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Abstract— This paper addresses the problem of vision-based
closed-loop control for undulatory robots. We present an image-
based visual servoing scheme, which drives the robot to a
desired location specified by a target image, without explicitly
estimating its pose. Instead, the control relies on the computa-
tion of the epipolar geometry between the current and target
images. We analyze controllability and stability for the proposed
control scheme, which is validated by simulation studies using
the SIMUUN computational tools. Preliminary experiments,
involving the Nereisbot undulatory robotic prototype, are also
presented.

I. I NTRODUCTION

Autonomous navigation of mobile robots is a complex
problem that has attracted the attention of the research
community during the last decades. Most mobile robots are
wheeled vehicles and they have been extensively studied
in the literature. Currently, emerging applications demand
mobile robots capable of performing autonomous tasks in
rugged terrains that are inaccessible to wheeled vehicles: ex-
ploration of unknown environments, demining, urban search
and rescue, etc. Nature has solved the task of locomotion in
many ways for a broad range of environments by sliding,
burrowing, flying or swimming. Particularly, undulatory lo-
comotion is utilized by many organisms like worms, snakes
and fish to navigate successfully in quite different terrains
like water, mud, sand or rugged surfaces. More specifically,
undulatory locomotion is defined in [1] as the process of
generating net displacements of a robotic mechanism via a
coupling of internal deformations.

Many undulatory robots rely on passive wheels to carry
out serpentine locomotion [1]–[3]. Undulatory prototypes
without wheels, which crawl on their underside (see [4], [5]
and references therein), or swim (e.g., [6]), are also being
developed. Undulatory robotics literature presents extensive
and in-depth analysis of the problem of the mechanical
design, modelling and gait generation for undulatory ro-
botic locomotion. However, limited contributions have been
presented using sensor-based control schemes performing
navigation tasks. The robot presented in [7] was able to
follow a light source. Some works are intended for inspection
tasks [8], [9]. Ultrasound and infrared sensors were used in
[10] to build a local map and for obstacle avoidance. In
[11], control schemes implementing reactive centering and
swarming behaviors were developed for undulatory robots.

Vision is one of the most studied sensory modalities
for navigation purposes, primarily because it provides rich
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Fig. 1. The Nereisbot undulatory robotic prototype, with an on-board
camera mounted on its head link.

information of the environment [12]. Visual servoing is an
extensive field of research in which computer vision is used
in the design of motion controllers [13], [14]. Visual servoing
methods can be classified, depending on how the image data
is used, as image-based [15]–[20], position-based [21], [22]
and hybrid or partitioned methods [23]–[26]. The framework
of the approach presented in this paper is a vision system
consisting of a fixed camera mounted on the head of an
undulatory robotic locomotor (Fig. 1). The visual control
task uses the classical idea of homing in which the desired
locations are defined by target images taken previously at
those locations by the same or other robot. In [21] a pioneer-
ing approach for visual homing was presented based on the
epipolar geometry. Several works have developed this idea
of using the epipolar geometry in the control loop [27]–[29].
However, these approaches are intended for conventional
wheeled mobile robots. In this paper, we propose an image-
based control scheme, based on the epipolar geometry, that
deals with the particularities of undulatory locomotion. To
our knowledge, this is the first visual servoing scheme to
demonstrate autonomous navigation of an undulatory robotic
system to the target location by relying purely in visual
information.

The proposed control scheme is validated by simulations,
carried out with the SIMUUN (SIMUlator for UNdulatory
locomotion) computational tools. Preliminary experiments
are also presented, involving Nereisbot, an undulatory robotic
prototype developed at ICS-FORTH [4], [5], [11], which is
equipped with a forward-looking camera (Fig. 1).

The remainder of this paper is structured as follows.
Section II gives the modelling of the system. The control
scheme is presented in Section III. Controllability and sta-
bility analysis are provided in Sections IV and V respectively.
The experimental evaluation is presented in Section VI.
Finally, Section VII summarizes the conclusions coming out
of this study.
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Fig. 2. Model blocks of undulatory locomotion system (a) and differential-
drive robot (b). In each model, (x, y, φ) denotes the robot head pose (first
link) and the robot pose respectively. (A, ψ) plays the same role as (v, ω).

