in
which the formation scale is allowed to change (strategies in
Sections IV-A and IV-B). In this case, the smaller the scale of
the formation, the closer the robots are between them. From
geometry, we have the following constraint to avoid inter-robot
collisions:

d = di ≥
dmin

2 sin(|θ0i − θ0j |/2)
, (45)

with j = i + 1 for i = 1, ..., N − 1 and j = 1 for i = N .
The second case refers to the strategy in which the scale of the
formation is fixed and the robots can change their angular pose
in the formation (strategies in Sections IV-C and IV-D). In this
case, collisions are avoided with the following constraint:

|θi − θj | ≥ 2 arcsin
dmin
2 d0

, (46)

with j = i+ 1 for i = 1, ..., N − 1 and j = 1 for i = N . By
checking these additional conditions in the strategies proposed
earlier in Section IV we can guarantee that there will be no
collisions between the robots or with the target. Notice that
including these conditions of collision avoidance reduces the
solution space. In that case, the existence of solution depends
on the size of the agents and is not guaranteed.

G. Required information for strategy implementation

Strategies presented in Sections IV-A and IV-C only require
to know in advance the value of κtmax (i.e. the maximum
allowed curvature of the target’s trajectory), whereas strategies
presented in Sections IV-B and IV-D also require to know in
advance the full evolution of the target’s velocities (vt and ωt).
Additionally, all the presented strategies need the estimation
of the current velocities of the target (e.g. by means of a state
observer implemented in each robot) to perform a tracking
control able to follow the proposed reference trajectories in
real time while overcoming possible perturbations such as
noise in the measurements.

The proposed formulation is based on relative position
measurements to compute the robots’ velocities. Examples of
methods that estimate the position of a target using visual
relative measurements can be found in [13] or [34]. A different
approach is to use artificial markers, providing that adding
markers on the target is allowed, in a similar way to [35].
It is clear from (12)-(13) that the robots can implement
the strategy we propose using the measurements expressed
in their own independent local coordinate frames, without
requiring any common reference. Therefore, there is no need
of communications between the robots.

V. CONCLUSION

In this paper, we have addressed the task of enclosing and
tracking a dynamic target with the goal of keeping a prescribed
formation pattern around this target. In particular, we have
considered the problem of planning feasible paths for a set
of unicycle robots mounting vision sensors with limited FOV.
Therefore, the robots must follow appropriate trajectories to
maintain visibility of the target throughout their motion. A
video attachment presents several simulations to facilitate the
understanding of how the system evolves with the different
proposed strategies. The different strategies are implemented
in Matlab R© and the code is also provided as attached material
to facilitate evaluation and reproducibility of the proposal.

In this approach, we use circular formations for enclosing
the target. Simplicity and lack of occlusions are two of the
advantages of this choice. Notice however that the target is
not restricted to be in the centroid of the formation and our
approach can be applied to any formation. In particular, any
formation shape can be defined in polar coordinates with the
location of each robot with respect to the target (distance di
and angle θi). Then, we can use for instance the proposed
strategies to compute the scale factor di for each robot,
and then impose the worst-case value to all the robots or,
alternatively, we can modify the angles θi in the formation
while keeping the different prescribed constant distances of
each robot with the target.

We have proposed different strategies for the definition of
the adaptive formation. On the one hand, the scale of the
formation is adapted so the problem constraints are fulfilled by
defining appropriate robot trajectories. Existence of solution is
guaranteed with this strategy. On the other hand, some appli-
cations may require to maintain a fixed scale. For example,
for safety or accuracy issues the distance between the robots
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and the target must be certain constant value. In that case, we
propose another strategy in which the robots are allowed to
modify their relative position in the formation but keeping
a constant distance with the target. In order to design the
strategies of variable scale or angles of the formation, we
defined Gaussian-based functions. If there exist solutions to
the problem, our strategy using Gaussian-based functions is
guaranteed to provide a solution.

The presented simulations illustrate the correct performance
of the approach as well as its versatility, which could be
used to define additional strategies for solving new tasks. For
example, the task of obstacle avoidance could be implemented
if obstacle perception capabilities are available. The video
attachment shows an illustrative example in which the robot
formation tracks the target through a narrow corridor.

In the framework considered here, a fixed camera with
limited FOV is set on each robot. This configuration is easy
and robust to implement, and the FOV limitation is overcome
with the proposed strategies. Some alternatives to avoid FOV
constraints could be the use of a rotating camera on each
robot, or omnidirectional vision. However, these options add
hardware complexity, weight, or cost to the system, apart from
the additional complexity of processing image information of
non-standard camera systems.
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Guerrero, and S. Hutchinson, “Homography-based control scheme for
mobile robots with nonholonomic and field-of-view constraints,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
vol. 40, no. 4, pp. 1115–1127, August 2010.

[27] P. Salaris, L. Pallottino, and A. Bicchi, “Shortest paths for finned,
winged, legged, and wheeled vehicles with side-looking sensors,” In-
ternational Journal of Robotics Research, vol. 31, no. 8, pp. 997–1017,
2012.

[28] A. Cristofaro, P. Salaris, L. Pallottino, F. Giannoni, and A. Bicchi, “On
time-optimal trajectories for differential drive vehicles with field-of-view
constraints,” in 53rd IEEE Conference on Decision and Control, Dec
2014, pp. 2191–2197.

[29] J.-B. Hayet, H. Carlos, C. Esteves, and R. Murrieta-Cid, “Motion
planning for maintaining landmarks visibility with a differential drive
robot,” Robotics and Autonomous Systems, vol. 62, no. 4, pp. 456–473,
2014.

[30] T. Nageli, J. Alonso-Mora, A. Domahidi, D. Rus, and O. Hilliges, “Real-
time motion planning for aerial videography with dynamic obstacle
avoidance and viewpoint optimization,” IEEE Robotics and Automation
Letters, vol. 2, no. 3, pp. 1696–1703, July 2017.

[31] M. M. Asadi, A. Ajorlou, and A. G. Aghdam, “Cooperative control of
multi-agent systems with limited angular field of view,” in American
Control Conference, June 2012, pp. 2388–2393.

[32] D. Panagou and V. Kumar, “Cooperative visibility maintenance for
leader-follower formations in obstacle environments,” IEEE Transac-
tions on Robotics, vol. 30, no. 4, pp. 831–844, August 2014.
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