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Dpto. de Informática e Ingenieŕıa de Sistemas
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Abstract. This paper addresses the computation of motion between
two views when 3D structure is unknown but planar surfaces can be as-
sumed. We use points which are automatically matched in two steps. The
first one is based on image parameters and the second one is based on the
geometric constraint introduced by computed homographies. When two
or more planes are observed, corresponding homographies can be com-
puted and they can be used to obtain the fundamental matrix, which
gives constraints for the whole scene. The computation of the camera
motion can be carried out from a homography or from the fundamen-
tal matrix. Experimental results prove this approach to be robust and
functional for real applications in man made environments.
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1 Introduction

The fundamental matrix encapsulates the geometric information which relates
two different views regardless of the observed scene. The non metric basis of this
matrix makes possible to use uncalibrated cameras. It has been usually computed
through points [1] although lines can also be used when two or more planes
are available [2]. Obviously points can also be used to compute homographies
and, if two or more homographies are available, the fundamental matrix can be
computed from them [3], [4].

In all the cases the matching problem is crucial to make the process work
automatically. The matching of features based on image parameters may give
non matched or wrong matched features. Projective transformations allow image
dependent measures, as cross-correlation, to be a viewpoint invariant, which
make possible to afford wide baseline matching [5]. So, the constraint imposed
by fundamental matrix or homographies must be used for matching points.

Scenes with several planes are usual in man made environments, and the
model to work with multiple views of them is well known. Points or lines in one
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image of the world plane are mapped to points or lines in the other image by a
plane to plane homography [6]. We robustly match points between two images
using the projective transformations corresponding to the existing scene planes.
The robust matching of points and the computation of the corresponding ho-
mography is iteratively carried out until we have no more available planes. If two
planes have been computed at least, the fundamental matrix can be computed,
which gives general constraint for the whole scene. It has been reported that the
multi-plane algorithm is not as stable as the general method [3], but when less
than three planes are observed, which is quite usual in man made environments,
the multi-plane algorithm gives better results than the general method.

Camera motion between two views can be obtained from the computed ho-
mography or from the fundamental matrix. Both methods are exposed in this
paper. Normally the computation of motion has been directly considered from
the fundamental matrix, which is a more general model. However, the funda-
mental matrix is ill conditioned with short baseline or when all the points lie on
a plane, which may easily happen in man made environments [6]. In these cases
the fundamental matrix is an inappropriate model to compute camera motion.
Using homographies, we can check the homology conditioning to determine if the
fundamental matrix may be computed. Therefore we can choose the appropriate
motion algorithm from either the fundamental matrix or the homography.

2 Robust Matching

Automatic matching continues to be an unsolved problem in general situations.
The aim is to determine correspondences between points in two images without
knowledge about motion or scene structure.

In this work the points of interest are extracted with the Harris corner ex-
tractor [7]. To obtain a homogeneous distribution of points all over the image,
it is divided in a grid and we establish a maximum number of points per cell to
be extracted. Additionally we establish a threshold of minimum contrast just to
give only good points.

Later, we consider the matching in two steps, the first step is based on image
correlation on a search window around the candidate points. This is actually
the most weak step of our implementation because, as known, correlation is not
invariant to rotations. As some mismatches appear here, we introduce in the
second step, our ”friendship” algorithm. It is similar to the previously proposed
relaxation process [8]. The idea is to allow only the matches whose neighboring
points move similarly. Those that do not behave as the neighbors are eliminated.

These points can be represented in the projective plane with homogeneous co-
ordinates as p = (x, y, 1)T . A projective transformation H21 exists from matched
points belonging to a plane in such a way that p2 = H21p1.

From the previous relation each couple of corresponding points gives two
homogeneous equations to compute the projective transformation, which can
be determined up to a non-zero scale factor. To compute the homography, we
have chosen the RANSAC method [9], which is a robust method to consider the



existence of outliers. It makes a search in the space of solutions obtained from
subsets of four matches. Each subset provides a 8× 9 system of equations whose
solution is obtained from singular value decomposition.

From here on, we introduce the geometrical constraint introduced by the
estimated homography to get a bigger set of matches. Thus, final matches are
composed by two sets. The first one is obtained from the matches selected after
the robust computation of the homography. The second one is obtained making
a rematching of not matched points based on the computed homography.

3 From Homographies to Fundamental Matrix

Fundamental matrix has been stated as a crucial tool when using uncalibrated
images. As known, it is a 3× 3 matrix of rank 2 which encapsulates the epipolar
geometry. It only depends on internal parameters of the camera and the relative
motion.

Let us suppose the images are obtained with the same camera whose projec-
tion matrixes in a common reference system are P1 = K[I|0],P2 = K[R|t]; being
R the camera rotation, t the translation and K the internal calibration matrix.
Then, the fundamental matrix can be expressed as F21 = K−T ([t]×R) K−1.
Normally, it has been computed from corresponding points [1], [10], using the
epipolar constraint, which can be expressed as xT

2 F21 x1 = 0. However, the fun-
damental matrix is unstable when points lie in a plane [10]. In [3] is shown that
the multiplane method behaves better than the general method when less than
three planes are available. This constrained structure is usually observed in man
made environments.

