
Switched Homography-Based Visual Control of Differential Drive
Vehicles with Field-of-View Constraints
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Abstract— This paper presents a switched homography-based
visual control for differential drive vehicles. The goal is defined
by an image taken at the desired position, which is the only
previous information needed from the scene. The control takes
into account the field-of-view constraints of the vision system
through the specific design of the paths with optimality criteria.
The optimal paths consist of straight lines and curves that
saturate the sensor viewing angle. We present the controls that
move the robot along these paths based on the convergence
of the elements of the homography matrix. Our contribution is
the design of the switched homography-based control, following
optimal paths guaranteeing the visibility of the target.

I. INTRODUCTION

Visual control or visual servoing is an extensive field of
research, and two interesting surveys on this topic are [14]
and [9]. In this paper we consider the problem of visual
control of a differential drive vehicle with a monocular vision
system on board. The task tackled is the usual approach in
which the vehicle is driven from an initial position to the
goal. The only information needed by the controller is each
current image taken during the navigation and the goal image
previously taken at the desired position.

Traditional visual control approaches are based on the
epipolar geometry [1], [17], [22], but this model is ill
conditioned for planar scenes and is problematic with short
baseline. A good alternative is the homography-based ap-
proach [2], but existing approaches usually do not take into
account the motion constraints of the platform [3], [23]
or need the estimation of related-depth parameters [10].
The control scheme proposed here is based on the specific
characteristics of the homography matrix elements. Also,
this control takes into account the motion constraints of the
platform, which is one of our main contributions.

A typical problem in image-based visual servoing is to
deal with the field-of-view constraints of the camera [4], [7],
[21]. This problem is solved in [8], [19] with hybrid visual
servoing approaches. Here we propose to solve it by taking
advantage of the research developed in the motion planning
field [16], by combining visual control with motion planning
[20], [25]. Motion planning approaches usually assume that
position information is available, performing the navigation
planing task only from pose information, which is not the
case of our work.
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In our approach, we design a switched controller able to
maneuver in order to reach the goal, keeping the target in
the camera field of view. For this purpose we benefit from
the work presented in [5], where an optimal path scheme
is presented. The optimal paths consist of straight lines and
curves that saturate the pan angle of the camera. Here, a
controller is presented for each type of path. Thus, another
contribution is the design of the switched homography-based
control following these optimal paths.

The paper is organized as follows. Section II briefly
summarizes the work presented in [5] for the design of
optimal paths. Section III describes the motion and homog-
raphy models used in the control. In Sections IV and V,
the switched control for straight line and T-curve paths are
presented respectively. Conclusions are discussed in Section
VI. In Appendix A we present the criterion for the selection
of the type of optimal paths required depending on the initial
configuration.

II. OPTIMAL PATHS

In this section we briefly summarize the work presented
by Bhattacharya et al in [5]. They consider the problem of
planning shortest paths for differential drive robots whose
motion is further constrained by sensing considerations.
In particular, they consider the case when the robot must
maintain visibility of a fixed landmark using a body-mounted
camera with a limited field of view. Kantor and Rizzi
[15] have considered a similar problem from a control
theoretic perspective. They have proposed a framework for
the construction of globally convergent, purely feedback-
based controllers for such a system using the idea of variable
constraint control [11] [12].

Their primary result is that the shortest paths for this
system consist of straight line segments or curves that
saturate the sensor viewing angle, which lead to logarithmic
spirals. These are called the T-curves. Since the camera is
allowed to rotate in a closed interval [φ1,φ2], two kinds of T-
curves can be drawn from each point. The T-curves generated
by saturating the camera angle at φ1 are called T1 curves
and the T-curves generated by saturating the camera angle
at φ2 are called T2 curves. The T1 and T2 curves passing
through a point P are denoted by T 1P and T 2P respectively.
An example is shown in Fig. 1. In the current work, instead
of a camera which can rotate to keep the target in the centre
of the image, we use for simplicity a fixed camera where the
target is allowed to move from one side of the image to the
other, restricted to the field-of-view constraint [φ1,φ2].
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Fig. 1. A T1 and T2 curve generated from a point P.
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Fig. 2. Regions and shortest paths. The Initial position is P, the different
goals are denoted by Q and the observed target is O.

