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Abstract— This paper addresses the problem of visual control
of a set of mobile robots. In our framework, the perception
system consists of a calibrated flying camera looking downward
to the mobile robots. The robots are assumed to undergo
planar motion considering nonholonomic constraints. The goal
of the task is to control the multi-robot system to a desired
configuration relying solely on visual information given by
the flying camera. The desired multi-robot configuration is
defined with an image of the set of robots in that configuration.
Then, any arbitrary configuration can be easily defined by this
image without any additional information. As contribution, a
new image-based control scheme is presented relying on the
homography induced by the multi-robot system to lead the
robots to the desired configuration. The stability of the control
law is analyzed and simulations are provided to illustrate the
proposal.

I. I NTRODUCTION

Nowadays, multi-robot systems are an important research
area in robotics. It is known that a multi-robot system can
perform tasks that are difficult for one single robot like
exploration, surveillance, security or rescue operations. One
of the research topics in this area is the problem of reaching
and maintaining the robot team in a particular configuration
[1] [2] [3].

Visual information has been extensively used for robot
localization, navigation and control. Visual control is an
extensive field of research in the design of motion controllers
and it has focused the attention of many researchers [4]. It
is usual in multi-robot systems that each robot is equipped
with a local perception system to accomplish the global
task sharing their information. See for example the local-
ization method for multiple mobile robots presented in [5].
Another related work is [2], that aims to enable groups of
mobile robots to visually maintain formations, but they go
a step further by considering the problem in the absence of
communication between the robots. The issue of switching
between decentralized and centralized cooperative control is
tackled in the vision-based formation control with feedback-
linearization proposed in [1].

Some of the advantages of using a centralized approach is
that it allows simple and cheap robots, and releases their local
resources transferring expensive computations to an external
computer. A centralized architecture is considered for the
leader-follower control proposed in [3], where the perception
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system consists of a fixed camera on the ceiling. In general,
visual information is more robust if multiple view geometry
constraints are imposed [6]. In particular, the homography
is a well-known geometric model across two views induced
by a plane of the scene, and it has been used extensively in
visual control [7], [8], [9].

In the framework considered here, the multiple robots are
assumed to move in a planar surface and constrained to non-
holonomic motion. The goal of the control scheme proposed
is to drive the multiple robots to a desired configuration
defined by an image previously taken of that configuration.
The visual information is acquired by a flying camera looking
downward that undergoes an arbitrary planar motion, in such
a way that its translation is parallel to the robots motion plane
and the rotation is parallel to the plane normal.

We propose a homography-based control approach
that takes advantage of the planar motion constraint to
parametrize the homography. This particular parametrization
makes the approach feasible for a set of two or more
robots. The image features to compute the homography are
the projection of the multiple robots on the image plane.
Then, the homography computed gives information about
the configuration of the set of robots. In particular, it can
be known if the configuration of the robots is rigid, i.e.
they maintain the desired configuration defined by the target
image, or nonrigid, meaning that the robots are in a different
configuration to the one desired. A new image-based control
law is proposed where a desired homography is defined as
a reference for the control in order to drive the robots to the
desired configuration. This approach is different than other
image-based techniques in the use of the homography for
multi-robot formation. In particular, this homography is the
way to handle the interaction between the robot team.

The main contributions are the homography-based frame-
work, that gives a desired homography to define the reference
target, and the image-based control law that drives the robots
to the desired configuration. The advantages of the approach
presented are that any arbitrary desired configuration can be
easily defined with one image, avoiding the need of addi-
tional information like 3D measurements or relative positions
between the robots. Another advantage of the approach is that
the camera does not need to be static. Notice that the camera
can freely move while carrying out different or additional
tasks independently of the control task. Moreover, the motion
of the camera is an arbitrary planar motion unknown to the
control scheme without affecting the control performance.

The paper is organized as follows. Section II presents
the parametrization of the homograhpy and the definition
of the desired homography for reaching the multi-robot goal
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Fig. 1. Coordinate system: The motion of the camera occurs inthe x− y
plane of the global reference and the robots undergo planar motion parallel
to thex− y plane. The rotation of the camera is also parallel to the plane
normaln.

configuration. The control law for the multi-robot system is
presented in section III including the stability analysis of
the control scheme. Simulations are given in Section IV to
illustrate the performance of the proposal. Section V presents
the conclusions of the paper.