II. M ODELLING

In this section we briefly describe the motion equations
of undulatory robotic locomotion. Then, we analyze and
compare the system model with the unicycle model in order
to take advantage of their similarities in the control design.
Afterwards, we describe the geometry of the imaging system.

A. Modelling Undulatory Locomotion

The equations of motion of an undulatory robotic mecha-
nism are obtained from its Lagrangian dynamics as [3], [4],
[6], [11], [30], [31]

ξ = g−1ġ = −A(r) ṙ + I−1(r) p (1)

ṗ = ad∗ξ p + fT + fN (2)

ṙ = u (3)

where ξ = g−1ġ is the velocity of the robot’s reference
frame in body coordinates. The joint angle vectorr =
(φ1, ..., φN−1) denotes the shape variables withN the num-
ber of robot segments interconnected by planar revolute
joints (φ1, ..., φN−1) which are independently actuated. The
matrix A(r) is the local form of the mechanical connection.
The locked inertia tensorI(r) describes the total inertia
of the system at shape configurationr. In (2) p is the
body momentum withad∗ξ the infinitesimal generator of the
adjoint action of the group ofg onto ξ; and fT , fN are
the external frictional forces in the tangential and normal
directions of each link. In (3) we assume that the shape
is fully controllable with velocity inputs of the jointsu
without considering the required torques. Refer to [4], [11]
for details. This model is represented in Fig. 2(a) by the
second block.

The motion of the robot is generated with theN − 1
joint angle valuesφi as functions of time. Typically, this
is achieved by generating a sinusoidal travelling body wave
with a common amplitudeA, frequencyf , angular offsetψ
and a constant phase lagφflag between consecutive joints
[1], [2], [4]:

φi(t) = A sin(2πft + i φlag)− ψ , i = 1, ...(N − 1) . (4)

The angular offsetψ can be used for steering along curved
paths, and it is set toψ = 0 for motion in a straight line. The
joint oscillation amplitude A affects the wavelength of the
body wave, and the overall velocity of the system. This joint
angle generation is represented in the first block of Fig. 2(a).
In summary, we can relate the amplitudeA with the forward
velocity of the robot and the offsetψ with the steering of

the robot [4]. This is quite similar to the way in which a
standard mobile robot is steered, i.e. with two velocity inputs:
linear velocityv and angular velocityω. This is depicted in
Fig. 2(b) with the state of the system given by (x, y, φ). Next,
we explore this similarity in order to take advantage in the
control design of the simplicity of the differential-drive robot
model with respect the undulatory robot model.

The formulation in the kinematic case refers to the case in
which the kinematic constraints fully specify the dynamics
in g. In the kinematic case, the momentum termsp do not
exist due to symmetries of the nonholonomic constraints
and the connectionA(r) determines the motion in the full
configuration space [32]. The equations of motion in the
kinematic case become

g−1ġ = −A(r) ṙ (5)

ṙ = u (6)

The state of the robot (x, y, φ) can be transformed
to (ρ, θ, φ) in polar coordinates. The kinematics of a
differential-drive vehicle are expressed as a function of the
robot state and input velocities by




ρ̇

θ̇

φ̇


 =




cos(φ− θ)
1
ρ sin(φ− θ)

0


 v +




0
0
1


ω . (7)

These previous constraints can be rewritten in terms of (5)
with the connection matrix given by

A(r) =




1 0
1 0
0 1


 (8)

and ṙ = (v, ω)T , ξ = (ρ̇, θ̇, φ̇)T . It can be seen that
the connection matrix is constant as the geometry of the
differential-drive robot body does not vary.