Figure 2 shows the final partition of the workspace into
regions according to the nature of optimal paths. The shortest
paths from P to any point Q in regions I and I’ are straight
lines. The shortest paths in region II consist of a straight line
followed by T1 curve. The shortest paths in region II’ consist
of a straight line followed by a T2 curve. The shortest paths
from P to any point Q in region III consist of a T2 curve,
followed by a straight line. The shortest paths from P to any
point in region III’ are a straight line followed by T1 curve.
The shortest paths from P to any point in region IV consist
of a T2 curve and then a T1 curve. The shortest paths from
P to any point in region V consist of a T1 curve and then
a T2 curve. In the current work we present the criteria for
deducing in which region is the robot (Appendix A).

III. MOTION AND GEOMETRIC MODEL

The kinematics of a differential drive vehicle expressed as
a function of the robot velocities (v,ω), with (x,z,φ)T the
position and orientation of the vehicle, are:


ẋ
ż
φ̇


 =




sinφ
cosφ

0


v +




0
0
1


ω . (1)

Two perspective images can be geometrically linked by a
homography. This homography relates corresponding points

Fig. 3. References in Polar and Cartesian coordinates.

between the images belonging to a plane. Let us suppose the
two images are taken with the same camera, whose projection
matrixes are P1 = K[I|0] and P2 = K[R|−Rc], being R the
camera rotation, c the translation between the cameras, and
K the camera calibration, determined by the focal length in
pixel dimensions (αx, αy). In practice, we assume that the
principal point is in the centre of the image (x0 = 0, y0 = 0)
and that there is no skew (s = 0).

A homography H can be related to motion:

H = K(R− t
nT

d
)K−1 = KR(I+ c

nT

d
)K−1 , (2)

where n = (nx, ny, nz)T is the normal of the plane and d is the
distance between the plane and the reference. We consider a
mobile robot moving in a planar surface (Fig. 3),

R =




cosφ 0 sinφ
0 1 0

−sinφ 0 cosφ


 and c = (x, 0, z)T .

Therefore, the homography of planar motion is H = hi j,
(i, j = 1,2,3) where h21 = 0, h22 = 1 and h23 = 0. Elements
h21, h22 and h23 do not give information because of the planar
motion constraint. Developing expression (2) we obtain the
homography elements as a function of the system parameters:




h11 = cosφ +(xcosφ + zsinφ) nx
d

h12 = αx
αy

(xcosφ + zsinφ) ny
d

h13 = αx
(
sinφ +(xcosφ + zsinφ) nz

d

)
h31 = 1

αx

(−sinφ +(−xsinφ + zcosφ) nx
d

)
h32 = 1

αy
(−xsinφ + zcosφ) ny

d

h33 = cosφ +(−xsinφ + zcosφ) nz
d

(3)

The control presented uses the homography elements h11,
h13 and h33; and the analysis of these homography elements
lead to the design of the control law. Elements h31 and h32 are
discarded because of its sensitivity to noise compared with
the rest of the elements, given that they are smaller because
of the factors 1/αx and 1/αy appearing in h31 and h32

respectively. Besides, in human environments, vertical planes
are common, therefore we avoid using elements depending
directly on ny , like h12 . Moreover, planes in front of the
camera are more easily detected, so in general, we can
consider that the normal of the plane detected has nz �= 0.



Fig. 4. Diagram of the three steps for the straight line path.

IV. SWITCHED CONTROL FOR STRAIGHT LINE PATHS

In this section we present the image-based visual control
for the straight line motion, taking advantage of this specific
trajectory. In this path we propose a control law decoupling
rotation and translation. The resulting path of this motion is
shown in Fig. 4.