In the case of multiplane scenes some alternatives can be used to compute
the fundamental matrix. If at least two homographies (Hπ1

21 ,Hπ2
21) corresponding

to two planes (π1, π2) can be computed between both images, the homology on
the second image H2 = Hπ1

21 · (Hπ2
21)−1, which is a mapping from one image

onto itself, can be computed. Under this mapping the epipole is a fixed point
e2 = H2 e2, so it may be determined from the eigenvector of H2 corresponding
to non unary eigenvalue [6]. Therefore, the fundamental matrix can be computed
using Hπ1

21 or Hπ2
21 as,

F21 = [e2]×Hπi
21 , (1)

being [e2]× the skew matrix corresponding to e2 vector.
On the other hand, the fundamental matrix can also be computed from both

homographies through a system of twelve linear equations extracted from the
following relation [3],

Hπi
21

T F21 + F21
T Hπi

21 = 0 . (2)

As we propose to compute fundamental matrix from homographies, a check
on the homology conditioning may help to determine if the fundamental matrix
may or may not be computed. Similarly the homology on the first image can



be computed as H1 = (Hπ1
21)−1 ·Hπ2

21 and taking into account that for a plane
H21 = K (R− t nπ

T

dπ
)K−1, it turns out that the eigenvalues of the H1 homology

are (1, 1, 1 + vT p) being v = KR−1t/(1 − nT
π1

dπ1
R−1t) a view dependent vector,

and p = (
nT

π1
dπ1

− nT
π2

dπ2
)K−1 a plane dependent vector, being nπ1 , nπ2 the normals

and dπ1 , dπ2 the distances of the planes [11].
So, the homology has two equal eigenvalues. The third one is related to

the motion and the structure of the scene. These eigenvalues are used to test
when two different planes have been computed, and then the epipole and the
intersection of the planes can be also computed. The epipole is the eigenvector
corresponding to the non-unary eigenvalue and the other two eigenvectors define
the intersection line of the planes [6]. In case of small baseline or if there is only
one plane in the scene, epipolar geometry is not defined and only one homography
can be computed, so possible homology H1 will be close to identity, up to scale.

In practice a filter is proposed using these ideas. Firstly, we normalize the
homology dividing by the median eigenvalue. If there are no two unary eigenval-
ues, up to a threshold, then the computation is rejected. On the other hand, if
the three eigenvalues are similar we check if the homology is close to identity to
avoid the case where two similar homographies are computed.

4 Camera Motion from Two Views

Complete motion (rotation and translation up to a scale factor) can be computed
from homography or from the fundamental matrix if camera is calibrated. As we
have seen before, the homography H21 can be related to motion in such a way
that H21 = K (R− t nT

d )K−1, being n the normal to the scene plane and d its
depth. From here, two solutions (up to a scale factor for t) can be obtained [12].
The main steps of this algorithm is summarized in Algorithm 1.

Algorithm 1 Motion algorithm from homography
1. Compute a calibrated homography Hc

21 = K−1 H21 K
2. Compute the singular value decomposition of matrix Hc

21, in such a way that
Hc

21 = U diag(λ1, λ2, λ3)V
T with λ2 = 1

3. Let be ST S = diag(λ1, λ2, λ3), and α =
√

λ3−λ2
λ3−λ1

, β =
√

λ2−λ1
λ3−λ1

4. Writing V = [v1, v2, v3], compute vv = αv1 + β v3

5. Compute rotation matrix R = [Hc
21 vv, Hc

21 v2, Hc
21 vv×Hc

21 v2][vv,v2,vv×v2]
T

6. Compute translation up to a scale factor as t = Hc
21 n−Rn being n = vv × v2

7. The second solution for R and t can be obtained by making β = −β
8. If λ3 = λ2, there is a sole solution being the camera translation perpendicular to

the plane (t ‖ Rn) and coming nearer the plane. If λ1 = λ2 there is also a sole
solution, but now the camera gets away from the plane. Finally, if λ1 = λ2 = λ3

report the sole solution t = 0, and R = Hc
21



Algorithm 2 Motion algorithm from fundamental matrix
1. Compute the essential matrix E = KT FK
2. Compute the singular value decomposition of matrix E, in such a way that E =

U diag(1, 1, 0)VT

3. The camera translation, up to a scale factor is t = U (0, 0, 1)T

4. The two solutions for the rotation matrix are R = UWVT and R = UWT VT ,
being W =

[
(0, 1, 0)T , (−1, 0, 0)T , (0, 0, 1)T

]

Camera motion can also be computed from the fundamental matrix. As in
previous case, the algorithm provides two solutions up to a scale factor for trans-
lation. Given the calibration matrix, the motion can be deduced from F as sum-
marized in Algorithm 2 [6].

In case of pure rotation or if there exists only one plane in the scene, the
epipolar geometry is not defined. Then, only the alternative of motion from
homography will be correct.

