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Abstract

We present a new vision-based control approach which drives autonomously a nonholo-
nomic vehicle to a target location. The vision system is a camera fixed on the vehicle and
the target location is defined by an image taken previously in that location. The control
scheme is based on the trifocal tensor model, which is computed from feature correspon-
dences in calibrated retina across three views: the initial, current and target images. The
contribution is a trifocal-based control law defined by an exact input-output linearization of
the trifocal tensor model. The desired evolution of the system towards the target is directly
defined in terms of the trifocal tensor elements by means of sinusoidal functions without
needing metric or additional information from the environment. The trifocal tensor presents
important advantages for visual control purposes because it is more robust than two view
geometry as it includes the information of a third view and, contrary to the epipolar geom-
etry, short baseline is not a problem. Simulations show the performance of the approach,
which has been tested with image noise and calibration errors.

1 Introduction

Many contributions have been presented to solve the problem of visual control [1],
[2], but still it is a growing field of research. In the framework considered here, the
only sensor is a fixed monocular system mounted on a vehicle. We also consider
the vehicle with nonholonomic motion constraints. The desired location is defined
by the target image taken previously at that location. We present a visual control
approach which relies on image information. The information extracted from the
initial, current and target images (where the current image is taken by the vehicle’s
camera at the actual location) is used by the control law to drive the vehicle to the
target.

A direct way to face the problem of extracting information from the images is to
rely on landmarks or particular features, which are extracted and tracked, directly
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Fig. 1. Diagram of the trifocal tensor-based control loop.

included in the control scheme [3], [4]. In favour of robustness, a good choice
is to process the image information through a geometric model relating the ac-
quired images. In this case, there is less chance that spurious correspondences from
the set of matches could reduce the control performance. An early work [5] based
on the epipolar geometry, where the image information relies on the epipoles, has
been followed by others [6] [7] [8]. Nevertheless, the epipolar geometry has main
drawbacks, one is that the fundamental matrix is ill-conditioned with short base-
line and therefore, an epipolar-based control eventually becomes unstable. Another
drawback is that the epipolar geometry becomes degenerated with planar scenes,
which are common in man-made environments. A natural way to overcome these
drawbacks is using the homography defined by a plane of the scene. This geo-
metric model is robust and well defined with short baseline. A well known hy-
brid method is [9], [10], more examples of visual control based on homographies
are [11], [12], [13], [14], [15], [16]. However, the performance of a homography-
based control can be affected if there is no dominant plane in the scene. This prob-
lem can be solved through virtual planes [10]. Nevertheless, estimations based on
virtual planes with wide baseline are not robust to mismatches, noise or occlusions.

Here we propose a new visual control based on the trifocal tensor. This tensor en-
capsulates the intrinsic geometry between three views and it is independent of the
observed scene [17]. This geometric model has several advantages: It is more ro-
bust than the two view geometry models as it involves the information given by a
third view, and the set of correspondences obtained is more robust to outliers. Ad-
ditionally, the trifocal tensor is still useful with short baseline, whereas the epipolar
geometry fails. The problem of localization has been discussed in [18], [19], [20]
through the 1D trifocal tensor and with the 2D trifocal tensor [21], [22] or using
stereo vision [23]. The 1D trifocal tensor has been used for visual control [24], but
we have chosen the 2D trifocal tensor rather than 1D to take advantage of all the in-
formation available in the 2D images. In our approach, rather than decomposing the
trifocal tensor to obtain pose information we design a new method which performs
the control directly on the trifocal tensor elements. This methodology is inspired
by the same background idea as the homography-based control design of [16]. The
control law is obtained by an exact input-output linearization of the system, where
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the desired trajectories of the tensor entries are defined in order to reach the desired
location. In our approach, the trifocal tensor is computed from three views: the ini-
tial, current and target images. So, at the start, the initial and current images are the
same and, as the vehicle moves towards the target, the current and target images
get similar. A diagram of the visual control law presented is shown in Fig. 1. The
input of the control are the initial, current and target images and the output are the
velocities that lead the vehicle to the target location.

The paper is organized as follows. The trifocal tensor within our framework is
described in Section 2. The vision-based control law is developed by an input-
output linearization through the trifocal tensor in Section 3. Stability analysis and
experimental validation are given in Sections 4 and 5, respectively. Conclusions are
discussed in Section 6.

Notation: In some equations we use for readability the notationsφ = sin φ and
cφ = cos φ. We denote the trifocal tensor deduced theoretically withT′. Later, we
normalize the trifocal tensor to a fixed scale and it is denoted withT.

2 The Trifocal Tensor

Three perspective images can be geometrically linked by the trifocal tensor. This
tensor only depends on the relative locations between the three views and the
internal calibration parameters of the cameras. Therefore, the trifocal tensor is
independent of the observed scene. The geometric relation between three views
given by the trifocal tensor is similar to the geometric relation given by the fun-
damental matrix between two views. Some publications about the trifocal tensor
are [25], [21], [26], [17], [27].