The motion is divided into three sequential steps. In the
first step the robot rotates until the camera points to the goal
position. In the second step, the robot performs a straight line
translation with a constant angle with respect to the global
reference (φ = φt) until the goal position. Finally, in the third
step, the orientation is corrected by rotating about the robot
axis. The key point is to establish the conditions that have to
be held during each phase of the navigation. In our reference
system we have that x = −z tanφt . Using this expression in
(3), the particular form of the homography that is held at the
end of first step and during the second step is:

H(φ=φt ) =




cosφt 0 αx sinφt

0 1 0
−sinφt

αx
+ znx/d

αx cosφt

zny/d
αy cosφt

cos2 φt+znz/d
cosφt


 (4)

At the end of the second step the robot has an orientation
error and no translation error (x = 0,z = 0,φ = φt). Then, the
matrix that results at the end of the second step is given by

H(x=0,z=0,φ=φt) =




cosφt 0 αx sinφt

0 1 0
−sinφt

αx
0 cosφt


 . (5)

Finally, at the end of the navigation, when the robot
reaches the goal pose, the homography will be the identity
matrix, H(x=0,z=0,φ=0) = I .

In this method, we suppose that the intrinsic camera
calibration matrix is known and therefore the value of the
focal length αx is given. This control is based on the key
value φt , which is unknown. From (4) we have that h11 =
cosφt and h13 = αx sinφt and then, we can obtain the next
equation, which is true when φ = φt ,

h2
11 +

h2
13

α2
x

= 1 . (6)

The orientation φt during the first step is reached with
(6) and, supposing there is odometry drift or noise, we use
the same expression during the second step to maintain this
orientation φt . At the end of the second step we have h11 =

h33, this is used to set v during this step. When the robot
is over the target up to a rotation, h13 becomes zero as the
desired orientation is reached. Thus, we define the switched
control as:

Step 1: v = 0, ω = −kω(h2
11 +h2

13/α2
x −1) .

Step 2: v = −kv(h11 −h33), ω = −kω(h2
11 +h2

13/α2
x −1).

Step 3: v = 0, ω = −kω h13 .

The control gains are kω and kv, with kv > 0. In the third
step kω > 0, while the sign of kω in the first and second
step has to be selected at the beginning of the motion. For
example, using plane parallax we can easily know the sign
of the x-coordinate of the robot position and determine the
correct sign of kω . The control law proposed does not need
to know the value of φt . Literature on this controller can be
found in [18].

A. Stability Analysis

We define the common Lyapunov function expressing the
robot position in polar coordinates (r(t), θ(t), φ(t)), with the
reference origin in the observed target and θ positive from
z-axis anticlockwise (Fig. 3), as

V = Vr +Vθ +Vφ =
(r− rGi)2

2
+

(θ −θ Gi)2

2
+

(φ −φ Gi)2

2
(7)

where rGi , θ Gi and φ Gi denote the desired value of the
parameter in the subgoal position of each step (G1, G2

and G3). This candidate function is positive definite. After
differentiating we obtain:

V̇r = (r− rGi)v cos(φ −θ) . (8)

V̇θ = (θ −θ Gi)
v
r

sin(φ −θ) . (9)

V̇φ = (φ −φ Gi)ω . (10)

Now we analyze the derivative Lyapunov candidate func-
tion of each step to show it is strictly negative. This analysis
is valid whether if the goal is behind or in front of the initial
position.

1) Step towards G1: Here the robot performs a rotation
with v = 0, thus, we only need to consider V̇ = V̇φ . The
desired orientation is φ G1 = φt . V̇φ < 0 is guaranteed if (φ −
φ G1) > 0 and then ω < 0; or else, if (φ −φ G1) < 0 and then
ω > 0. In this step, the sign of ω is guaranteed to be correct,
given that the sign of kω is selected as explained previously.