We now study the system in open loop and compare
graphically the models (1) and (5) by means of phase plane
analysis [33]. Each phase portrait represents a family of
system motion trajectories corresponding to various initial
conditions. The resultant motion patterns of the system
models depicted on the phase plane are shown in Fig. 3.
The first row shows the phase portrait ofφ and ρ with
the differential robot model. SIMUUN simulations of the
model of an undulatory robot, have been used to generate the
graphics of the second row. In this case, the motion of the
undulatory robot is determined by the amplitudeA and the
offset ψ of the sinusoids given to the joint angles. Variables
A andψ are introduced in the graphics by

φ̇u = ψ . (9)

ρ̇u = A cos(θ − φ) . (10)

The phase portraits of both models are superposed in the
third row of Fig. 3. For this purpose, a scale factor has been
applied to the ordinate axis of the phase portraits of the
differential-drive robot. It can be seen that phase portraits
of both models fit quite tight. The yawing of the undulatory
robot head is clearly seen in the phase portraitφ, however
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Fig. 3. Phase portrait ofφ and ρ (Left and right column, respectively).
First row refers to differential-drive model, second row refers to undulatory
locomotion model and third row superposes both models with a scale factor.

the main motion is equivalent to the standard robot. The
superposed phase portraitρ has been trimmed to show the
phase zone with similar behavior and out of this zone the
motion trajectories diverge. This is because the undulatory
robotic model implemented in SIMUUN is realistic and the
increasing robot velocity saturates.

We can conclude that the undulatory locomotion robot
model (Fig. 2(a)) and the differential-drive robot model
(Fig. 2(b)) demonstrate an equivalent behavior from the
point of view of the input variables (A,ψ) and (v, ω). We
take advantage of this equivalence in the control design of
the approach presented here (although it should be noted
that undulatory locomotion can exhibit richer behavior).
Hereafter we denote without distinctionA as v and ψ as
ω.

B. Imaging geometry: The Epipoles

For our problem definition, the desired location of the
robot is defined by a target image. The current and target
images are related by their epipolar geometry, and this
geometry is key for the development of our controller. The
epipolar geometry represents the relative geometry between
two views of a scene. It is independent of the scene structure
and only depends on the relative configuration of the cameras
and their intrinsic parameters [34]. The fundamental matrix
F, a3×3 matrix of rank 2, is the algebraic representation of
the epipolar geometry and is used to formulate theepipolar
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Fig. 4. (a) The epipolar geometry across two views. (b) Reference frame,
with (eL

c , eL
t ) the current and target epipoles between left current image and

target image, and (eR
c , eR

t ) between right current image and target image.

constraint pT
2 Fp1 = 0, where p1 and p2 is any pair of

corresponding points (Fig. 4(a)). With this constraint, the
fundamental matrix can be computed from a set of matched
points without knowledge of the internal camera parameters
or the relative camera positions, by solving a linear system
of equations [34]. The epipoles are the intersections of the
baseline (the line joining the optical centers of the cameras
C1 andC2) with the image planes, and they can be computed
from Fe1 = 0 andFT e2 = 0.

A top view diagram of the robot in two particular locations
and the target one at different times is depicted in Fig. 4(b),
where the T-shapes represent the camera on the robot head.
We consider that the robot is constrained to planar motion.
Thus, the variation of the epipole vertical coordinate can
be disregarded and only the horizontal coordinate of the
epipoles is considered for the control design. The configura-
tion of the camera (robot head) system is given by(x, y, φ)T ,
wherex and y are the robot position in the plane with the
origin in the target location, andφ is the orientation of the
robot head, expressed as the angle between the robot head
x-axis and the worldx-axis. This is illustrated in Fig. 4(b).
Polar coordinates(ρ, θ, φ)T are also used withθ positively
measured fromx-axis anticlockwise. This layout is used in
the next section to develop the control design.

III. C ONTROL SCHEME

In this Section we present the epipolar-based control law
and different control design issues related to the particular
undulatory locomotion gait are addressed.

A. Control law

The goal is to design an image-based controller, which
drives the robot to target location defined by the target image,
using directly the estimated epipoles. An overview of the
visual control law is presented in the diagram of Fig. 5.
The robot camera acquires the current images, which are
used with the target image to estimate the epipolar geometry.
The resultant epipoles are the input to the controller, which
computes, and sends to the robot the values (A,ψ) required



Robot

Current

image

Target image

Control
Epipolar

geometry

Fig. 5. Overview of the control loop.

to reach the target location. As explained later, not all the
images acquired are used to estimate the epipoles, but only
the particular images taken at the limits of the robot head
yawing. These epipoles are denoted withL andR (Left and
Right).