The trifocal tensor can be deduced in several ways, here we obtain the geometric
expression starting from the camera locations [17]. A point in the 3D space can be
represented asX = (X, Y, Z, 1)T . On the other hand, a point can be represented
in the three images with homogeneous coordinates in a calibrated retina as

u = (u1, u2, 1)T , v = (v1, v2, 1)T , w = (w1, w2, 1)T . (1)

Let us suppose that the three images are taken with a calibrated camera, represented
by the pinhole model. The projection of a 3D pointX in the three images gives:

λ1u = P1X , λ2v = P2X , λ3w = P3X , (2)

whereλ1, λ2 andλ3 are scale factors. The projection matrices of the calibrated
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cameras in a common reference system are

P1 = [R1|t1] , P2 = [R2|t2] , P3 = [R3|t3] , (3)

where the camera rotations and translations are defined as follows. The global
reference system is depicted in Fig. 2 with the origin attached to the third cam-
era. The locations of the cameras in the global reference areC1 = (x1, y1, z1),
C2 = (x2, y2, z2) andC3 = (0, 0, 0) with their respective orientationsφ1, φ2 and
φ3 (with φ3 = 0). Given that we consider planar motion we havey1 = 0, y2 = 0.
Then, the camera rotation matrices are

R1 =




cφ1 0 sφ1

0 1 0

−sφ1 0 cφ1




,R2 =




cφ2 0 sφ2

0 1 0

−sφ2 0 cφ2




, (4)

andR3 = I3. The camera translations in local coordinate systems (Fig. 2) are
expressed as

t1 =




tx1

ty1

tz1




= −R1C1 =




−x1 cos φ1 − z1 sin φ1

0

x1 sin φ1 − z1 cos φ1




. (5)

t2 =




tx2

ty2

tz2




= −R2C2 =




−x2 cos φ2 − z2 sin φ2

0

x2 sin φ2 − z2 cos φ2




. (6)

andt3 = −R3C3 = (0, 0, 0)T . The expressions given in (2) can be gathered in
matrix formA ∈ R9×7 as

A




X

−λ1

−λ2

−λ3




= 0 , with A =




P1 u 0 0

P2 0 v 0

P3 0 0 w




. (7)

The previous equation must hold for any point of the scene and therefore the max-
imum rank of matrixA is six. Thus, any7 × 7 minor of A has determinant zero.
This gives the trilinear relations that define the trifocal tensor [17]. Two rows have
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Fig. 2. Local coordinate systems (left) and global reference system (right) defined on the
optical center of the camerasC1, C2 andC3.

to be removed to develop each minor. We take the three rows given by the third
cameraP3 (which is in canonical form[I|0]), and two rows from each ofP1 and
P2. Thus, several determinants are obtained depending on the rows selected. From
these determinants the trifocal tensor elements are given up to scale as follows

T ′
111 = −tx1 cos φ2 + tx2 cos φ1

T ′
113 = tx1 sin φ2 + tz2 cos φ1

T ′
131 = −tz1 cos φ2 − tx2 sin φ1

T ′
133 = tz1 sin φ2 − tz2 sin φ1

T ′
212 = −tx1

T ′
221 = tx2

T ′
223 = tz2

T ′
232 = −tz1

T ′
311 = −tx1 sin φ2 + tx2 sin φ1

T ′
313 = −tx1 cos φ2 + tz2 sin φ1

T ′
331 = −tz1 sin φ2 + tx2 cos φ1

T ′
333 = −tz1 cos φ2 + tz2 cos φ1

(8)

The other elements of the trifocal tensor are zero as a result of the planar motion
constraint.

The image points are used in calibrated coordinates. In this case and considering
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planar motion, the next expressions relating elements of the trifocal tensor hold

−T ′
111 + T ′

133 + T ′
313 + T ′

331 = 0 ,

T ′
113 + T ′

131 + T ′
311 − T ′

333 = 0 .
(9)

In our visual control framework,(x1, z1, φ1) is the initial location of the vehicle,
(x3, z3, φ3) = (0, 0, 0) is the target location and(x2(t), z2(t), φ2(t)) is the current
location that varies as the vehicle moves. The goal is to drive the vehicle to the
target location. Therefore the objective of the control law is to drive the vehicle to
(x2, z2, φ2) = (0, 0, 0). Therefore, when the vehicle is in the desired target location
we have the following values for the trifocal tensor elements

T ′d
111 = T ′d

212 = T ′d
313 =−tx1 , (10)

T ′d
131 = T ′d

232 = T ′d
333 =−tz1 , (11)

T ′d
113 = T ′d

133 = T ′d
221 = T ′d

223 = T ′d
311 = T ′d

331 = 0 . (12)

The trifocal tensor can be computed from feature correspondences across the three
views. The image features can be points, lines or a combination of both. The trifocal
tensor is defined by 27 parameters, and 26 up to scale. Each triplet of corresponding
image points gives 4 equations linearly independent (this can be derived from the
trilinear relations expanded from (7)). Therefore, with a minimum set of 7 corre-
spondences of points the trifocal tensor can be computed. We can also include the
calibration constraints (9) in the algorithm and then, a minimum of 6 correspon-
dences of points are required. Moreover, considering the planar motion constraint,
the trifocal tensor is defined by 12 parameters, 11 up to scale, and it can be com-
puted from a minimum set of 3 correspondences of points. In practice, we consider
the presence of image noise and outliers, and therefore the RANSAC method is
used [28]. This robust method proceeds by repeatedly generating hypothesis from
a minimal set of points. The probability of outliers in the samples is reduced with
their smaller size, and the method performance is improved. Thus, it is an advan-
tage to reduce the minimal set of points from 7 in the general tensor to 3 in the case
of planar motion. Details for the automatic computation of the trifocal tensor can
be found in [17], [26], [29].