2) Step towards G2: In step 2 the robot moves towards the
target in a straight line motion with θ G2 = θ . Thus, we define
V̇ = V̇r +V̇φ . The sign of (r− rG2) is always positive. Then,
with cos(φ −θ) < 0 we have v > 0 and with cos(φ −θ) > 0
we have v < 0. The velocity given by the control and with
(4) is v = kvznz/(d cosφt), which gives the expected signs.
With V̇φ we have the same reasoning of step 1.

3) Step towards G3: Similar than step 1, in this case, the
sign of ω can be easily checked taking into account that
φ G3 = 0 and h13 = αx sinφt . Therefore V̇ < 0.

Therefore V̇ < 0 in all the steps. We have also asymptotic
stability given that V̇ is negative definite in all the steps.
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Fig. 5. Simulations following a straight line path with and without image
noise of σ = 0.3 pixels (dotted and solid line respectively).

B. Simulation Results: Straight Line Paths

Simulations showing the performance of the switched
control law following a straight line path are presented. A
virtual framework is used by generating random 3D points
in a planar scene. The 3D points of the scene are projected
in the image plane through a virtual camera. The size of the
images obtained from the virtual camera is 640× 480 and
φ1 = 26.56◦, φ2 = −26.56◦. The homography between the
current and goal image is computed from the image point
matches [13].

The initial position of the robot in the simulations of
Fig. 5 is (x (m), z (m), θ (deg)) = (−3,−10,−30◦) and the
target position is (0,0,0◦). Two simulations are superposed
in the graphics, one without noise and the other adding white
image noise to points in the image with standard deviation of
σ = 0.3 pixels. For the case of noisy image points, the final
position is (0.062,−0.080,−0.094◦). The simulations show
that the method works properly in spite of image noise.

V. SWITCHED CONTROL FOLLOWING T-CURVES

In this section we present a switched control law that
moves the robot on T-curves, as summarized in Section II.
The motion is divided into five sequential steps (Fig. 6),
and the target is the plane that generates the homography.
For each step we define a subgoal in terms of homography
parameters. This is a position based approach, given that we

Fig. 6. Diagram of the designed path consisting in five steps.

need to get the orientation and the ratio of the robot position
from the homography decomposition to define the subgoals.

The control proposed for each step is:
Step 1: v = 0, ω = −kω(h13 −hG1

13 ) .

Step 2: v = −kv(h33 −hG2
33 ), ω = −kω(h13 −hG2

13 ) .

Step 3: v = 0, ω = −kω(h13 −hG3
13 ) .

Step 4: v = −kv(h33 −h11), ω = −kω(h13 −hG4
13 ) .

Step 5: v = 0, ω = −kω (h13 −hG5
13 ) .

The control gains are kv and kω > 0. The sign of kv

depends on the type of optimal path required, if it starts with
a T2 curve kv > 0, else kv < 0 (see Appendix A). h11, h13

and h33 are the corresponding elements of the homography
between the current and goal position. hGi

13 and hGi
33 are defined

from the homography between the desired subgoal of the step
i and the goal position. From equation (3), the parameters
hGi

13 and hGi
33 can be calculated as

hGi
13 =

( h13
αx

− sinφ)(ρGi cosφ Gi + sinφ Gi)

(ρ cosφ + sinφ)ρz /αx
+αx sinφ Gi , (11)

hGi
33 =

(h33 − cosφ)(−ρGi sinφ Gi + cosφ Gi)
(−ρ sinφ + cosφ)ρz

+cosφ Gi , (12)

where ρ = x/z , ρGi = xGi/zGi and ρz = z/zGi . The current
robot orientation is φ and the desired orientation in each step
is φ Gi .