Conventional mobile robots perform smooth motion (in
the sense that they just move forward and rotate), whereas
undulatory locomotion results in a complicated motion where
the robot head (and the camera) moves forward but also
laterally (with a head yawing). This yawing is translated
to the epipoles evolution and determines the control design.
Considering a conventional robot, we could define the motion
strategy correcting the robot orientation untilec = 0 and
moving forward keepinget constant. When the current
epipole reaches the zero value, the robot is aligned with the
baseline and the camera is pointing to the target. Thus, the
robot moves forward until it reaches the target. However,
this cannot be applied directly for undulatory locomotion. In
this case the head yawing makes the epipoles to oscillate,
resulting in a wave function that resembles a sinusoid.

Given the symmetry of the system, we can adapt the
previous strategy in such a way that the robot moves toward
the target when the current epipoles oscillate around the zero
value. Then, an error function term can be defined with the
mean value of the current epipoles. However, this is not
practical. On the one hand the yawing of the head from side
to side is fast, giving many blurred images not suitable to
be processed for the epipolar geometry estimation. On the
other hand the computation cost is too high to process all the
frames acquired. For solving these problems, we propose to
process only a type of particular images. The head yaw shows
higher velocity at the middle of the side to side motion,
giving maximally blurred images. This yawing velocity is
null during a short interval of time at the lateral limits,
because of the change of direction (left to right or right to
left). Images taken at these limits are not blurred and can be
processed with good performance. Two images taken during
one of the experiments are shown in Fig. 6, the sharp image
has been taken at the limit of the yawing motion, whereas the
blurred image has been taken during the side to side motion.
The epipoles estimated with the current image acquired at
the left side limit are denoted as left epipoles (eL

c , eL
t ), and

right epipoles those estimated at the right limit side (eR
c , eR

t ),
see Fig. 4(b).

Taking into account the previous reasoning, we define the
orientation velocityω (i.e. ψ) as a function of the left and

Fig. 6. Two images acquired with the on-board camera and demonstrating
the blurring effect caused by the fast head yaw during undulatory movements
of the robot. The image on the left has been acquired at the limit of the
head yaw, when the lateral velocity is instantaneously zero, and is therefore
significantly sharper.

right epipoles as

ω = −kω(eL
c + eR

c ) , (11)

wherekω > 0 is a constant gain. The forward velocity is
defined by means of the amplitudeA with a constant value.
The sign of the velocityv (i.e. A) is determined taking into
account the field of view constraints as follows

v =
{

kv if eL
t > eR

t

−kv if eL
t < eR

t
(12)

wherekv > 0 is a constant gain. When the robot is close
to the target, with short baseline, the epipolar geometry is
not well defined. We take advantage of this situation by
checking the conditioning of the estimated epipoles. Then,
the forward velocity turns to zero when instability is detected
in the estimated epipoles.

B. Image Selection for Left-Right Epipoles Estimation

The frame rate of the video stream in the real experiments
is 30 frames per second with image size320 × 240 pixels.
As said, not all the images can be processed in real time for
the epipolar geometry estimation and not all the images are
useful as many of them are blurred. Thus, only images at
the left and right limits are considered for the estimation of
the epipoles.

This raises the issue of accurate and efficient detection
of the images corresponding to these positions, from the
video stream acquired by the camera. One possible approach
would be to synchronize the image acquisition with the
robot’s control module generating the joint angles (4). This
would require providing feedback from the robotic platform
to the visual control system (since, as the latter requires
significant computational resources, it would most likely
be implemented off-board). Instead, the approach adopted
here is aimed at keeping the visual control system as much
independent of the robot as possible.