3 Control Law

In this section the control law of the vision-based approach is presented. An overview
of the visual control law has been depicted in the diagram of Fig. 1. Image fea-
tures are extracted from the initial and target images, and they are matched with
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the features extracted from the current image. Next, the trifocal tensorTijk(t) is
computed from the feature correspondences. The input of the control is defined by
νijk(t) which depends on the trifocal tensor and its desired valueTd

ijk(t). The con-
trol law gives the velocities required to drive the vehicle to the target location. This
section is organized as follows. First, we present the model of the system relying
on the trifocal tensor as output (3.1). Next, the control of the nonlinear system is
transformed to a tracking problem where the control is directly performed on the
trifocal tensor elements (3.2). Finally, the desired trajectories of the trifocal tensor
elements are defined by means of time-varying functions (3.3).

3.1 Model of the System

The nonlinear system of the mobile platform with the vision system to be controlled
is described by





ẋ = f(x,u)

y = Tijk(x)
(13)

whereu = (v, ω)T denotes the input vector, which includes the translational (v(t))
and rotational (ω(t)) velocities of the vehicle, andy denotes the output vector with
Tijk(x, t) the trifocal tensor elements. The configuration of the robot system is
given byx = (x, z, φ)T . The particular nonholonomic differential kinematics of
the vehiclef(x,u) expressed in state space form as a function of the translation
and rotation velocities of the robot (v, ω) is as follows




ẋ

ż

φ̇




=




− sin φ

cos φ

0




v +




0

0

1




ω . (14)

3.2 Input-Output Linearization through the Trifocal Tensor

In the model of the system (13) the outputy (the trifocal tensor) is only indirectly
related to the inputu (the robot velocities). Therefore, it is not easy to see how
the inputu can be designed to control the desired evolution ofy. We propose to
carry out an exact input-output linearization to find a direct relation betweeny
andu [31, 32]. So, we transform the problem of nonlinear control into a tracking
problem where the desired evolutions of the trifocal tensor elements are defined.

As previously said, the trifocal tensor is computed from three images, the image
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at the target location(x3, z3, φ3) = (0, 0, 0), the image taken at the initial loca-
tion (x1, z1, φ1) = constant and the image at the current location, which varies
as the vehicle moves(x2(t), z2(t), φ2(t)). The derivatives of all the trifocal tensor
elements with respect to time are now obtained. The derivatives of two elements
are shown in detail as example. From (8) we have for the first element:

T ′
111 = −tx1cφ2 + tx2cφ1 = −tx1cφ2 − x2cφ1cφ2 − z2cφ1sφ2 (15)

Its derivative with respect to time gives

Ṫ ′
111 = tx1φ̇2sφ2 + cφ1(−ẋ2cφ2 + x2φ̇2sφ2 − ż2sφ2 − z2φ̇2cφ2) (16)

Introducing the kinematic model (14) and (5), (6) we obtain

Ṫ ′
111 = tx1ωsφ2 + cφ1 (v(sφ2cφ2 − sφ2cφ2) + ω(x2sφ2 − z2cφ2))

Ṫ ′
111 = (tx1sφ2 + tz2cφ1) ω . (17)

The derivative of another trifocal tensor element is given as example following the
same steps,

T ′
113 = tx1sφ2 + tz2cφ1 = tx1sφ2 + x2cφ1sφ2 − z2cφ1cφ2

Ṫ ′
113 = tx1φ̇2cφ2 + cφ1(ẋ2sφ2 + x2φ̇2cφ2 − ż2cφ2 + z2φ̇2sφ2)

Ṫ ′
113 = tx1ωcφ2 + cφ1

(
−v(s2

φ2
+ c2

φ2
) + ω(x2cφ2 + z2sφ2)

)

Ṫ ′
113 = −cφ1 v + (tx1cφ2 − tx2cφ1) ω . (18)

Note that no metric information, depth estimation or trifocal tensor decomposition
is used in our approach. Therefore, the unknown scale of the trifocal tensor is a
key point and we need to define a common scale for the control law during the
navigation. For this reason we normalize the trifocal tensor in order to get a fixed
scale withT ′

N . We need to define the value ofT ′
N guaranteing no singularity, and

then we have selected constant elements of (8) not equal to zero as follows

Tijk =
T ′

ijk

T ′
N

, (19)

with T ′
N = sign(T ′

232)
√

(T ′
212)

2 + (T ′
232)

2 , (20)

whereT ′
ijk are the trifocal tensor elements deduced theoretically from the camera

locations andTijk are the normalized trifocal tensor elements. The value ofT ′
N only
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Fig. 3. Examples of several robot motions starting from different locations showing the
evolution ofx andz coordinates (left). For these different motions, we show the evolution
of T111, selected for the control (middle) andT133, not used in the control (right).