Now we define the values of hGi
13 and hGi

33 for each subgoal:
1) Subgoals G1, G3 and G5: The steps 1 and 3 consist

in rotating the robot until it has the orientation of the
corresponding T-curve. Since v = 0 in these steps, ρG1 = ρ ,
ρG3 = ρ and ρz = 1 in (11) and (12). The desired orientations
in these steps are φ G1 = φ + arctan( px

αx
+ φ2) and φ G3 =

φ +arctan( px
αx

+φ1), where px is the x-coordinate of a point of
the target in the current image and [φ1,φ2] are the extremities
of the camera field of view. In step 5 the robot performs
a rotation to converge the homography matrix to identity,
therefore hG5

13 = 0.
2) Subgoal G4: In step 4 the robot moves backwards until

it reaches the goal position (with the T-curve orientation). In
this step, we require h33 to converge to h11, see (5). Up to
odometry drift we suppose that the robot follows the desired
path, so ρG4 = ρ and ρz = 1 and the desired orientation is
φ G4 = φ + arctan( px

αx
+φ1).



3) Subgoal G2: After step 1 the robot is on a T-curve and
the new subgoal is the intersection point between the two T-
curves. In step 2 we have the same reasoning as step 4 for
hG2

13 having ρG2 = ρ , ρz = 1 and φ G2 = φ + arctan( px
αx

+φ2).
For hG2

33 , we have φ G2 = θ G2 +φ2, where φ G2 is computed in
the following way: From the equations of the T-curves (see
(14) in Appendix A) we can deduce that at the end of the
second step

θ G2 =
ln(r1/r2)+(θ1/ tanφ1 −θ2/ tanφ2)

1/ tanφ1 −1/ tanφ2
, (13)

where the ratio r1/r2 (see Fig. 3) can be computed as

r1

r2
=

ρ12 cos(γ2)+ sin(γ2)
ρ12 sin(β )− cos(β )

,

with γ2 = arctan( px2
αx

) and β = π/2+φ2−θ12 , with ρ12 = ρG1

the ratio between initial and goal position and θ12 :

θ12 = θ2 −θ1 = γ1 − γ2 −φ12 ,

where γ1 = arctan( px1
αx

), and φ12 is the relative orientation
between initial and goal position obtained from the homogra-
phy decomposition [24]. px1 and px2 are the x-coordinate of a
point on the target in the initial and goal images respectively.
We have fixed our reference at θ2 = 0.

For hG2
33 we can compute neither ρG2 nor ρz because we

need the value of ρ in the subgoal position of step 2 which
can only be known when this position is reached. We use the
following approximation instead: ρG2 = ρ and ρz = 1, with
ρ defined in the current position. The previous simplification
only becomes true as the robot approaches the second sub-
goal. Simulations show that the approximation for hG2

33 does
not affect the convergence or accuracy of the method. This is
because this parameter is responsible for stopping the robot
in the subgoal. As the robot approaches the subgoal, given
that the orientation is properly corrected, this parameter is
more exact. In fact, we present a successful implementation
of the extreme case in which range constraints are considered
(Section V-B) and then, the system needs to switch to next
step before reaching the subgoal. Angles φ1 and φ2 can be
exchanged in the previous equations depending on the type
of optimal path selected (Appendix A).

A. Stability Analysis

The stability of each step is analyzed defining the corre-
sponding Lyapunov candidate functions:

1) Steps towards G1, G3 and G5: These steps consist in
pure rotations and the Lyapunov candidate function is defined
as V̇ = V̇φ , see (10). If (φ −φ Gi) > 0, ω < 0. Else, if (φ −
φ Gi) < 0, ω > 0. Therefore V̇ < 0.

2) Steps towards G2 and G4: We define the Lyapunov
candidate function V =Vr +Vφ , see (8) and (10). The analysis
of Vφ in steps 2 and 4 is the same as steps 1, 3 and 5. With
respect to Vr : Vr < 0 is guaranteed if the robot moves in
step 2 in a T1 curve (v > 0), given that (r− rG2) > 0 and
cos(φ −θ) < 0. If the robot moves backwards (v < 0) in step
4 in a T2 curve, we have (r− rG4) < 0 and cos(φ −θ) < 0,
and again Vr < 0. Therefore, V̇ < 0 in steps 2 and 4.