A local robust blur estimation method for image restora-
tion has been presented in [35]. This method is very fast, per-
forming correctly at our frame rate, and it has been adapted
for our purposes. There, a blur map of the image is estimated
by computing the difference ratio between the original image
and its two digitally re-blurred versions. The out-of-focus
blur is modelled with a Gaussian distribution in 2D, whereas
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Fig. 7. Example of blur estimation along a video sequence for image
selection for the control. Left and right limit images have been manually
selected and depicted with circle and square markers.

in our control scheme the motion blur is modelled with a 1D
Gaussian distribution in the image abscissa coordinate. The
unknown blur radius is the standard deviationσ. The original
image is re-blurred with the convolution of two Gaussian
blur kernelsσa and σb, with σa < σb. The ratior of the
differences between the original image and the two re-blurred
versions is computed in every pixel. Then, local maximum
ratio rmax is used to estimate the local blur radiusσ with

σ ≈ σa σb

σb + (σb − σa) rmax
. (13)

Refer to [35] for details. We are not interested in local blur
but a global image blur measurement and then, we compute
the mean of the imageσ values. We have tested this method
with video sequences acquired by the robot. An example
of the resultantσ along the frames is given in Fig. 7. The
minimum peaks correspond to less blurred images, i.e. the
images to be processed for the epipolar geometry estimation.
To check the results we have manually selected the left
and right limit images and depicted them in Fig. 7 with
circle and square markers respectively. It can be seen that
all these left-right images are correctly detected by lowest
peaks. The robustness of the method is improved by taking
into account that left and right images appear periodically,
in the example of Fig. 7 with a period around 15 frames.
Therefore, the periodic minimum peaks discriminate between
blurred and not blurred images and allow the selection of
left-right images for the epipolar geometry estimation.

IV. CONTROLLABILITY ANALYSIS

In this section we study the controllability of the proposed
control scheme. For this purpose we deduce the relation
between the system state derivative (ρ̇, θ̇, φ̇) with the control
input derivatives (̇ec, ėt). The undulatory locomotion model
has been compared with the unicycle model in Section II
showing their equivalent behavior for our control purposes.
Thus, we analyze the controllability of the control scheme by
means of model (5). Given that the nonlinear system (5) is
driftless, its controllability can be tested with the Lie Algebra
rank condition (LARC) [36]–[38]. Then, the system is small-
time controllable if and only if the rank of the vector space
spanned by the family of vector fields available to the system
along with all their brackets is of full rank everywhere.

The epipoles can be related geometrically with the system
state as follows [29]

ec = α tan(φ− θ) , (14)

et = α tan(θ) , (15)

whereα is the focal length of the camera. The derivatives
of the epipoles in matrix form give

(
ėc

ėt

)
= α

[ − sin(φ−θ)
ρ cos2(φ−θ)

1
cos2(φ−θ)

sin(φ−θ)
ρ cos2(θ) 0

] (
v
ω

)
. (16)

From (7) and solving for the robot velocities in (16), the
kinematics equations are expressed as




ρ̇

θ̇

φ̇


 =

1
α




0 ρ cos2(θ)
tan(φ−θ)

0 cos2(θ)
cos2(φ− θ) cos2(θ)




(
ėc

ėt

)
. (17)

Note that the matrix in (16) is singular if(φ − θ) = 0, π.
The vector fields{f1, f2, [f1, f2]} are then defined as

f1 =
(

0 0 cos2(φ−θ)
α

)T

, (18)

f2 =
(

ρ cos2(θ)
α tan(φ−θ)

cos2(θ)
α

cos2(θ)
α

)T

, (19)

[f1, f2] =
(

−ρ cos2(θ)
α2 0 0

)T

. (20)

The Lie Algebra rank condition is tested checking if the
following determinant in not null:

det [f1 f2 [f1, f2]] = ρ cos2(φ− θ) cos4(θ)/α4 . (21)

It can be seen that the span of the vector field is full rank
except atρ = 0, |θ| = π/2 or |φ− θ| = π/2. Therefore, the
system is small-time controllable with the control scheme
defined except in these cases. When|θ| = π/2 we have that
et = ∞ and |φ − θ| = π/2 corresponds toec = ∞. Then,
any motion strategy should avoid these situations. Besides,
these cases will imply that the robot loses the target out
of the field of view for sure with a standard camera. The
vector field loses rank with the robot in the target location
ρ = 0, but specially in this case the short baseline problem
has to be addressed. More relevant is to take into account
the case when the matrix in (16) is singular(φ − θ) = 0.
This condition holds when the robot moves in a straight
line pointing toward the target. There, the orientation can
be corrected but not the distance to the target (ρ-coordinate).
But in fact, what our undulatory robot cannot do is to move
in this way. Thus, because of the yawing of the robot head,
the angleφ will oscillate between the limit valuesφL and
φR avoiding the singularity.

