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Visual Homing for Undulatory Robotic Locomotion

G. Lopez-Nicohs, M. Sfakiotaki¢, D. P. Tsakirid, A. A. Argyros®, C. Sagies' and J.J. Guerreto

Abstract— This paper addresses the problem of vision-based
closed-loop control for undulatory robots. We present an image-
based visual servoing scheme, which drives the robot to a
desired location specified by a target image, without explicitly
estimating its pose. Instead, the control relies on the computa-
tion of the epipolar geometry between the current and target
images. We analyze controllability and stability for the proposed
control scheme, which is validated by simulation studies using
the SIMUUN computational tools. Preliminary experiments,
involving the Nereisbot undulatory robotic prototype, are also  fgjg. 1. The Nereisbot undulatory robotic prototype, with an on-board
presented. camera mounted on its head link.

I. INTRODUCTION

Autonomous navigation of mobile robots is a complex
problem that has attracted the attention of the resear@hformation of the environment [12]. Visual servoing is an
community during the last decades. Most mobile robots akgtensive field of research in which computer vision is used
wheeled vehicles and they have been extensively studigfithe design of motion controllers [13], [14]. Visual servoing
in the literature. Currently, emerging applications demanghethods can be classified, depending on how the image data
mobile robots capable of performing autonomous tasks i8 used, as image-based [15]-[20], position-based [21], [22]
rugged terrains that are inaccessible to wheeled vehicles: ed hybrid or partitioned methods [23]-[26]. The framework
ploration of unknown environments, demining, urban searchf the approach presented in this paper is a vision system
and rescue, etc. Nature has solved the task of locomotion ¢ansisting of a fixed camera mounted on the head of an
many ways for a broad range of environments by slidingindulatory robotic locomotor (Fig. 1). The visual control
burrowing, flying or swimming. Particularly, undulatory lo- task uses the classical idea of homing in which the desired
comotion is utilized by many organisms like worms, snakercations are defined by target images taken previously at
and fish to navigate successfully in quite different terrainghose locations by the same or other robot. In [21] a pioneer-
like water, mud, sand or rugged surfaces. More specificalliag approach for visual homing was presented based on the
undulatory locomotion is defined in [1] as the process oépipolar geometry. Several works have developed this idea
generating net displacements of a robotic mechanism viagk using the epipolar geometry in the control loop [27]-[29].
coupling of internal deformations. However, these approaches are intended for conventional

Many undulatory robots rely on passive wheels to carrwheeled mobile robots. In this paper, we propose an image-
out serpentine locomotion [1]-{3]. Undulatory prototypesased control scheme, based on the epipolar geometry, that
without wheels, which crawl on their underside (see [4], [SHeals with the particularities of undulatory locomotion. To
and references therein), or swim (e.g., [6]), are also beingur knowledge, this is the first visual servoing scheme to
developed. Undulatory robotics literature presents extensig@monstrate autonomous navigation of an undulatory robotic

and in-depth analysis of the problem of the mechanicalystem to the target location by relying purely in visual
design, modelling and gait generation for undulatory roinformation.

botic locomotion. However, limited contributions have been . . . .
The proposed control scheme is validated by simulations,

presented using sensor-based control schemes performing . .
navigation tasks. The robot presented in [7] was able %a(%ned out with the SIMUUN (SIMUlator for UNdulatory

follow a light source. Some works are intended for inspectior?comouon) compufcahongl tools._ Preliminary experlments_
e also presented, involving Nereisbot, an undulatory robotic

tasks [8], [9]. Ultrasound and infrared sensors were used i S

[10] to build a local map and for obstacle avoidance. "Prot_otype d_eveloped at ICS'F.ORTH [4], [5].’ [11], which is

[11], control schemes implementing reactive centering an%quped with a forward-looking camera (Fig. 1).

swarming behaviors were developed for undulatory robots. The remainder of this paper is structured as follows.
Vision is one of the most studied sensory modalitieSection Il gives the modelling of the system. The control

for navigation purposes, primarily because it provides ricecheme is presented in Section Ill. Controllability and sta-
) o _ bility analysis are provided in Sections IV and V respectively.
DIIS - I3A, Universidad de Zaragoza, Spain. = The experimental evaluation is presented in Section VI.
{gonlopez, csagues, jguerrer }@unizar.es . . - . .
2Institute of Computer Science, FORTH. Heraklion, Crete, Greece.  Finally, Section VII summarizes the conclusions coming out
{sfakios, tsakiris, argyros l@ics.forth.gr of this study.