We have also that the stability is asymptotic given that V̇ is
negative definite in all the steps. The previous development
needs the analysis of the signs of the velocities given by
the control law for each step. Given that this is not a trivial
check, we use an approximation for the verification. In (11)
we suppose that (ρGi cosφ Gi + sinφ Gi) � (ρ cosφ + sinφ)
and in (12) that (−ρGi sinφ Gi +cosφ Gi)� (−ρ sinφ +cosφ)
and that ρz � 1. Actually, this approximation only becomes
true as the robot approaches to each subgoal. With this
simplification we have that v � −kv(cosφ − cosφ Gi) and
ω �−kω αx(sinφ − sinφ Gi).

Before starting the navigation, we need to select what
method is needed (Section IV or V). The selection procedure
is presented in Appendix A, and then, the selected control
is carried out to reach the goal. But if there is noise or drift
a final error can be obtained due to the motion constraint
in such a way that H �= I at the end of the motion. In
this case, the procedure can be repeated until H = I . In
order to ensure the stability of the global control we use
the notion of stability of switched systems presented in [6].
This means that we need the global switching system to fulfil
the sequence nonincreasing condition to ensure stability. We
define the Lyapunov function: V =Vr. It has been shown that
V̇r < 0 for both methods presented here. Therefore, for the
global switched control we have V̇ < 0, and then the system
is stable in the Lyapunov sense.

B. Simulation Results: T-curve Paths

In this section we present several simulations showing
the performance of the switched control following T-curves.
The robustness of the approach is tested considering image
noise and odometry drift. In all the simulations the initial
position is (x, z, θ ) = (−9,−2,−20◦) and the goal position
is (0,0,0◦). The target, that must be kept in the camera field
of view is located in (x, z) = (−3,8). In our homography-
based approach the target is the plane that generates the
homography. Figure 7 shows the results using our approach
without noise and Fig. 8 shows the results when adding white
noise to the image points with standard deviation of σ = 1
pixel. Different graphics are shown, like the path followed
by the robot and its coordinates along the time, the velocities
(v,ω), or the evolution of the homography elements used in
the control. In Fig. 8(c), we show the x-coordinate in the
image of a point of the target. The field-of-view limit is 320
pixels. It can be seen in the figure that the point does not
leave the field of view (in practise a threshold should be
used). In simulation of Fig. 9(a) we have added odometry
drift of 0.8 deg/m to the robot motion. It can be seen that,
after two iterations, the system converges to the goal with
good accuracy.

The previous method can be easily extended to the case
when camera range constrains exist. For example, when there
is a minimum distance (rmin), below which the target can not
be seen in the image (for example because of its size) or there
is a maximum distance (rmax) above which the target cannot
be seen properly (for example because of camera resolution).
If one of these limits is reached, the system switches to the
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Fig. 7. Simulation following two T-curves. (a-d) Robot coordinates and
path. (e-f) Homography elements used in the control.

next step. Given that the global switching control has been
shown to be stable, the robot will finally converge to the
goal. An example is shown in Fig. 9(b).

VI. CONCLUSIONS

A visual control scheme for differential drive vehicles is
presented in this paper. This is a switched homography-based
approach that takes into account the field-of-view camera
constraints. Optimality in distance is the criteria for choosing
the paths. Two types of paths with its respective controller
are required, namely, one controller drives the robot along
a straight line and the other drives the robot following T-
curves until it reaches the goal. Stability analysis of both
controllers is presented. The simulations carried out show
that the approach works properly and simulations with image
noise and odometry drift show good performance of the
method. We also show that the control can easily cope with
range constraints of the camera. In our opinion, combining
motion-planning research with new visual control methods
is a promising open field of future research.