is zero if the vehicle is initially in the target position (x1 = z1 = 0). Therefore we
always haveT ′

N 6= 0 when the control is required to reach the target. Note also that
this scale factor does not affect the time derivatives since it is a constant value. So,
we finally simplify and normalize the derivatives of the elements by using (8) and
(19). The same procedure is followed for all the trifocal tensor elements and the
following expressions are obtained:

Ṫ111 = T113 ω

Ṫ113 = − cos φ1

T ′N
v − T111 ω

Ṫ131 = T133 ω

Ṫ133 = sin φ1

T ′N
v − T131 ω

Ṫ221 = T223 ω

Ṫ223 = −v − T221 ω

Ṫ311 = T313 ω

Ṫ313 = − sin φ1

T ′N
v − T311 ω

Ṫ331 = T333 ω

Ṫ333 = − cos φ1

T ′N
v − T331 ω

(21)

After the first derivative we have already obtained a linear relation between the sys-
tem input and output. From the derivative of the available trifocal tensor elements
(21), six of them have been selected for the control of the system. Two velocities
of the system are controlled and, in principle, two elements of the trifocal tensor
would be enough. However a two-element based control would fail in solving the
control task from some location of the workspace (i.e. there are locations of the
workspace in which the robot is not controllable with these particular elements).
Additionally, with the selection of more elements we can guarantee no singularity
of the control as explained later. The selection of the elements has been studied ex-
perimentally and the best elements to work with have been found to beT111, T113,
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T131, T313, T331 andT333. Plots of one of the elements selected for the control and
other discarded are given as example (Fig. 3). Several simulations are carried out
in which the robot starts from different initial locations and navigates to the target
location. The evolution of the robot coordinates (x, z) is shown in Fig. 3(left). The
evolution of one of the elements selected for the control (T111) and one not used
in the control (T133) are shown in Fig. 3(middle) and (right), respectively. It can be
seen that the different plots of the selected element are simpler than the one not
selected and, additionally, they have a straightforward relation with respect to the
evolution of the robot coordinates. Given that no metric information is used, this
criterion for the selection simplifies subsequently the design of the desired trajecto-
ries of the control inputs. With a similar analysis for all the elements of the trifocal
tensor, six have been selected for the control, and we have

Ṫijk =




Ṫ111

Ṫ113

Ṫ131

Ṫ313

Ṫ331

Ṫ333




= L




v

ω


 , (22)

whereṪijk ∈ R6 and the interaction matrixL ∈ R6×2 is

L =




0 T113

− cos φ1

T ′N
−T111

0 T133

− sin φ1

T ′N
−T311

0 T333

− cos φ1

T ′N
−T331




. (23)

The trifocal tensor elements have been already computed and normalized and the
value ofφ1 is solved in Section 3.3. It turns out that the value ofT ′

N is also required
in the L matrix. However,T ′

N is different with each trifocal tensor and different
values ofT ′

N in theL matrix would introduce different scales for the velocity. Thus,
given thatT ′

N appears as a parameter of the input (v), we have transferred its value
as a constant gain of the control. This selection ofT ′

N in theL matrix is tested in
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Section 5. Solving (22) for the control outputs we have




v

ω


 = L+νijk = L+




ν111

ν113

ν131

ν313

ν331

ν333




, (24)

whereL+ ∈ R2×6 is the pseudo-inverse ofL andνijk ∈ R6 are the new inputs
defined as

νijk = Ṫ d
ijk − k(Tijk − T d

ijk) , (25)

k > 0 being constant gain and(ijk) = {111, 113, 131, 313, 331, 333}. The tracking
error is defined ase = Tijk − Td

ijk with T d
ijk the desired evolution of the trifocal

tensor elements defined in Section 3.3.

The interaction matrix of the control (23) is not squared and we need to compute
the left pseudo-inverse matrixL+

L+ = (LT L)−1LT . (26)

We need to guarantee that there is no singularity and therefore thatdet(LT L) 6= 0.
The expression of this determinant results in

det(LT L) =
(1 + cos2 φ1)

T ′2
N

(T 2
111 + T 2

113 + T 2
133 + T 2

311 + T 2
331 + T 2

333)

− 1

T ′2
N

(T111 cos φ1 + T331 cos φ1 + T311 sin φ1)
2 . (27)

This determinant only is zero if the initial position is on the target position, and so
(x1, z1) = (0, 0) and (x2, z2) = (0, 0), which is not our case. Therefore, the control
matrixL is never singular. Additionally, the control law will generate velocities of
zero for the system ifνijk belongs to the nullspace ofLL+, this issue is analyzed
in Section 4.
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3.3 Desired Trajectories of the Control Input

Once the input-output linearization is carried out and the control law is obtained, the
desired evolution of the input control in order to reach the target has to be defined.
The input control consists of the tensor elementsT111, T113, T131, T313, T331 and
T333. Next, the objective is to define smooth functions which lead from the initial
to the final desired values of the trifocal tensor elements.