5 Experimental Results

Many experiments have been carried out with synthetic and real images. The
homology filter just commented has been used to determine when a second plane
has been obtained. Several criteria can be used to measure the accuracy of the
computed motion. With synthetic images, where motion is known, we measure
the rotation error. We also measure the first order geometric error computed as
the Sampson distance [6] for a set of corresponding points manually extracted
and matched.

With real images the matches are automatically obtained for two planes
in scene (Fig. 1). The points extracted are 479 from the first image and 475
from the second. The number of basic matches obtained is 147 with 86.4% of
good matches. Once a homography has been computed, the robust homography
computation and the growing matches process has been iteratively repeated
twice. The experiment has been repeated 50 times using the same basic matches,
and the mean of final matches obtained is 131.8 matches (σ = 10.5) with 96.9%
of good matches (σ = 1.2%). As it can be seen the number and quality of final
matches are quite good.

As we have seen, one of the results of the homology is the intersection line of
the planes. We have proposed to use a filter based on the homology eigenvalues
to avoid situations where a sole homography can be computed or where the
homographies do not give a right homology due to noise or bad extraction. In
these cases the epipole, the fundamental matrix or the intersection line would be
badly computed. In Fig. 2 we can see the intersection lines of the planes for 100
executions with and without the homology filter. As it can be seen the quality
of the results improves significantly with the proposed filter.

With respect to the fundamental matrix computation, we show (Table 1) the
mean of the Sampson distance for 20 points manually extracted and matched.
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Fig. 1. Images of the college to compute homographies. Extracted points (a), (b).
Matches corresponding to the first homography (c), (d) and to the second (e), (f).
(Original images from VGG, Oxford)

(a) (b)

Fig. 2. Intersection of the planes through the eigenvalues of the homology. The lines
corresponding to 100 executions are represented without filter (a), and with homology
filter (b)



Table 1. Sampson distance for 20 points manually matched (belonging to each plane
for homographies and distributed around the scene for fundamental matrixes). We
show in 100 executions the median and the mean with and without filter. These results
are shown for the homographies (H1, H2) and for the fundamental matrixes: eH1 and
eH2 using (1) with Hπ1

21 and Hπ2
21 respectively, and FH using (2)

Synthetic (pixels) Oxford college (pixels)

H1 H2 eH1 eH2 FH H1 H2 eH1 eH2 FH

Without filter median 0.581 0.586 0.891 0.789 0.932 0.707 0.683 1.004 1.286 1.906

mean 0.577 0.586 1.619 1.458 1.634 0.709 0.698 4.998 5.187 12.61

With filter median 0.581 0.584 0.740 0.725 0.805 0.687 0.666 0.566 0.796 1.045

mean 0.578 0.587 0.926 0.767 0.883 0.697 0.694 0.642 0.789 1.099

We consider the images of the college and two synthetic images. The synthetic
scene consists of random points, with white noise of σ = 0.3 pixels, distributed
in three perpendicular planes. The experiment has been repeated 100 times and
we show mean and median values. The Sampson distance is similar for the three
presented ways of computing the fundamental matrix, although it is a bit worse
using (1). Probably this is because if one homography is less accurate than the
other, (2) collects this inaccuracy, currently we are studying the implications of
these differences.

Table 2. Mean of rotation error (Synthetic) and rotation angle (College) computing
motion through homographies H1 or H2 with algorithm 1, and through fundamental
matrixes, eH1 and eH2 using (1) and FH using (2), with algorithm 2

Synthetic: rotation error (deg) Oxford college: rotation (deg)

H1 H2 eH1 eH2 FH H1 H2 eH1 eH2 FH

Without filter 0.958 0.454 0.524 0.545 0.562 9.240 10.64 7.777 7.662 8.096

With filter 0.456 0.365 0.225 0.226 0.214 9.691 10.97 9.118 9.115 9.478

Finally, results of the computation of camera motion using homographies and
fundamental matrix are exposed. We have executed these algorithms 100 times.
Table 2 shows the mean of the rotation (Oxford college) and the rotation error
(synthetic data) obtained through homographies (Algorithm 1) and fundamental
matrixes (Algorithm 2). Fundamental matrix is computed in different ways using
equations (1) and (2). The results are exposed with and without the homology
filter and they show the goodness of the proposed filter.



6 Conclusions

We have presented the matching of points, the computation of the intersection of
the planes and the computation of camera motion from two views. This is carried
out through homographies corresponding to planes, which are quite usual in man
made environments. The robust computation of matches based on homographies
works especially well to automatically eliminate outliers which may appear when
there is no information of scene structure or camera motion. The fundamental
matrix and the intersection line of the planes is properly obtained if the images
correspond to motion and scenes which are geometrically well conditioned. If it
does not happen a homography may be given as a result of the algorithm and
motion can be obtained from this homography.

The main achievement of this work is that all the process is made automat-
ically and works in a robust way. Besides this, the joint use of homographies
and fundamental matrix allows the properly selection of the model to determine
camera motion in real applications. The proposed approach is a good solution
in man made environments, where usually at least one plane is available.

References

1. Zhang, Z., Deriche, R., Faugeras, O., Luong, Q.: A robust technique for matching
two uncalibrated images through the recovery of the unknown epipolar geometry.
Artificial Intelligence 78 (1995) 87–119
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