V. STABILITY ANALYSIS

In this section the stability of the control scheme presented
is analyzed by means ofLyapunov’s Direct Method. The
robot position was expressed in polar coordinatesx(t) =
(ρ, θ, φ)T with the reference system depicted in Fig. 4(b).
We define the Lyapunov candidate function as

V (x, t) = Vρ + Vθ + Vφ =
(eρ)2

2
+

(eθ)2

2
+

(eφ)2

2
, (22)



with eρ = (ρ− ρd), eθ = (θ− θd) andeφ = (eL
c + eR

c ). The
valuesρd and θd denote the desired values and(eL

c + eR
c )

represent the angular error in terms of the epipoles.
This candidate function is positive definite given that

V (x) > 0 for all x 6= xd andV (xd) = 0. Now we analyze
the derivative Lyapunov candidate function of each term to
show it is strictly negative. After differentiating we obtain:
V̇ = V̇ρ + V̇θ + V̇φ where

V̇ρ = eρ ėρ = (ρ− ρd) cos(φ− θ) v . (23)

V̇θ = eθ ėθ = (θ − θd) sin(φ− θ) v/ρ . (24)

V̇φ = eφ ėφ = (eL
c + eR

c )(ėL
c + ėR

c ) . (25)

Each term is now studied to show thatV̇ is negative. The
desired location for the homing task isρd = 0 and θd = θ,
then V̇ρ = ρ cos(φ− θ) v and V̇θ = 0. Given thatρ > 0 we
need to check that

sign(v) 6= sign(cos(φ− θ)) , (26)

If the robot is behind the target thencos(φ− θ) > 0 and
the robot moves forwardv > 0 (12), else if the robot is in
front of the target withcos(φ− θ) < 0 and the robot moves
backwardv < 0. We have assumed that because of the field
of view constraints|θ| > |φ|. The errorφ of the closed loop
is represented by

ėφ + kω eφ = 0 , (27)

and the control law (11) has been defined as

ω = −kω eφ , (28)

and thenV̇φ < 0. Therefore, the control law of the system is
locally stable in the Lyapunov sense. The stability analysis
assumes that the epipolar geometry is properly estimated
and therefore the system is constrained in such a way that
enough features can be matched across the images without
short baseline. This constraint limits to local stability, which
consequently depends on the field of view of the camera and
the scene.

VI. SIMULATIONS AND EXPERIMENTS

This section presents simulation results validating the
proposed control scheme, and describes the setup employed
for preliminary experimental investigations.

A. Simulation Results

The proposed visual control method has been implemented
and validated in the SIMUUN simulation environment [39],
developed at ICS-FORTH. SIMUUN is based on the Sim-
Mechanics toolbox of Simulinkr and provides tools for
modelling the body mechanics, the interaction with the en-
vironment and the shape control of undulatory systems. The
visual control simulations presented here employ a model
of an eel-shaped 20-link undulatory mechanism, which has
been created in SIMUUN. A quadratic friction force model
is used for the interaction of the mechanism’s links with the
environment (for details, see [39]).

Results obtained from the simulations are shown in Fig. 8.
In the example of the first row the robot performs a straight
line path toward the target. Another example is given in
the second row in which the robot moves in a curve to
reach the target location. The resultant paths obtained are
shown in Fig. 8(a) together with the target location, depicted
with a diamond marker, and it can be seen that the robot
reaches in both cases the target location. The orientation of
the robot head (and, hence, the orientation of the camera) is
shown in Fig. 8(b). The evolution of the estimated epipoles
is shown in Fig. 8(c), where the left (eL

c ) and right (eR
c )

epipoles computed at the yaw limits are drawn with circular
and square markers respectively. In the example of straight
motion, the temporal evolution of the epipoles’ location can
be seen to oscillate around zero, as would be expected. In
the second example, the curved path evolves, in response
to the epipoles’ oscillation gradually converging to a zero
mean value. At the end of the motion, when the robot is
close to the target location, the epipoles become unstable as
can be seen in the plot of the epipole estimation. Finally,
temporal evolution of the control signalsψ andA, shaping
the undulatory wave of the system during navigation to the
target location, is shown in Fig. 8(d).