If we analyze the expressions that define the tensor elements (8), we can see that,
for those used as input of the control, we can make a classification. On the one
hand, there are trifocal tensor elements depending directly ontz2 (T113, T313 and
T333), on the other hand there are elements that depend ontx2 (T111, T131 andT331).
For those elements depending ontz2 we define sinusoids that guarantee smooth
motion of the vehicle towards the target. Although we design the desired trajecto-
ries of the control input in terms of sinusoids, they could also be defined with other
different criteria, for example using polynomials or parabolic functions [7]. The
use of sinusoidal inputs for steering systems was discussed in [30]. That work tack-
les the problem of motion planning using sinusoids and considering nonholonomic
constraints. There, the use of sinusoidal inputs for steering systems was discussed
showing their advantages. The other elements, depending ontx2, are highly related
on how the lateral and orientation errors are corrected. Due to the nonholonomic
constraints of the mobile platform, both functions have to be defined properly in
such a way they evolve accordingly to reach successfully the target location. This
issue, that was handled in [30] by constraining the initial configuration of the ro-
bot, is addressed here by the closed-loop tracking design. Therefore, the desired
trajectories given as a function ofψ(t) are autonomously modified by the current
value of this parameter in such a way that motion constraints are overcome. Thus,
we propose the continuous and time differentiable functions for the elements of the
input control to be tracked as:

If (0 ≤ t ≤ tb)





T d
111(t) = (T111(0)− T212)

ψ(t)
ψ(0)

+ T212

T d
113(t) = T113(0)

2
+ T113(0)

2
cos

(
πt
tb

)

T d
131(t) = (T131(0)− T232)

ψ(t)
ψ(0)

+ T232

T d
313(t) = T313(0)+T212

2
+ T313(0)−T212

2
cos

(
πt
tb

)

T d
331(t) = T331(0) ψ(t)

ψ(0)

T d
333(t) = T333(0)+T232

2
+ T333(0)−T232

2
cos

(
πt
tb

)

(28)
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Fig. 4. Examples of the functions used to define the desired evolution of the trifocal tensor
elements. These functions are defined along the time intervals(0, ta), (ta, tb) and(ta,∞).

If (tb < t < ∞)





T d
111(t) = T212

T d
113(t) = 0

T d
131(t) = T232

T d
313(t) = T212

T d
331(t) = 0

T d
333(t) = T232

(29)

wheretb is the time defined to reach the target location. The final desired values
of the trifocal tensor elements are taken from (12) and (8). These previous func-
tions are summarized and depicted qualitatively in Fig. 4(a). Functions for elements
T113, T313 andT333 are defined following a sinusoid depicted in the figure asT cos(t)
where the initial valueT cos(0) of the corresponding element is given by the trifo-
cal tensor estimated att = 0 and the final valueT cos(tb) is given by (12). The
other type of function for elementsT111, T131 andT331 are denoted in the figure
asTψ(t), where initial and final values follow the same reasoning, but in this case
the evolution of the function is related withψ. We defineψ = − arctan(x2/z2) as
the angular coordinate respect the worldz-axis. Thus, this function ensure that the
φ-error is corrected accordingly tox2 andz2.

We propose the expressions to compute the orientation in the initial and current
locations,φ1 andφ2 respectively, as a function of the trifocal tensor elements. We
use the expressions of the trifocal tensor (8) and the relative translation vectort2

(6) to obtain

φ1 = arcsin
(

T232 T313 − T212 T131

T232 T223 + T212 T221

)
. (30)
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φ2(t) = arccos
(

T223 T131 + T221 T313

T223 T232 + T221 T212

)
. (31)

Finally, ψ can be computed from the trifocal tensor as

ψ(t) = arctan

(
T223 sin φ2 − T221 cos φ2

T223 cos φ2 + T221 sin φ2

)
. (32)

Note that these expressions are independent of the scale of the estimated trifocal
tensor.

The initial location of the mobile platform is not restricted except that part of the
scene has to be shared between the initial and target image in order to compute
properly the trifocal tensor from corresponding image points. In the desired evo-
lution of the trifocal tensor elements defined in (28) and (29) we suppose that the
initial orientation is (ψ − φ2 < π), allowing a smooth motion towards the target
while correcting simultaneously lateral and orientation error. At the beginning of
the navigation we check if (ψ−φ2 < π) holds, otherwise an initial phase is needed
before following the desired evolution of the trajectories expressed by (28) and
(29). Thus, if two phases are required, we defineT d

111, T d
131 andT d

331 as follows
(while T d

113, T d
313 andT d

333 remain the same),

If (0 ≤ t ≤ ta)





T d
111(t) =

T111(0)+T d
111(ta)

2
+

T111(0)−T d
111(ta)

2
cos

(
πt
ta

)

T d
131(t) =

T131(0)+T d
131(ta)

2
+

T131(0)−T d
131(ta)

2
cos

(
πt
ta

)

T d
331(t) =

T331(0)+T d
331(ta)

2
+

T331(0)−T d
331(ta)

2
cos

(
πt
ta

)
(33)

If (ta < t ≤ tb)





T d
111(t) = (T111(ta)− T212)

ψ(t)
ψ(ta)

+ T212

T d
131(t) = (T131(ta)− T232)

ψ(t)
ψ(ta)

+ T232

T d
331(t) = T331(ta)

ψ(t)
ψ(ta)

(34)

If (tb < t < ∞)





T d
111(t) = T212

T d
131(t) = T232

T d
331(t) = 0

(35)
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where ta is the time defined to perform the first phase andtb has been defined
previously. The only difference of these functions with the ones defined in (28) lies
in the phase defined in (33) with(0 ≤ t ≤ ta). This new function denoted asTψ(t)
has been depicted qualitatively in Fig. 4(b). There, the desired orientation atta is
defined qualitatively in terms of trifocal tensor elements. The values ofTψ(ta), i.e.
T d

111(ta), T d
131(ta) andT d

331(ta), are defined experimentally as detailed in section 5.
These goal values are not critical because the control allows a high margin on the
orientation for the next phase.