A K| @i —”:7 V=] "if the robot [4]. This is quite similar to the way in which a
1/)_.%& | T Y @( — Y standard mobile robot is steered, i.e. with two velocity inputs:
- —= ¢ - - linear velocityv and angular velocitw. This is depicted in
Joint angle Mechanical Differential Fia. 2(b) with the state of th ¢ . Next
generator model robot ig. 2(b) wi . € S a € 0 . e system given by ¢, ¢). e),( ’
we explore this similarity in order to take advantage in the
@) (®) control design of the simplicity of the differential-drive robot
Fig. 2. Model blocks of undulatory locomotion system (a) and differentialimodel with respect the undulatory robot model.
drive robot (b). In each modelz(y, ¢) denotes the robot head pose (first The formulation in the kinematic case refers to the case in
link) and the robot pose respectively (i) plays the same role ag,(w). . . . . . .
which the kinematic constraints fully specify the dynamics
in g. In the kinematic case, the momentum termdo not
[I. MODELLING exist due to symmetries of the nonholonomic constraints
and the connectiot\ () determines the motion in the full

In this section we briefly describe the motion equations . ) . L
. : onfiguration space [32]. The equations of motion in the
of undulatory robotic locomotion. Then, we analyze and. X
inematic case become

compare the system model with the unicycle model in order
to take advantage of their similarities in the control design. g tg = —A(r)7 (5)
Afterwards, we describe the geometry of the imaging system. P o= w (6)

A. Modelling Undulatory Locomotion The state of the robota(y,$) can be transformed

The equations of motion of an undulatory robotic mechato (p,6,¢) in polar coordinates. The kinematics of a
nism are obtained from its Lagrangian dynamics as [3], [4Hifferential-drive vehicle are expressed as a function of the

(6], [11], [30], [31] robot state and input velocities by
=979 = —A@)r+I7(r)p €y p cos(¢ — 0) 0
Po= adip+fr+fn 2) 0 )=\ pin@=0) Jur| 0 e @
Po= u 3) ¢ 0 1

These previous constraints can be rewritten in terms of (5)

where ¢ = ¢~ 'g is the velocity of the robot’s reference . . L
with the connection matrix given by

frame in body coordinates. The joint angle vector=

(¢1,...,on—1) denotes the shape variables withthe num- 10

ber of robot segments interconnected by planar revolute Ary=11 0 (8)
joints (¢1, ..., ¥ —1) which are independently actuated. The 0 1

matrix A (r) is the local form of the mechanical connection. ) T N

The locked inertia tensof(r) describes the total inertia @nd © = (v,w)", & = (p,6,9)". It can be seen that

of the system at shape configuration In (2) p is the th_e connectiqn matrix is constant as the geometry of the
body momentum withud; the infinitesimal generator of the differential-drive robot body does not vary.

adjoint action of the group of onto ¢; and fr, fy are We_now study the system in open loop and compare
the external frictional forces in the tangential and normagraphically the models (1) and (5) by means of phase plane
directions of each link. In (3) we assume that the shap@nalysis [33]. Each phase portrait represents a family of
is fully controllable with velocity inputs of the joints, SYStém motion trajectories corresponding to various initial
without considering the required torques. Refer to [4], [11j;ond|t|0ns. The resultant motion patterns of the system

for details. This model is represented in Fig. 2(a) by th&0dels depicted on the phase plane are shown in Fig. 3.
second block. The first row shows the phase portrait of and p with

The motion of the robot is generated with thé — 1 the differential robot model. SIMUUN simulations of the
joint angle valuess; as functions of time. Typically, this mode[ of an undulatory robot, havg been used to g(_enerate the
is achieved by generating a sinusoidal travelling body way@aphics of the second row. In this case, the motion of the
with a common amplitudet, frequencyf, angular offseyy ~ undulatory robot is determined by the amplitudeand the
and a constant phase lag,,, between consecutive joints offset+ of the sinusoids given to the joint angles. Variables

