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Abstract— This paper presents a new visual control approach
based on homography. The method is intended for nonholo-
nomic vehicles with a fixed monocular system on board. The
idea of visual control used here is the usual approach where the
desired position of the robot is given by a target image taken at
that position. This target image is the only previous information
needed by the control law to perform the navigation from the
initial position to the target. The control law is designed by
the input-output linearization of the system using elements of
the homography as output. The contribution is a controller that
deals with the nonholonomic constraints of the mobile platform
needing neither decomposition of the homography nor depth
estimation to the target.

I. I NTRODUCTION

Visual control, also called visual servoing, is a very
extensive and mature field of research where many important
contributions have been presented in the last decade [4], [5],
[12], [14], [18]. Two interesting surveys on this topic are [6]
and [9].

The framework of the method presented here is a mobile
robot with nonholonomic constraints with a fixed camera
on board. The idea of the visual control method is to drive
the robot from an initial position to the target. The desired
position is given by an image previously taken at the target
position, and using the images taken during the navigation
the robot is led to the target.

A traditional approach is to perform the motion by com-
puting the epipolar geometry between the current image and
the target one [1], [11], [15]. Nevertheless, the estimation
of the epipolar geometry becomes ill conditioned for planar
scenes, this is a drawback of these approaches because planar
scenes are usual in human environments. A natural way to
overcome this problem is by using the homography model.
In [13] it is proposed a method based on the estimation of
the homography matrix related to a virtual plane attached
to an object. This method provides a more stable estimation
when the epipolar geometry degenerates. In [3] a system
for car platooning using visual tracking is presented by
estimating the homography between a selected reference
template attached to the leading vehicle. A significant issue
with monocular camera-based vision systems is the lack of
depth information. Fang et al. [7] proposed the asymptotic
regulation of the position and orientation of a mobile robot by
exploiting homography-based visual servo control strategies.
Thus, the homography is decomposed and orientation and
scaled Euclidean position can be obtained; the unknown
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time-varying depth information is related to a constant depth-
related parameter.

These homography-based methods usually require the
decomposition of the homography, which is not a trivial
issue. Two examples of approaches which do not use the
homography decomposition are [16] which is based on a
2D homography and [2] which presents an uncalibrated
approach for manipulators. Nevertheless, methods like these
are usually not intended for nonholonomic robots.

The method presented in this paper is based on the
input-output linearization of the system considering the non-
holonomic constraints of the platform. A main feature of
this approach is the design of the input control based on
the homography elements directly. Then, the visual control
problem is transformed in a tracking problem where the
desired values of these homography elements during the
motion are defined. This approach needs neither homography
decomposition nor depth estimation.

The paper is divided as follows: Section II presents the
homography, developing its elements as a function of the sys-
tem parameters to be used in the control law design. Section
III describes the motion model, followed by the design of the
control law in Section IV. Experimental evaluation is given
in Section V showing the method performance with noise and
with calibration errors. Section VI gives the conclusions.

II. PERCEPTUALMODEL

Two perspective images can be geometrically linked by a
homography. This homography relates points in one image
belonging to a plane of the scene to the corresponding points
in the other image (Fig. 1). The homography between two
images can be computed using image point matches [8].

Let us suppose the two images are obtained with the same
camera, whose projection matrixes in a common reference
system areP1 = K[I|0] andP2 = K[R|t], with t = −Rc,
being R the camera rotation,c the distance between the
cameras, andK the internal calibration matrix, defined as

K =




αx s x0

0 αy y0

0 0 1


 ,

whereαx andαy are the focal length of the camera in pixel
dimensions;s is the skew parameter and (x0, y0) are the
coordinates of the principal point. We have thatαx = f mx

and αy = f my , wheref is the focal length andmx, my

are the pixels per distance unit. In practice, we assume that
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(a) (b)

Fig. 1. (a) Homography from a plane between two views, whereC1 and
C2 are the optical centres of the cameras. (b) Coordinate system.

the principal point is in the center of the image (x0 = 0,
y0 = 0) and that there is no skew (s = 0).

A point can be represented in the image with homogeneous
coordinates asp = (x, y, 1)T . A projective transformationH
relates pairs of matched points belonging to a plane of the
scene (π) in such a way thatp2 = Hp1.