APPENDIX

A. Control Selection: Decision of Regions

Before starting the navigation, we need to check what
type of optimal path is required in order to select the proper
control. In this section, we give the conditions on the ratio
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Fig. 8. Simulation following two T-curves with image noise of σ = 1 pixel.
(a-b) Output velocities. (c) x-coordinate of the observed target in the current
image. (d) Robot path. (e-f) Homography elements used in the control.
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Fig. 9. (a) Simulation of two iterations with odometry drift of 0.8 deg/m.
Pose after each iteration: (−1.00,−0.31,−2.63◦) and (−0.02, −0.01,
−0.05◦). (b) Simulation with minimum range constraint rmin = 6 m. Final
pose (−0.15,−0.08,−0.40◦).

r1
r2

(between initial and goal position) that decides the region
where the goal lies with respect to the initial point. Let us
derive the conditions for the goal to be on the boundary
of the distinct regions. In the following discussion, P is the
initial point and without loss of generality we can assume
P = (r1,0) in polar coordinates. Q is the goal point with
polar coordinates (r2,θ), where 0 ≤ θ ≤ π .

Consider Fig. 10 (left). Let us suppose Q lies on the
boundary of region I. Applying sine rule in �PQO we obtain

r2

r1
=

sin(π− | φ1 |)
sin(| φ1 | −θ)

=
sin(| φ1 |)

sin(| φ1 | −θ)
.



Fig. 10. Q on the boundary of region I (left) and region I’ (right).

A necessary condition for Q to lie on the boundary of
region I is θ <| φ1 |. Hence the conditions for Q to lie on
the boundary of region I are:

1) r2
r1

= sin(|φ1|)
sin(|φ1|−θ)

2) θ <| φ1 |
Now consider Fig. 10 (right). Let us suppose Q lies on

the boundary of region I’. Applying sine rule in �PQO we
obtain

r2

r1
=

sin(φ2 −θ)
sin(φ2)

.

A necessary condition for Q to lie on the boundary of
region I’ is θ < φ2. Hence the conditions for Q to lie on the
boundary of region I’ are:

1) r2
r1

= sin(φ2−θ)
sin(φ2)

2) θ < φ2

If Q lies on a T1 or T2 curve, then, respectively,

r2

r1
= e

−θ
tanφ1 ,

r2

r1
= e

−θ
tanφ2 . (14)

A similar analysis can be done for the case θ ∈ [0,−π].
Table I illustrates the criteria to decide the region in which Q
lies based on the ratio r2

r1
and θ , where SL denotes a straight

line path and T 1p, T 2p denote the T-curves of point P.

TABLE I

TYPES OF OPTIMAL PATHS DEPENDING ON THE RATIO
r2
r1

AND θ .