4 Stability Analysis

In this section we analyze the stability of the proposed control law in the sense of
Lyapunov[33]. As we measure the state of the system through the trifocal tensor
elements we need first to ensure that when their desired values are reached the
vehicle is actually in the target location. Thus, we need to prove that there is only
one equilibrium state and it is the desired target location.

Proposition 4.1 The vehicle is in the target location if and only if the desired val-
ues of the selected trifocal control elements have been reached. Therefore, the de-
sired target location(x2, z2, φ2) = (0, 0, 0) is the only equilibrium state of the
system.

Proof. It is straightforward to see that, if the vehicle is in the target location, the
desired values of the trifocal tensor have been reached (12). Next we show that if the
desired values of the trifocal tensor have been reached the vehicle is in the target
location. From (8) we make equal some of the equations to the desired trifocal
tensor values obtaining the following expressions

T ′
111 − T ′d

111 = tx1(1− cos φ2) + tx2 cos φ1 = 0 (36)

T ′
131 − T ′d

131 = tz1(1− cos φ2)− tx2 sin φ1 = 0 (37)

T ′
313 − T ′d

313 = tx1(1− cos φ2) + tz2 sin φ1 = 0 (38)

T ′
333 − T ′d

333 = tz1(1− cos φ2) + tz2 cos φ1 = 0 (39)

From (36) and (38) we obtain

tx2 cos φ1 − tz2 sin φ1 = 0 . (40)

Similarly, from (37) and (39) we obtain

tx2 sin φ1 + tz2 cos φ1 = 0 . (41)
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Substitutingtx2 from (40) into (41) we have:

tz2
sin2 φ1

cos φ1

+ tz2 cos φ1 = 0 . (42)

Which givestz2 = 0 since sin2 φ1

cos φ1
+ cos φ1 = 1

cos φ1
6= 0. Similarly, substitutingtz2

from (41) into (40) we have:

tx2
cos2 φ1

sin φ1

+ tx2 sin φ1 = 0 . (43)

And thereforetx2 = 0 since cos2 φ1

sin φ1
+ sin φ1 = 1

sin φ1
6= 0. Substitutingtx2 = 0

or tz2 = 0 in (8), we haveφ2 = 0 and finallyx2 = 0 and z2 = 0. Therefore
(x2, z2, φ2) = (0, 0, 0) is the only equilibrium state of the system reached when the
desired values of the trifocal tensor elements used in the control are achieved.2

We consider the error to minimize ase = Tijk − Td
ijk and define the candidate

Lyapunov function by the squared error norm

V (x, t) =
1

2
||e||2 . (44)

We need to prove thatV is positive definite,V̇ is negative definite andV is radially
unbounded. The functionV is positive definite given thatV > 0 for all x 6= 0
andV (0, t) = 0 (see proposition 4.1). We also have thatV is radially unbounded
given thatV (x, t) → ∞ as‖x‖ → ∞ . Next, we study if the derivativėV (x, t) is
negative definite. The Lyapunov candidate function derivative is

V̇ = eT ė

= eT
(
L(v, ω)T − Ṫd

ijk

)

= eT
(
LL+νijk − Ṫd

ijk

)

= eT
(
LL+(Ṫd

ijk − ke)− Ṫd
ijk

)

=−keT LL+ e + eT
(
LL+ − I

)
Ṫd

ijk (45)

The global asymptotic stability of the system would need first thatLL+ > 0. How-
ever this matrix is not definite positive sinceLL+ ∈ R6×6 is at most of rank2.
Therefore there exist a null space in such a way thatνijk ∈ Ker(L+) corresponds
to local minima (i.e. the control law gives zero velocities despite the target has not
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been reached [34]). In particular, we have shown with (27) that the rank(LL+) = 2
and then, dim(Ker(L+))= 4. A basis of the null space ofL+ is defined as follows








−T133

0

T113

0

0

0







T311 − tan(φ1)T111

− tan(φ1)T113

0

T113

0

0







−T333

0

0

0

T113

0







T331 − T111

−T113

0

0

0

T113








(46)

This does not imply that local minima always exist, because any configuration be-
longing to the nullspace must hold the trifocal tensor constraints as well. Local min-
ima occur only with particular robot configurations, and we have not obtained gen-
eral expressions because of the complexity of the computations. However, extensive
simulations show that the area of convergence is very large in practice within the
workspace.