111, 121, [4]: A and are introduced in the graphics by
¢i(t) = Asin(2mft +ipag) — ¢, i =1,..(N —1). (4) Su = . ©)
pu = Acos(d— ). (10)

The angular offset) can be used for steering along curved
paths, and it is set t¢ = 0 for motion in a straight line. The  The phase portraits of both models are superposed in the
joint oscillation amplitude A affects the wavelength of thethird row of Fig. 3. For this purpose, a scale factor has been
body wave, and the overall velocity of the system. This joinapplied to the ordinate axis of the phase portraits of the
angle generation is represented in the first block of Fig. 2(ajlifferential-drive robot. It can be seen that phase portraits
In summary, we can relate the amplitudewith the forward of both models fit quite tight. The yawing of the undulatory
velocity of the robot and the offset with the steering of robot head is clearly seen in the phase porigaihowever
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Fig. 4. (a) The epipolar geometry across two views. (b) Reference frame,
with (eZ, etL) the current and target epipoles between left current image and
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6, (deg) 0 (m) target image, andef?, e;*) between right current image and target image.

H\Q

N
S
S
o

-200 -100

constraint pI Fp; = 0, wherep; and p, is any pair of
corresponding points (Fig. 4(a)). With this constraint, the
fundamental matrix can be computed from a set of matched
points without knowledge of the internal camera parameters
or the relative camera positions, by solving a linear system
- == . of equations [34]. The epipoles are the intersections of the
0 02 04 06 08 1 12 X ) L X
@ (deg) P (m) baseline (the line joining the optical centers of the cameras
Fig. 3. Phase portrait op and p (Left and right column, respectively). C1 andCy) with the image planes, and they can be computed
First row refers to differential-drive model, second row refers to undulatorfrom Fe; = 0 and FTe2 =0.
locomotion model and third row superposes both models with a scale factor. A top view diagram of the robot in two particular locations
and the target one at different times is depicted in Fig. 4(b),
. L . where the T-shapes represent the camera on the robot head.
tSTJe en:a(')gegour?anse's (;(r:‘tlr“\{?tizrs]t Jge;hfriﬁ:;r;%a;g ;?]23\;[' tr-]r:ﬁ/e consider that the robot is constrained to planar motion.
hgsepzone SVith sirailar@;)ehavior and out of this zone thThus, the variation of the epipole vertical coordinate can
Fnotion trajectories diverge. This is because the undulatofEe disregarded and only the horizontal coordinate of the
: Jecto ge.. . . eypipoles is considered for the control design. The configura-
robotic model implemented in SIMUUN is realistic and thetion of the camera (robot head) system is giver(byy, ¢)”
chr\;easmg robotl vc(jelo?r':yts;:uratej. lat | i b wherex andy are the robot position in the plane with the
del Ca;:r_' coznc ude dath ed_#n u ‘::‘_ OI% _ocomtc)) ':m rod O|6rigin in the target location, and is the orientation of the
mode (Fig. 2(2)) an € aierential-drive Tobot mOdes,p, ¢ head, expressed as the angle between the robot head
(F'.g‘ Z(b).) demonstr_ate an gquwalent behavior from th%—axis and the worlde-axis. This is illustrated in Fig. 4(b).
point of view of the |.nput v.anables,é.K, v) and @, w). W? Polar coordinatesp, 6, ¢)” are also used witl# positively
take advantage of this equivalence in thg control design % asured frome-axis anticlockwise. This layout is used in
the approach presented here (although it should be notﬁ]cg next section to develop the control design.
that undulatory locomotion can exhibit richer behavior).
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Hereafter we denote without distinctiod asv and ¢ as [1l. CONTROL SCHEME

w- In this Section we present the epipolar-based control law

B. Imading aeometrv: The Epinoles and different control design issues related to the particular
’ ging 9 y: PP undulatory locomotion gait are addressed.