II. H OMOGRAPHY-BASED SCHEME

The setup of the multi-robot system and the flying camera
is illustrated in Fig. 1, where the global fixed Left-handed co-
ordinate system is depicted. In the following, we parametrize
the homography in this framework and describe the method
to compute linearly the homography. Then, we propose a
procedure to define the desired homography that corresponds
to the desired configuration of the multi-robot system.

A. Homography Parametrization

Two perspective images can be geometrically linked
through a plane by a homographyH ∈ R

3×3. This projective
transformationH relates points of the plane projected in both
images. Pairs of corresponding points (p,p′) are then related
up to scale byp′ = Hp. The calibrated homography can be
related to camera motion and plane parameters as follows

H = R + TnT /d , (1)

where R and T are the relative rotation and translation
of the camera,n is the unit normal of the plane with
respect to the reference frame andd is the distance along
n between the plane and the reference position. In the
framework considered, the position of the camera(x, y, z)T

is constrained to the planex− y (i.e. z = 0) and rotationφ
about thez-axis. This constraint yields

R =





cosφ sinφ 0
− sinφ cosφ 0

0 0 1



 , T =





tx
ty
tz



 , (2)

with T = −R(x, y, 0)T .
In our framework, the mobile robots move in a planar

surface that generates the homography. Besides, the camera
undergoes planar motion: the translation is parallel to the
plane and the rotation is parallel to the plane normal, i.e. the
z-axis, andn = (0, 0,−1)T . Notice that the distanced is the

height of the camera with respect the motion plane of the
robots. Therefore, the homography matrix is given by

H =





h11 h12 h13

h21 h22 h23

0 0 1





=





cosφ sinφ −tx/d
− sinφ cosφ −ty/d

0 0 1



 . (3)

B. Homography Computation

The homography across two views can be computed from
a minimal set of four point correspondences solving a linear
system [10]. In our framework, the points considered consist
of the projection of the robots on the image plane, and they
are denoted in homogeneous coordinates byp = (px, py, 1).
A point correspondence (p,p′) is related up to scale by the
homography asp′ = Hp, which can be expressed in terms
of the vector cross product asp′ ×Hp = 0 [10]. From this
expression two linearly independent equations in the entries
of H (3) are obtained

[

px py 1 0 −p′x
py −px 0 1 −p′y

]













h11

h12

h13

h23

h33













= 0 . (4)

Each point correspondence gives two independent equations.
Given thatH is defined by seven unknown entries, and using
the homography constraintsh11 = h22 andh21 = −h12, a
set of two point correspondences allows to determine the
homography up to a scale factor by solving a linear system.
Given thath33 is never zero because of the particular form
(3), the scale of the homography can always be normalized
and fixed by this entry.

C. The Target Homography

Each pair of robots induce a homography across two
images, the current image and the image of the desired
configuration. Given a set ofN robots, the number of
homographies defined by the different pair of robots is
N(N − 1)/2. If all of these homographies are equal, the
relative motion of the robots is rigid. Otherwise, if any of the
homographies is different to the others, the relative motion
of the set of robots is not rigid and they are not in the desired
configuration. A desired homography computed using all
robots needs to be defined in order to lead the robots to
the desired configuration.

In the first case, the homography induced by the plane of
the robots moving in the desired configuration is conjugate
to a planar Euclidean transformation given by

Hrigid =





cosφ sinφ h13

− sinφ cosφ h23

0 0 1



 . (5)

Notice that the upper left hand2×2 matrix is orthogonal. The
Euclidean transformation produces a translation and rotation



of the image, and lengths and angles are invariants by this
transformation.

The angle of rotation is encapsulated in the eigenval-
ues of (5) given by{1, eiφ, e−iφ}. Then, from the gen-
eral expression of the homography, it can be deduced that
n = (0, 0,−1)T and relative motion up to scale(x, y, 0)T

analogue as the assumptions defined for the homography
parametrization. In this case, the robots are in formation with
all the homographies induced by pairs of robots equal to the
homography computed from all the robots (5) .