Since V̇ (0, t) = 0 and V̇ (x, t) < 0 for all x 6= 0 cannot be guaranteed, only
local asymptotic stability can be obtained. Following [1], we define the new error
e′ = L+e to study local asymptotic stability. The time derivative of this error is
given by

ė′ =L+ė + L̇+e

=L+
(
L(v, ω)T − Ṫd

ijk

)
+ L̇+e . (47)

From [35] and [1],L̇+e can be written asO(v, ω)T with O ∈ R2×2, and in the
previous expressionO → 0 andṪd

ijk → 0 if e → 0. Using the control outputs (24)
we obtain

ė′ =
(
L+L + O

)
(v, ω)T − L+Ṫd

ijk

=
(
L+L + O

)
L+Ṫd

ijk − k
(
L+L + O

)
L+e− L+Ṫd

ijk

=
(
L+L + O− I

)
L+Ṫd

ijk − k
(
L+L + O

)
e′ (48)

To obtain the local asymptotic stability we consider the linearized system around
e = 0,

ė′ = −kL+Le′ , (49)
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Fig. 5. Examples of images taken from the virtual scene. First row is the initial image,
second row is a current image taken during the navigation and third row is the target im-
age. Second column shows the SIFT matches between initial-current and current-target
images. Third column shows the matches remaining across the three views after the robust
computation of the trifocal tensor. Video attachments show the complete sequence of two
simulations (videos 1 and 2).

which is locally asymptotically stable in a neighborhood ofe = 0 if L+L > 0,
whereL+L ∈ R2×2. If the estimation ofL+ is not too coarse,L+L > 0 is ensured.

5 Experimental Validation

Several simulations are presented to show the validity of the approach and its per-
formance with image noise and calibration errors. The virtual scene has been cre-
ated using the Persistence of Vision Ray-Tracer1 (POV-RayTM ). The scene con-
sists of a checkered floor and walls with real images attached as posters. The virtual
scene is rendered and projected into the image plane through a pin-hole camera
model in each control loop. The coordinates of the image points are transformed to
calibrated coordinates before the trifocal tensor computation. Examples of an ini-
tial, current and target images obtained during a simulation is given in Fig. 5. The
image size is640× 480 pixels. The putative set of matches is obtained by means of
SIFT features [36], which are highly invariant to scale and rotation. Mismatches are
eliminated through the robust estimation of the trifocal tensor (Fig. 5), we refer for
details to [26], [17]. In the following experiments the control gain has been tuned
to k = 1. The values ofta andtb used in the definition of the desired evolution of
the trifocal tensor elements areta = 0 or 50 s and(tb − ta) = 100 s. These val-

1 http://www.povray.org/

18



0 20 40 60 80 100 120 140 160 180 200
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Time (s)

T
11

1

0 20 40 60 80 100 120 140 160 180 200
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Time (s)

T
11

3

0 20 40 60 80 100 120 140 160 180 200
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

Time (s)

T
31

1

0 20 40 60 80 100 120 140 160 180 200
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time (s)

T
31

3

(a) Evolution ofT111 (b) Evolution ofT113 (c) Evolution ofT311 (d) Evolution ofT313

0 20 40 60 80 100 120 140 160 180 200
0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Time (s)

T
13

1

0 20 40 60 80 100 120 140 160 180 200
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (s)

T
13

3

0 20 40 60 80 100 120 140 160 180 200
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time (s)

T
33

1

0 20 40 60 80 100 120 140 160 180 200
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

T
33

3

(e) Evolution ofT131 (f) Evolution ofT133 (g) Evolution ofT331 (h) Evolution ofT333

0 50 100 150 200
−5

−4

−3

−2

−1

0

1

2

3

Time (s)

x 
(m

)

0 50 100 150 200
−16

−14

−12

−10

−8

−6

−4

−2

0

2

Time (s)

z 
(m

)

0 50 100 150 200
−30

−20

−10

0

10

20

30

40

Time (s)

R
ot

at
io

n 
(d

eg
)

−10 −5 0 5
−15

−10

−5

0

x (m)

z 
(m

)

(i) Lateral motion (x) (j) Forward motion (z) (k) Robot rotation (φ) (l) Robot paths

Fig. 6. Three simulations with initial locations at(−2,−10,−20◦) with solid line,
(3,−12, 30◦) with dashed line and(−5,−15,−10◦) with dotted line. The target location
is (0, 0, 0◦). Video attachment 3 shows additional examples.

ues have been tuned experimentally, higher values give lower robot velocities and
lower values give faster motion.

Three simulations from different initial locations are presented in Fig. 6. The three
examples are superposed with different line style. The evolution of the trifocal ele-
ments along time are shown in Fig. 6(a)-(h). The trifocal tensor elements converge
to their desired values as defined in (29). The evolution of thex-coordinate, thez-
coordinate and the orientation is shown in Fig. 6(i)-(k). The motion of the vehicle
is also shown in Fig. 6(l). As it can be seen, the resultant motion is smooth and con-
verges properly to the target location. Depending on the initial location of the vehi-
cle, the desired trifocal tensor element trajectories have to be defined in two phases
(33). An example which needs two phases is(−5,−15,−10◦) in Fig. 6. In this case
the values ofT d

111(ta), T
d
131(ta) andT d

331(ta) are required qualitatively. These values
have been chosen experimentally whereT d

111(ta) is defined as2(T111(0) + T212),
T d

131(ta) is defined as80% of T131(0) andT d
331(ta) is defined as20% overT331(0).