For our problem definition, the desired location of the
robot is defined by a target image. The current and targft Control law
images are related by their epipolar geometry, and this The goal is to design an image-based controller, which
geometry is key for the development of our controller. Thalrives the robot to target location defined by the target image,
epipolar geometry represents the relative geometry betweasing directly the estimated epipoles. An overview of the
two views of a scene. It is independent of the scene structuvesual control law is presented in the diagram of Fig. 5.
and only depends on the relative configuration of the camerdse robot camera acquires the current images, which are
and their intrinsic parameters [34]. The fundamental matrinsed with the target image to estimate the epipolar geometry.
F, a3 x 3 matrix of rank 2, is the algebraic representation ofrhe resultant epipoles are the input to the controller, which
the epipolar geometry and is used to formulate épgolar computes, and sends to the robot the valugg/{) required
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Fig. 5. Overview of the control loop. Fig. 6. Two images acquired with the on-board camera and demonstrating
the blurring effect caused by the fast head yaw during undulatory movements
of the robot. The image on the left has been acquired at the limit of the
head yaw, when the lateral velocity is instantaneously zero, and is therefore

to reach the target location. As explained later, not all thegnificantly sharper.

images acquired are used to estimate the epipoles, but only
the particular images taken at the limits of the robot head
yawing. These epipoles are denoted wittand R (Left and  right epipoles as
Right).

Conventional mobile robots perform smooth motion (in
the sense that they just move forward and rotate), where@gere k,, > 0 is a constant gain. The forward velocity is
undulatory locomotion results in a complicated motion whergefined by means of the amplitudewith a constant value.
the robot head (and the camera) moves forward but al§the sign of the velocity (i.e. A) is determined taking into

laterally (with a head yawing). This yawing is translatedaccount the field of view constraints as follows
to the epipoles evolution and determines the control design.
v {

w = —kw(ef + ef) , (11)

k, if el >elt

Considering a conventional robot, we could define the motion S
—k, if ey <ef

strategy correcting the robot orientation untjl = 0 and
moving forward keepinge; constant. When the current wherek, > 0 is a constant gain. When the robot is close
epipole reaches the zero value, the robot is aligned with the the target, with short baseline, the epipolar geometry is
baseline and the camera is pointing to the target. Thus, thet well defined. We take advantage of this situation by
robot moves forward until it reaches the target. Howevethecking the conditioning of the estimated epipoles. Then,
this cannot be applied directly for undulatory locomotion. Irthe forward velocity turns to zero when instability is detected
this case the head yawing makes the epipoles to oscillaia,the estimated epipoles.
resulting in a wave function that resembles a sinusoid. _ _ . o

Given the symmetry of the system, we can adapt thB- Image Selection for Left-Right Epipoles Estimation
previous strategy in such a way that the robot moves toward The frame rate of the video stream in the real experiments
the target when the current epipoles oscillate around the zeig30 frames per second with image six20 x 240 pixels.
value. Then, an error function term can be defined with thas said, not all the images can be processed in real time for
mean value of the current epipoles. However, this is nahe epipolar geometry estimation and not all the images are
practical. On the one hand the yawing of the head from sidgseful as many of them are blurred. Thus, only images at
to side is fast, giving many blurred images not suitable tthe left and right limits are considered for the estimation of
be processed for the epipolar geometry estimation. On thlee epipoles.
other hand the computation cost is too high to process all the This raises the issue of accurate and efficient detection
frames acquired. For solving these problems, we propose ¢6 the images corresponding to these positions, from the
process only a type of particular images. The head yaw showileo stream acquired by the camera. One possible approach
higher velocity at the middle of the side to side motionwould be to synchronize the image acquisition with the
giving maximally blurred images. This yawing velocity isrobot’s control module generating the joint angles (4). This
null during a short interval of time at the lateral limits,would require providing feedback from the robotic platform
because of the change of direction (left to right or right tao the visual control system (since, as the latter requires
left). Images taken at these limits are not blurred and can Bégnificant computational resources, it would most likely
processed with good performance. Two images taken durimg implemented off-board). Instead, the approach adopted
one of the experiments are shown in Fig. 6, the sharp imagere is aimed at keeping the visual control system as much
has been taken at the limit of the yawing motion, whereas thrdependent of the robot as possible.
blurred image has been taken during the side to side motion.A local robust blur estimation method for image restora-
The epipoles estimated with the current image acquired @bn has been presented in [35]. This method is very fast, per-
the left side limit are denoted as left epipole$ (e/), and forming correctly at our frame rate, and it has been adapted
right epipoles those estimated at the right limit sie, /%),  for our purposes. There, a blur map of the image is estimated
see Fig. 4(b). by computing the difference ratio between the original image