A homographyH can be related to camera motion in such
a way that

H = K (R− t
nT

d
)K−1 = KR (I + c

nT

d
)K−1 , (1)

wheren = (nx, ny, nz)T is the normal to the scene plane
that generates the homography andd is the distance to the
plane from the origin of the global reference (Fig. 1).

We consider a mobile robot moving in a planar surface
(Fig. 1); in this case the location of the robot is defined by
the vector (x, z, φ). Therefore the planar motion constraint
yields:

R =




cos φ 0 sin φ
0 1 0

− sin φ 0 cos φ


 and c = (x, 0, z)T .

Therefore, the homography corresponding to a planar
motion scheme is:

H =




h11 h12 h13

0 1 0
h31 h32 h33


 . (2)

The homography is normalized by dividingH/h22, given
that h22 is never zero due to the constraint of planar mo-
tion. Developing expression (1) we obtain the homography
elements as a function of the camera and motion parameters:





h11 = cos φ + (x cos φ + z sin φ)nx

d
h12 = αx

αy
(x cosφ + z sin φ)ny

d

h13 = αx

(
sin φ + (x cosφ + z sin φ)nz

d

)
h31 = 1

αx

(− sin φ + (−x sin φ + z cosφ)nx

d

)
h32 = 1

αy
(−x sin φ + z cos φ)ny

d

h33 = cos φ + (−x sin φ + z cos φ)nz

d

(3)

The analysis of these elements of the homography will
lead to the design of the visual servoing controller.

III. ROBOT MOTION MODEL

Let us suppose a nonholonomic differential kinematics
expressed in a general way as

ẋ = f(x,u)
y = h(x)

wherex = (x, z, φ)T denotes the state vector,u = (v, ω)T

the input vector, andy the output vector. The particular
nonholonomic differential kinematics of the robot expressed
in state space as a function of the translation and rotation
velocities of the robot (v, ω) is as follows




ẋ
ż

φ̇


 =




− sin φ
cos φ

0


 v +




0
0
1


 ω (4)

y = (h11, h12, ... h33)
T

. (5)

IV. I NPUT-OUTPUT L INEARIZATION SCHEME

The approach presented performs the robot navigation by
controlling the elements of the homography. Then, the prob-
lem of visual servoing is transformed into a tracking problem
where the desired values of the homography elements along
the motion are defined.

A. Input-Output Linearization

We have a nonlinear system relating inputs and outputs. A
linearization is developed by differentiating the homography
elements until we can solve for the control inputs. Lineariza-
tion by differentiating is a common way to face the design
of nonlinear control systems [10], [17].

As the system has two variables to be controlled (v, ω),
at least two elements of the homography are needed to
guarantee the controllability. Elementsh21, h22 andh23 do
not give information because of the planar motion constraint.
Elementsh31 andh32 are discarded because they are small
and sensitive to noise compared with the rest of the elements,
this is because of the factors1/αx and 1/αy appearing in
h31 and h32 respectively. In our monocular system, planes
in front of the robot with dominantnz will be detected more
easily. Thus, from the elements left, we have selected those
depending onnz (i.e. h13 andh33).

Note that the normal vector of the plane (n) and the
distance between the plane and the origin (d) are referred
to the global reference attached to the target position. Given
that the target is fixed, these parameters (n, d) are constant,
and its derivative is zero. The derivatives ofh13 andh33 with
respect to the time gives

ḣ13 = αx h33 ω

ḣ33 = nz

d v − h13
αx

ω
(6)

These derivatives have been simplified by using the next
relations, which come from different combinations between
the elements of the homography (3),

(x cosφ + z sin φ) = (h13
αx

− sin φ) d
nz

(−x sinφ + z cos φ) = (h33 − cosφ) d
nz

(7)



B. Control Law

After the first derivative we have already got a linear
relation between the system input and output. From (6) we
have the necessary equations from the elementsh13 andh33

of the homography to be used in the control law. Thus,
y = (h13, h33)

T , and the control law is:
(

ν13

ν33

)
= L

(
v
ω

)
,

where the decoupling matrix is

L =
[

0 αxh33
nz

d −h13
αx

]
. (8)

Solving for the control outputs we have
(

v
ω

)
= L−1

(
ν13

ν33

)
, (9)

where the control matrix is

L−1 =

[
h13

α2
xh33

d
nz

d
nz

1
αxh33

0

]
.