r2
r1

| θ | Type of path

[0, sin(|φ1|−|θ |)
sin(|φ1|) ] [0, | φ1 |] SL

[ sin(|φ1|−|θ |)
sin(|φ1|) ,e

|θ |
tanφ1 ] [0,π] SL−T 1P

θ ∈ (−π,0] [e
|θ |

tanφ1 ,e
|θ |

tanφ2 ] [0,π] T 2P ∗T 1P

[e
|θ |

tanφ2 , sin(φ2)
sin(φ2−|θ |) [0,φ2] SL−T 2P

[ sin(φ2)
sin(φ2−|θ |) ,∞ ] [0,φ2] SL

[e
|θ |

tanφ2 ,∞] [φ2,π] SL−T 1P

[0, sin(φ2−θ)
sin(φ2) ] [0,φ2] SL

[ sin(φ2−θ)
sin(φ2) ,e

−θ
tanφ2 ] [0,π] SL−T 2P

θ ∈ [0,π) [e
−θ

tanφ2 ,e
−θ

tanφ1 ] [0,π] T 1P ∗T 2P

[e
−θ

tanφ1 , sin(|φ1|)
sin(|φ1|−θ) [0, | φ1 |] SL−T 1P

[ sin(|φ1|)
sin(|φ1|−θ) ,∞ ] [0, | φ1 |] SL

[e
−θ

tanφ1 ,∞] [| φ1 |,π] SL−T 1P

REFERENCES

[1] R. Basri, E. Rivlin and I. Shimshoni, ”Visual Homing: Surfing on the
Epipoles ”, Int. J. of Computer Vision, vol. 33, no. 2, 1999, 117-137.

[2] S. Benhimane and E. Malis, ”Homography-based 2D Visual Servoing”,
IEEE Int. Conf. on Robotics and Automation, 2006, pp. 2397-2402.

[3] S. Benhimane, E. Malis, P. Rives and J. R. Azinheira, ”Vision-based
Control for Car Platooning using Homography Decomposition”, IEEE
Int. Conference on Robotics and Automation, 2005, pp. 2173-2178.

[4] S. Benhimane, E. Malis, ”A new approach to vision-based robot con-
trol with omni-directional cameras”, IEEE International Conference
on Robotics and Automation, 2006, pp. 526-531.

[5] S. Bhattacharya, R. Murrieta-Cid and S. Hutchinson, ”Optimal Paths
for Landmark-based Navigation by Differential Drive Vehicles with
Field-of-View Constraints”, IEEE Transactions on Robotics, To ap-
pear, 2007.

[6] M. S. Branicky, ”Multiple Lyapunov Functions and Other Analysis
Tools for Switched and Hybrid Systems”, IEEE Transactions Automat.
Control, vol. 43, no. 4, 1998, pp. 475-482.

[7] E. Cervera, A. P. del Pobil, F. Berry, P. Martinet, ”Improving Image-
Based Visual Servoing with Three-Dimensional Features”, The Inter-
national Journal of Robotics Research, vol. 22, no. 10-11, October-
November 2003, pp. 821-839.

[8] P. I. Corke and S. A. Hutchinson, ”A New Partitioned Approach to
Image-Based Visual Servo Control”, IEEE Trans. Robot. Autom., vol.
17, no. 4, 2001, pp. 507-515.

[9] G. N. DeSouza and A. C. Kak, ”Vision for Mobile Robot Navigation:
A Survey”, IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 24, no. 2, 2002, pp. 237-267.

[10] Y. Fang, W. E. Dixon, D. M. Dawson and P. Chawda, ”Homography-
based visual servo regulation of mobile robots”, IEEE Trans. on
Systems, Man, and Cybernetics, vol. 35, no. 5, 2005, pp. 1041-1050.

[11] T. Ikeda and T. Mita and B. D. O. Anderson, ”Position and attitude
control of an underwater vehicle using variable constraint control”,
IEEE Int. Conf. on Decision and Control, 2001, pp. 3758-3763.

[12] T. Ikeda and T. Nam and T. Mita and B. D. O. Anderson, ”Variable
Constraint Control of Underactuated Free Flying Robots - Mechanical
Design and Convergence”, IEEE International Conference on Decision
and Control, December, 1999, pp. 2539-2544.

[13] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, Cambridge University Press, 2004.

[14] S. Hutchinson, G. Hager, and P. I. Corke, ”A Tutorial on Visual Servo
Control”, IEEE Trans. on Robotics and Automation, vol. 12, no. 5,
Oct. 1996, pp. 651-670.

[15] G. Kantor and Alfred A. Rizzi, ”Feedback Control of Underactuated
Systems via Sequential Composition: Visually Guided Control of a
Unicycle”, Proc. of 11th Int. Symposium of Robotics Research, 2003.

[16] J. P. Laumond, Robot Motion Planning and Control, Lectures Notes
in Control and Information Sciences 229. Springer, 1998.
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