Taking into account the previous reasoning, we define thend its two digitally re-blurred versions. The out-of-focus
orientation velocityw (i.e. ¢)) as a function of the left and blur is modelled with a Gaussian distribution in 2D, whereas

12)



The epipoles can be related geometrically with the system
state as follows [29]

e. = atan(¢—90), (14)
o et = atan(f), (15)

where «a is the focal length of the camera. The derivatives
of the epipoles in matrix form give

] . [ —sin(¢—0) 1
e — _ v
( - ) =a| PEiite) om0 ] < " ) . (16)

Frames [
t pcos?(6) 0

Fig. 7. Example of blur estimation along a video sequence for imagerom (7) and solving for the robot velocities in (16), the

selection for the control. Left and right limit images have been manuallyjnematics equations are expressed as
selected and depicted with circle and square markers.

H pcos2(6)
[.) 1 0 tan(¢p—0) éc

in our control scheme the motion blur is modelled with a 1D o= @ 0 cos?(6) e )’ (47
¢ | cos?(¢p—0) cos*(0)

Gaussian distribution in the image abscissa coordinate. The
unknown blur radius is the standard deviatiariThe original Note that the matrix in (16) is singular {fp — 6) = 0, .
image is re-blurred with the convolution of two GaussiarThe vector fields{f;, f5, [f1, f2]} are then defined as
blur kernelso, and oy, with o, < o03. The ratior of the

T
differences between the original image and the two re-blurred fi = ( 0 0 C“Q(aﬁ ) ) (18)
versions is computed in every pixel. Then, local maximum 2(9) 2(0) 2 \T
ratio 7,4, is Used to estimate the local blur radigswith f, = ( ol a = ) , (19)
~ Ta Tb —pcos? T
- oy + (Ub - Ua) Tmax ' (13) [fh f2] - ( pTW) 00 ) ' (20)

Refer to [35] for details. We are not interested in local bluThe Lie Algebra rank condition is tested checking if the
but a global image blur measurement and then, we compu@lowing determinant in not null:
the mean of the image values. We have tested this method _ 2 4 4
with video sequences acquired by the robot. An example det [f1 £ [f1, fo]] = peos™(¢ = 0) cos’(0) /o™ (1)
of the resultanty along the frames is given in Fig. 7. Thelt can be seen that the span of the vector field is full rank
minimum peaks correspond to less blurred images, i.e. tigxcept atp = 0, |0| = 7/2 or |¢ — 0| = w/2. Therefore, the
images to be processed for the epipolar geometry estimatigystem is small-time controllable with the control scheme
To check the results we have manually selected the leftefined except in these cases. When= 7/2 we have that
and right limit images and depicted them in Fig. 7 withe; = oo and |¢ — 0| = 7/2 corresponds te. = oco. Then,
circle and square markers respectively. It can be seen trty motion strategy should avoid these situations. Besides,
all these left-right images are correctly detected by lowesbese cases will imply that the robot loses the target out
peaks. The robustness of the method is improved by takij the field of view for sure with a standard camera. The
into account that left and right images appear periodicallyector field loses rank with the robot in the target location
in the example of Fig. 7 with a period around 15 framesp = 0, but specially in this case the short baseline problem
Therefore, the periodic minimum peaks discriminate betwedas to be addressed. More relevant is to take into account
blurred and not blurred images and allow the selection dhe case when the matrix in (16) is singular — 0) = 0.
left-right images for the epipolar geometry estimation. This condition holds when the robot moves in a straight
line pointing toward the target. There, the orientation can
IV. CONTROLLABILITY ANALYSIS be corrected but not the distance to the targatdqordinate).
In this section we study the controllability of the proposedut in fact, what our undulatory robot cannot do is to move
control scheme. For this purpose we deduce the relatign this way. Thus, because of the yawing of the robot head,

between the system state derivatiyed, $) with the control  the angles will oscillate between the limit values”™ and
input derivatives 4., ¢;). The undulatory locomotion model % avoiding the singularity.

has been compared with the unicycle model in Section II
showing their equivalent behavior for our control purposes. V. STABILITY ANALYSIS