These are valid values in all the work space, taking into account that the motion of
the vehicle is restricted by the limited camera field of view and only direct motion
towards the target is allowed. In case that another particular evolution of the vehi-
cle path is desired, for example parking manoeuvres, a different strategy could be
defined for the desired trifocal tensor element trajectories.
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Fig. 7. Simulations with (thin line) and without (thick line) image noise ofσ = 1 pixel.
The initial location is(−2,−10,−20◦). (d) Estimation of the epipoles to show the short
baseline problem.

The robustness of the trifocal-based control has been tested in presence of image
noise. Simulations with and without image noise are superposed in Fig. 7. The thick
line is the simulation without image noise and the thin line is with image noise. The
evolution of the trifocal tensor elements are shown together in Fig. 7(a). For read-
ability, the final desired value of each element has been subtracted to draw the con-
vergence to zero of all the elements (Tijk(t)−T d

ijk). The evolution of the orientation
is shown in Fig. 7(b) and the evolution of the location is shown in Fig. 7(c). The
image noise of the point correspondences consist of Gaussian noise with a standard
deviation ofσ = 1 pixel in point coordinates. The results show that the control law
can cope with image noise converging to the target location successfully. It can be
seen that a small continuous final error is obtained inx andφ, revealing the non-
holonomic nature of the system. The motion constraint affects tox but because the
coupling of the system coordinates theφ coordinate is also affected. The epipolar
geometry is also estimated from the feature correspondences across the current and
target images, and the resultant horizontal-coordinate of the epipoles are depicted
in Fig. 7(d). It can be seen how the epipolar geometry becomes unstable with short
baseline and therefore, epipolar-based approaches like [7], [8] requires additional
procedures to reach the target.

Before computing the trifocal tensor from the correspondences they have to be
transformed to calibrated coordinates by means of the internal camera calibration
parameters. Next simulations show the performance of the visual control approach
with errors in the camera calibration parameters. In the simulations depicted in

20



3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

f (mm)

P
os

e 
er

ro
r

x
error

 (m)

z
error

 (m)

φ
error

 (deg)

−20 −10 0 10 20
0

0.2

0.4

0.6

0.8

1

x
0
 (pixels)

P
os

e 
er

ro
r

x
error

 (m)

z
error

 (m)

φ
error

 (deg)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

T’
N

P
os

e 
er

ro
r

x
error

 (m)

z
error

 (m)

φ
error

 (deg)

(a) (b) (c)

Fig. 8. Final location error in (x, z, φ) varying the camera calibration parameters: (a) focal
length and (b) principal point coordinates. (c) Final location error as a function ofT ′N .

Fig. 8(a) the known focal length is fixed to6 mm while its real value is changed
from 3 to 9 mm. In Fig. 8(b) the principal point coordinates are zero in the con-
trol law while their real value is changed. In both cases the final error obtained
in the simulation when varying the camera calibration parameters is depicted. As
expected, the results show that the final location error increases with the camera
calibration parameter errors. This is because the control law is defined in terms of
the trifocal tensor elements, and inaccuracy in the calibration parameters is trans-
ferred to the tensor. Therefore, the trajectory is altered and because of the motion
constraints a final error is obtained. However, it is stable and the performance is
still acceptable with small calibration errors. The parameterT ′

N appears in the in-
teraction matrix of the system (23) and it has been transferred as a constant gain of
the velocityv. In the previous tests we have chosenT ′

N = 1 for the computation
of (23). The final location error as a function ofT ′

N is shown in Fig. 8(c). It can be
seen that the final error is not affected byT ′

N except for extreme values. When the
selectedT ′

N is close to zero the velocities are too low and the robot does not move
enough to reach the target. With high values ofT ′

N the velocities are high and the
robot oscillates around the target location inz-axis (forward and backward). This is
the expected behavior of the system and it includes the usual tuning of the control
gains. Fig. 8(c) shows that quite flexibility is allowed for choosingT ′

N in practice.

6 Conclusions

This paper considers the problem of autonomous visual control of a nonholonomic
vehicle. We have presented a new vision-based control approach which is based on
the trifocal tensor. The control law is defined by the exact input-output lineariza-
tion of the system through the trifocal tensor. With this control law, the vehicle is
autonomously driven towards the target as the desired values of the trifocal tensor
elements are achieved. This approach avoids the need of metric information or ad-
ditional data from the environment by relying directly on terms of the trifocal tensor
elements. Some advantages of the trifocal tensor based approach are that it is more
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robust than two view geometry thanks to additional information of a third view and
that the problem of short baseline with epipolar geometry is overcome. The sta-
bility analysis of the system in the Lyapunov sense is also presented. Simulations
have been carried out to test the approach showing good performance. Simulations
in the presence of image noise have been carried out to show that the method per-
forms correctly. Results with calibration errors in the internal camera parameters
have been also presented. We have considered planar motion with nonholonomic
constraints, an interesting issue to address is to extend this approach to robot ma-
nipulators, in that case planar motion can not be assumed but on the other hand
there are no motion constraints.
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