In the second case, the motion of the robots is not rigid,
and they are not in the desired configuration. Then, the
computation of the homography gives a matrix of the form

Hnonrigid =





s cosφ s sinφ h13

−s sinφ s cosφ h23

0 0 1



 , (6)

where the upper left hand2 × 2 matrix is no longer or-
thogonal. This previous matrix corresponds to a similarity
transformation, i.e. translation, rotation and isotropicscaling
represented by the scalars. Angles and ratios of lengths
are invariants by this transformation. The eigenvalues of
this similarity are {1, s eiφ, s e−iφ} and encapsulate the
rotation angle. Comparison with the general expression of
the homography leads again ton = (0, 0,−1)T but to a
computed relative motion(x, y, (s−1)d2)T up to scale, with
z 6= 0. Therefore, the nonrigid motion of the robots induces
a valid homography but not constrained to the assumed
camera motion. We need to define a desired homography
like Hnonrigid, but being induced by a motion that keeps
the camera motion constraints. This can be done normalizing
(6) to make the upper left hand2× 2 matrix orthogonal and
settingh33 = 1 to hold the planar motion constraint of the
camera(z = 0). Alternatively, we can simply normalize
the upper left hand2 × 2 matrix and obtain the desired
homography with

Hd = Hnonrigid





1/s 0 0
0 1/s 0
0 0 1



 , (7)

wheres is computed as the norm of the upper left hand2×2
matrix of Hnonrigid. Then, the goal is to control the robots
in such a way that all the homographies are led toHd to
reach the desired configuration.

The Hnonrigid relates each pointp of the current image
with the corresponding pointp′ in the desired formation
image with p′ = Hnonrigid p. The desired homography
Hd is used now to define the goal location of the points
in the image aspd = (Hd)−1 p′. Notice that the desired
location of the robots in the image computed from the
desired homography is not constant and varies along the time
depending on the motion of the camera and the robots.

III. V ISUAL CONTROL LAW

From the desired homography computed as explained in
the previous section, we propose a control scheme to drive
the robots to the desired configuration defined by an image

RobotsControl law

Image of desired

configuration Current image

Flying

camera

Fig. 2. Overview of the control loop. In each iteration of thecontrol, the
flying camera takes a current image of the robots, the desiredhomography
Hd is obtained and used in the control law to compute the robot velocities
necessary to reach the desired configuration of the multi-robot system.

Fig. 3. Coordinate systems from a top view of the 3D scene. Therobot
position is given by(x, y, φ)T or (ρ, α, φ)T in the global reference. The
different parameters depicted are described along the text.

of that configuration. An overview of the control loop is
depicted in Fig. 2.

A. Robot Model and Coordinate Systems

Different coordinate systems defined in the 3D space are
depicted in Fig. 3. The state of each robot is given by
(x, y, φ)T , whereφ is the orientation of the robot expressed
as the angle between the robot bodyy-axis and the worldy-
axis. Each robot has two velocity inputs, the linear velocity
v and angular velocityω, with v in the direction of the robot
y-axis, andω about the robotz-axis. The kinematics of each
robot can be then expressed in general in polar or Cartesian
coordinates in a fixed reference as







ρ̇ = v cosα
α̇ = ω − v

ρ
sinα

φ̇ = ω

, and







ẋ = −v sinφ
ẏ = v cosφ

φ̇ = ω
, (8)

respectively, being

x = −ρ sinψ and y = ρ cosψ . (9)

The alignment errorα is defined as the angle between the
robot bodyy-axis and the distance vectorρ,

α = φ− ψ . (10)



Image plane

Fig. 4. Coordinate systems on the image plane for each robot.Subindexm
denotes that the variable is defined on the image plane (the same variable
without subindexm refers to the 3D space). Pointp is the image projection
of a robot andpd its location to reach the desired configuration of the multi-
robot system.

We now introduce several variables, depicted in Fig. 4,
to define the state of each robot on the image plane with
(ρm, ψm, φm). The origin of the coordinate system for each
robotp on the image plane is placed in the desired location
pd, i.e. the robots are in the desired configuration when all
of them are in the origin of their respective references (pd).

The variableρm denotes the distance of the projection of
a robot in the imagep with respect to its desired position
on the imagepd, and so

ρm =
√

(px − pd
x)2 + (py − pd

y)2 , (11)

and also

ψm = atan2
(

−(px − pd
x), (py − pd

y)
)

, (12)

where functionatan2 returns the value of the arc tangent
using the sign of the arguments to determine the quadrant.
φm can be computed directly from the image of the robot
with computer vision techniques or estimated withφm =
atan2(−∆px,∆py), where∆px and∆py is the incremental
motion of the robot in the image plane. The alignment error
on the imageαm is also defined asαm = φm − ψm.