A virtual scene has been created using the Persistence
of Vision Ray-Tracer (POV-RayTM ). The virtual scene is
rendered and projected into the image plane through a pin-
hole camera model. A sequence of virtual images taken
during the navigation in SIMUUN is shown as example in
the video attachment.

B. Experiments

An experimental setup for testing the proposed scheme is
presented in this section. It employs the Nereisbot prototype
[5], which is a 5-segment robotic platform, developed at
ICS-FORTH, for studying undulatory locomotion, as well as
pedundulatory extensions thereof, where body undulations
are combined with appropriately synchronized movements
of leg-like appendages (termed parapodia). Nereisbot can be
adapted for locomotion over a wide variety of substrates,
both conventional (e.g., hard floors) and unstructured (e.g.,
sand, pebbles and grass). In the present study, locomotion
over sand is considered, where the body undulations may
be complemented by parapodial activity. The robot has
been fitted with a forward-looking camera (Sweex WC031),
connected to a host PC via USB. In the proposed setup
(currently not fully implemented), the host PC processes in
real-time the images acquired by the camera, computes the
control law and sends the corresponding controls (A,ψ) to
the robot, via a wireless link.

Images are acquired by the on-board camera at 30 frames
per second with a resolution of320 × 240 pixels. The
resolution selected provides a balanced compromise between
computation time and accuracy of the geometric model esti-
mations. The epipolar geometry is computed between current
and target images where the current images (left or right) are
selected following the procedure outlined in Section III-B.
Then, SIFT features [40] are extracted and matched between
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Fig. 8. Results of two simulations in which the robot follows a straight path to reach the target (first row) or a curve path (second row). The target
location is drawn with a diamond marker. (c) The left and right current epipoles (eL

c , eR
c ) are depicted with circular and square markers respectively.

Fig. 9. SIFT matches between a current and a target image (left). Epipolar
lines intersecting on the epipoles estimated (right).

the current and the target images. An example of the matches
and the epipolar geometry obtained between a current and a
target image is shown in Fig. 9. The epipoles are estimated
using the RANSAC method [41], which is robust to the pres-
ence of outliers. The estimation of the epipolar geometry is
programmed using OpenCV (Intelr Open Source Computer
Vision Library). The estimated epipoles are used as input to
the control law, which calculates the corresponding values
of A andψ.

Two real experiments are presented as a proof of concept
in Fig. 10 in the first and second row respectively. These ex-
periments have been carried out in open loop, thus, the robot
is controlled to move in an arbitrary path: a straight path in
the first example and a curve path in the second example.
The video sequence of the current images is grabbed during
the navigation and one of the last images is selected as target

image. Then, the video is processed off-line estimating the
epipoles Fig. 10(a) and computing the output of the control
law, Fig. 10(b). The values obtained forA andψ are coherent
with the motion performed in open loop, a straight line and
a curve. The third row of Fig. 10 shows the robot in the
target location for the curve path experiment from a external
camera. The camera trail left during the motion is drawn
in white. An example with real data is shown in thevideo
attachment.

VII. C ONCLUSION

A novel visual homing scheme for undulatory robots
has been presented, where the control law is defined in
terms of epipoles. The adopted image-based approach does
not require computing the robot’s position or extracting
depth or other 3D scene information. Adaptations coping
with features specific to undulatory locomotion have been
introduced, especially with respect to the fast yawing move-
ments of the mechanism’s head link. The feasibility of the
proposed scheme has been demonstrated through simulations
and preliminary experiments with a robotic platform. Work is
currently underway towards performing in-depth parametric
simulation studies, and realizing real-time implementations
for the closed-loop experimental validation of the proposed
scheme.
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