Thus, we analyze the controllability of the control scheme by In this section the stability of the control scheme presented
means of model (5). Given that the nonlinear system (5) i§ analyzed by means dfyapunov’s Direct MethadThe
driftless, its controllability can be tested with the Lie Algebrarobot position was expressed in polar coordinat¢s) =
rank condition (LARC) [36]—[38]. Then, the system is small-(p, ¢, ¢)" with the reference system depicted in Fig. 4(b).
time controllable if and only if the rank of the vector spacéVe define the Lyapunov candidate function as

spanned by the family of vector fields available to the system (e,)%  (en)?  (es)?

along with all their brackets is of full rank everywhere. V) =Vot Vo + Vo = -+ =5~ +-——, (22




with e, = (p— p?), eg = (0 — 0%) andey = (el +el). The Results obtained from the simulations are shown in Fig. 8.
valuesp? and 6¢ denote the desired values afef + ')  In the example of the first row the robot performs a straight
represent the angular error in terms of the epipoles. line path toward the target. Another example is given in
This candidate function is positive definite given thathe second row in which the robot moves in a curve to
V(x) > 0 for all x # x? and V (x?) = 0. Now we analyze reach the target location. The resultant paths obtained are
the derivative Lyapunov candidate function of each term teshown in Fig. 8(a) together with the target location, depicted
show it is strictly negative. After differentiating we obtain: with a diamond marker, and it can be seen that the robot

V =V, + Vs + Vs where reaches in both cases the target location. The orientation of
. ) 4 the robot head (and, hence, the orientation of the camera) is
Vp = ¢pép=(p—p°) cos(¢—0)v. (23)  shown in Fig. 8(b). The evolution of the estimated epipoles
Vo = egég=(0—0%sin(¢—0)v/p. (24) is shown in Fig. 8(c), where the lef}) and right ¢F)
Vi = epép= (el +eB)el +eF). (25) epipoles computed at the yaw limits are drawn with circular

) and square markers respectively. In the example of straight
Each term is now studied to show thEt is negative. The motion, the temporal evolution of the epipoles’ location can
desired location for the homing task € = 0 and¢? = 6, pe seen to oscillate around zero, as would be expected. In
thenV, = p cos(¢ — 0) v andVy = 0. Given thatp > 0 we  the second example, the curved path evolves, in response
need to check that to the epipoles’ oscillation gradually converging to a zero
sign(v) # sign(cos(é — 0)) (26) mean value. At the end of the motion, when the robot is
’ close to the target location, the epipoles become unstable as
If the robot is behind the target thens(¢ — 6) > 0 and  can be seen in the plot of the epipole estimation. Finally,
the robot moves forward > 0 (12), else if the robot is in temporal evolution of the control signals and A, shaping
front of the target withcos(¢ — 0) < 0 and the robot moves the undulatory wave of the system during navigation to the
backwardv < 0. We have assumed that because of the fieltrget location, is shown in Fig. 8(d).
of view constraintg6| > |¢|. The errorg of the closed loop A virtual scene has been created using the Persistence
is represented by of Vision Ray-Tracer (POV-R&y). The virtual scene is
rendered and projected into the image plane through a pin-
by +hkoep =0, (27)  hole camera model. A sequence of virtual images taken
during the navigation in SIMUUN is shown as example in

and the control law (11) has been defined as the video attachment

w=koe (28) g Experiments
and thenV¢ < 0. Therefore, the control law of the SyStem is An experimenta| Setup for testing the proposed scheme is
locally stable in the Lyapunov sense. The stability analysisresented in this section. It employs the Nereisbot prototype
assumes that the epipolar geometry is properly estimategi which is a 5-segment robotic platform, developed at
and therefore the system is constrained in such a way th&s-FORTH, for studying undulatory locomotion, as well as
enough features can be matched across the images withgdbundulatory extensions thereof, where body undulations
short baseline. This constraint limits to local Stablllty, Whicrb_re combined with appropria’[e]y Synchronized movements
consequently depends on the field of view of the camera aggl |eg-like appendages (termed parapodia). Nereisbot can be
the scene. adapted for locomotion over a wide variety of substrates,
both conventional (e.g., hard floors) and unstructured (e.g.,
sand, pebbles and grass). In the present study, locomotion
This section presents simulation results validating thever sand is considered, where the body undulations may
proposed control scheme, and describes the setup employsd complemented by parapodial activity. The robot has
for preliminary experimental investigations. been fitted with a forward-looking camera (Sweex WCO031),
connected to a host PC via USB. In the proposed setup
(currently not fully implemented), the host PC processes in
The proposed visual control method has been implementeeial-time the images acquired by the camera, computes the
and validated in the SIMUUN simulation environment [39],control law and sends the corresponding controlsAto
developed at ICS-FORTH. SIMUUN is based on the Simthe robot, via a wireless link.
Mechanics toolbox of Simuling and provides tools for  Images are acquired by the on-board camera at 30 frames
modelling the body mechanics, the interaction with the erper second with a resolution d¥20 x 240 pixels. The
vironment and the shape control of undulatory systems. Thiesolution selected provides a balanced compromise between
visual control simulations presented here employ a modebmputation time and accuracy of the geometric model esti-
of an eel-shaped 20-link undulatory mechanism, which hasations. The epipolar geometry is computed between current
been created in SIMUUN. A guadratic friction force modeland target images where the current images (left or right) are
is used for the interaction of the mechanism’s links with theelected following the procedure outlined in Section III-B.
environment (for details, see [39]). Then, SIFT features [40] are extracted and matched between