B. Control Law

The definition of the control law consists of three sequen-
tial steps with their respective controllers for each robot. The
first controller is a pure rotation that turns the robots in such
a way that they finally point to their desired positions. This
controller is defined as

Step 1

{

v = 0

ω = ψ̇c − kω (αm − π)
(13)

beingkω > 0 a control gain, andψc is defined as the angle
with vertex at the robot position and leads to the goal position
and the global reference (Fig. 3). The value of the alignment
errorαm is measured directly in the image plane, whileψ̇c

can be estimated with an observer. The goal of the second
step is to reach the desired position up to orientation. This
second controller is defined as

Step 2

{

v = ρ̇d − kv ρm

ω = ψ̇c − kω (αm − π)
(14)

being kv > 0 a control gain. The terṁρd is related with
the variation of the distanceρc because of the goal location
displacement, and it is defined aṡρd = ∂ρc/∂x

d, with
xd(t) = (xd, yd, φd)T . This parameter can be estimated with
an observer. The image projection of the distance to the
desired positionρm is measured directly in the image plane.
The rotational velocity is defined the same as in the first
controller. In general, we can assume that the motion of the
mobile robots is smooth and we may consider in practice
the values ofρ̇d (13) andψ̇c (14) negligible, and they are
not used in the computation of the control velocities in the
experiments.

After the second step, the robots are in formation and only
a pure rotation is needed to reach the desired configuration
for the robot formation. The controller for the third step is
defined as

Step 3

{

v = 0
ω = −kω

(

(φm − ψFm) − (φ0

m − ψ0

Fm)
) (15)

whereψFm is a representative angle of the robot formation
and it is used to define the relative angles of the robots within
the formation. The parameterψFm is defined for any pair of
robots (i, j) with i 6= j as

ψij
Fm = atan2

(

−(pi
x − pj

x), (pi
y − pj

y)
)

. (16)

The superindexij has been removed in (15) and hereafter
for ease of the notation. The superindex0 in φ0

m or ψ0

Fm

refers to their corresponding values in the reference image.

C. Stability Analysis

In the following, the stability of the control scheme is
analyzed for each step by means of theLyapunov’s Direct
Method.

1) Step 1: The robots perform a pure rotation (v = 0),
and we define the Lyapunov function and its derivative as

V = (α− ψc − π)2/2 (17)

V̇ = (α− ψc − π)(ω − ψ̇c) (18)

Developing this expression with the value ofω, and assuming
that ψ̇c is correctly estimated, we obtain

V̇ = −kω(α− ψc − π)(αm − π) . (19)

Notice thatαm is the image projection of(α−ψc) and both
multiplying terms inV̇ has the same sign yieldinġV < 0.
Therefore,V̇ is negative definite and the control in the first
step is asymptotically stable.

2) Step 2: The following candidate Lyapunov function is
defined for the second step:

V = (ρc)
2/2 + (α− ψc − π)2/2 . (20)

We consider the analysis of the local stability in the second
step givenαm = π ( i.e. α − ψc = π) after the first step.
Therefore

V = (ρc)
2/2 = (x− xd)2/2 + (y − yd)2/2 , (21)



and its derivative is

V̇ = ρc ρ̇c (22)

= (x− xd)(ẋ− ẋd) + (y − yd)(ẏ − ẏd)

= v
(

−(x− xd) sinφ+ (y − yd) cosφ
)

−(x− xd)ẋd − (y − yd)ẏd

= v ρc − ρ̇d ρc

with (ρ̇dρc) = (x − xd)ẋd + (y − yd)ẏd. The previous
expression has been developed taking into account that(α−
ψc = π) and thentanφ = −(x − xd)/(y − yd). Assuming
that ρ̇d is correctly estimated, we obtaiṅV = −kv ρcρm < 0
and the control in the second step is locally asymptotically
stable.

3) Step 3: The robot performs a pure rotation to get the
desired relative orientation of the robots in the formation.
The Lyapunov function and its derivative are defined as

V = (φ− ψF − φ0 + ψ0

F )2/2 (23)

V̇ = (φ− ψF − φ0 + ψ0

F )ω (24)

= −kω(φ− ψF − φ0 + ψ0

F ) (φm − ψFm

−φ0

m + ψ0

Fm)

It can be seen that both multiplying terms ofV̇ correspond
to the rotational error with the same sign. Therefore,V̇
is negative definite and the control in the third step is
asymptotically stable.

The motion of each robot is not independent of the rest
of the team, but related through the homography by the
definition of the desired configuration. Given that the desired
configuration is involved in the stability analysis of each
individual robot, their individual convergence implies the
convergence of the global system.

IV. EXPERIMENTS

In this section, several simulations showing the perfor-
mance of the control scheme are presented. The virtual
environment of the experiment assumes that the projection
of the robot in the images can be detected and identified
in order to match each robot with its correspondence in
the other images. The results of two different experiments
using the three-step control scheme, (13)-(15), are shown
in Fig. 5 and Fig. 6. The first one considers four robots
in a square formation while the flying camera undergoes a
circular motion. In the second experiment, six robots are
set in a triangular configuration, while the flying camera
moves with sinusoidal velocities. In both cases, the motion
of the camera and the robots, as well of the evolution of
different variables are depicted. The figures of the top view
show the robots in the desired configuration as well as the
initial position of the robots and their evolution under the
control law for reaching the desired configuration. It can be
seen that the desired configuration (i.e. the relative positions
between the robots in the formation) is reached correctly,
independently of camera motion or the absolute position of
the robot team. In the last part of the simulations, the angular
velocities show a peak due to the execution of the last step

of the control scheme (15). This step ensures that the final
orientation of the robots agrees with the desired multi-robot
configuration. Depending on the application, if the goal is
to reach the desired formation independently of the robot’s
orientation, this last step is optional. For example, the case
of considering a secondary task performed by robots having
omnidirectional capabilities. The evolution of the homogra-
phy entries is also depicted in Fig. 5 and Fig. 6. It can be seen
that all the individual homographies computed between each
pair of robots converge to the desired homography. Notice
that the desired homography is not constant, as it evolves
depending on the motion of the camera. The results show
good performance of the homography-based control scheme.
More examples are given in thevideo attachment.

V. CONCLUSION

A new control scheme has been proposed to lead a group
of robots to a desired configuration. The control law is based
on a particular homography parametrization that allows to
define the desired location of the robots in the image plane.
The advantages of this approach are the simplicity of the
definition of any arbitrary desired configuration for the set
of robots avoiding the need of metric information on the 3D
space as well as the control law does not need to know the
motion of the flying camera. In fact, the control performance
is independent of the camera motion and the camera is
able to perform additional tasks simultaneously. The validity
of the approach is supported by the stability analysis and
simulations, which show the effectiveness of the approach.
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Fig. 5. Simulation with the flying camera undergoing a circular motion. The robots are initially in an arbitrary configuration and the goal is to reach
the desired one. Top-left: Desired configuration for 4 robots in square formation. Top-middle: top view of the camera (the initial position is depicted
with a circle inside a square) and the robots. The initial configuration is drawn with dashed line and the path followed by the robots to reach the desired
configuration is shown (thick lines). Top-right: trace of the robots in the image plane. Second row: linear and angular velocities of the robots, and evolution
of the homography entries (h11, h12, h13, h23) of the desired homography (thick lines) and the current homographies between the robots (thin lines).

0 5 10

−8

−6

−4

−2

0

2

x (m)

y 
(m

)

0 5 10

−2

0

2

4

6

8

x (m)

y 
(m

)

Image plane

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

Time (s)

v 
(m

/s
)

0 50 100 150 200
−0.5

0

0.5

Time (s)

ω
 (

de
g/

s)

0 50 100 150 200
−2

−1

0

1

2

Time (s)

h ij

Fig. 6. Simulation with the flying camera undergoing a motioncompounded of sinusoids. The robots are initially in an arbitrary configuration and the
goal is to reach the desired one. Top-left: Desired configuration for 6 robots in triangular formation. Top-middle: top view of the camera (the initial position
is depicted with a circle inside a square) and the robots. Theinitial configuration is drawn with dashed line and the path followed by the robots to reach
the desired configuration is shown (thick lines). Top-right: trace of the robots in the image plane. Second row: linear and angular velocities of the robots,
and evolution of the homography entries (h11, h12, h13, h23) of the desired (thick lines) and the current homographies between the robots (thin lines).