V1. SIMULATIONS AND EXPERIMENTS

A. Simulation Results
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Fig. 8. Results of two simulations in which the robot follows a straight path to reach the target (first row) or a curve path (second row). The target
location is drawn with a diamond marker. (c) The left and right current epipefesef?) are depicted with circular and square markers respectively.

\\\ R \ l image. Then, the video is processed off-line estimating the
Bl \ \ : epipoles Fig. 10(a) and computing the output of the control
| il AR O i ' | law, Fig. 10(b). The values obtained fdrandy are coherent

with the motion performed in open loop, a straight line and
a curve. The third row of Fig. 10 shows the robot in the
target location for the curve path experiment from a external
camera. The camera trail left during the motion is drawn
in white. An example with real data is shown in thieleo

AN attachment
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VIl. CONCLUSION

A novel visual homing scheme for undulatory robots
has been presented, where the control law is defined in
terms of epipoles. The adopted image-based approach does
not require computing the robot’s position or extracting
depth or other 3D scene information. Adaptations coping
with features specific to undulatory locomotion have been
-9 esrgiztmgtgﬂej]geé‘g’gi?eg g:trfrf]’;tt:;‘zr% rt]";‘)rga image (left). Epipolfyroguced, especially with respect to the fast yawing move-

ments of the mechanism’s head link. The feasibility of the
proposed scheme has been demonstrated through simulations

the current and the target images. An example of the match@dd preliminary experiments with a robotic platform. Work is
and the epipolar geometry obtained between a current andérently underway towards performing in-depth parametric
target image is shown in Fig. 9. The epipoles are estimat&mulation studies, and realizing real-time implementations
using the RANSAC method [41], which is robust to the presfor the closed-loop experimental validation of the proposed
ence of outliers. The estimation of the epipolar geometry igcheme.
programmed using OpenCV (InglOpen Source Computer

Vision Library). The estimated epipoles are used as input to

the control law, which calculates the corresponding valuedl] J. Ostrowski and J. Burdick, “The geometric mechanics of undula-
fA d tory robotic locomotion,International Journal of Robotics Research
of A andy. _ vol. 17, pp. 683-701, 1998.
Two real experiments are presented as a proof of concept] S. Hirose,Biologically Inspired Robots: Snake-like Locomotors and
in Fig. 10 in the first and second row respectively. These ex-_ Manipulators Oxford: Oxford University Press, 1993.

eriments have been carried out in open loop, thus, the robé%] P. Krishnaprasad and D. P. Tsakiris, “Oscillations, se(2)-snakes and
p p P, motion control: a study of the roller racefdynamical Systems: An

is controlled to move in an arbitrary path: a straight path in  International Journal vol. 16, no. 4, pp. 347-397, 2001.

the flrst example and a curve path In the Second exampléé}] G. La Splna, M. Sfaklotakls, D. Tsakiris, A. MenCiaSSi, and P. Dario,
. . . . “Polychaete-like undulatory robotic locomotion in unstructured sub-

The video sequence of the current Images IS grabbed dur'ng strates,1EEE Transactions on Roboticgol. 23, no. 6, pp. 1200-1212,

the navigation and one of the last images is selected as target Dec. 2007.
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