The new inputs of the control(ν13, ν33)T are given as a
function of the current values of the homography elements
(h13, h33)T and their desired values(hd

13, h
d
33)

T which are
the trajectories to be followed [17],

(
ν13

ν33

)
=

(
ḣd

13 − k13(h13 − hd
13)

ḣd
33 − k33(h33 − hd

33)

)
. (10)

where k13 and k33 are the gains of the control. Note that
the parameterd

nz
, which is constant, appears in the first

row of L−1 and then it can be considered as a gain of the
corresponding output. The decoupling matrix of the control
needs the values ofαx, h13 and h33. As the homography
is computed directly from the images, the elementsh13 and
h33 are known. The focal lengthαx is given by the camera
calibration, although it will be shown that an approximate
value is enough.

We needL to be invertible. Thus, it must be

det(L) = −αxh33
nz

d
6= 0 .

We can use the expressions (3) in order to have the
determinant as a function ofx, z andφ:

−αx(cos φ +
(
−x sinφ + z cos φ)

nz

d

) nz

d
6= 0 ,

and usingx = −z tan φt , whereφt is the angle that relates
the current position with the target one,L is invertible if:

cosφ cosφt + cos(φ− φt)z
nz

d
6= 0 . (11)

Supposing the target is in the field of view of the current
camera, we have thatcos φ > 0 and cosφt > 0. If the
current position of the robot is behind the target, thenz <
0 and cos(φ − φt) > 0. Similarly, if the robot starts with
the target behind, it will move backwards, havingz > 0,
cos φt < 0 and cos(φ − φt) < 0. The plane that produces
the homography is visible for the cameras, sonz < 0 in

Target image

Current image
Features

extraction

Features

extraction

Matching H Controller Robot

Parallax

Fig. 2. Diagram of the control loop.

our reference. Therefore the previous determinant is always
positive if the robot is behind the target or always negative if
the target is behind the robot. Because of the camera field-of-
view constraint we need to consider that the lateral distance
to compensate is smaller than the depth distance, otherwise
the scene shared by the cameras could leave the field of view.
Then, we conclude that the determinant of the control matrix
is never equal to zero in the field of work and therefore it is
not singular.

The control loop of the approach presented is shown in the
diagram of Fig. 2. An image in the current position is taken
at each loop of the control. The homography that links it with
the target image can be computed from the feature matching.
Having the homography, the control performs a tracking of
the desired trajectories of the homography elements, giving
the velocities of the robot. When the loop finishes, the robot
is in the target position, current and target images are the
same, and the homography is the identity matrix.

C. Desired Trajectories of the Input Control

The motion performed by the robot depends on how we se-
lect the desired trajectories of the homography elements used
in the control (hd

13, hd
33). Basically, we can relateh33 with

the motion alongz-axis andh13 with the robot orientation.
Then, if we had considered a holonomic platform, position
and orientation error could be corrected independently. The
problem that arises with nonholonomic constraints is to de-
fine the trajectorieshd

13 andhd
33 required to correct properly

the lateral distance to the target. The selected trajectory for
h33 is a smooth function that converges to1 guaranteeing
that the depth distance is corrected. The desired trajectory of
h13 can be divided in two phases by timeT1. If t ≤ T1 the
robot is driven to get a proper orientation in order to allow
a parabolic motion to the target. Witht > T1 we need to
ensure thathd

13 evolve accordingly toφt(t) in such a way that
lateral and orientation error are corrected simultaneously. The
functions proposed are continuous and time differentiable.
The set of desired trajectories to be tracked are defined as:

If 0 ≤ t ≤ T1,



hd
13(t) = (h13(0)− gt)

(
t2

T 2
1
− 2 t

T1
+ 1

)
+ gt

hd
33(t) =

(
1−h33(0)

2

)(
t2

T 2
1

+ 1
)

+ (3 h33(0)− 1)/2
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Fig. 3. (a-b) Examples of the evolution ofhd
13 andhd

33 obtained for different initial positions and its correspondent paths (c).

If T1 < t ≤ T2,
{

hd
13(t) = h13(T1)

φt(t)
φt(T1)

hd
33(t) =

(
h33(0)−1

2

)(
(t−T1)

2

(T2−T1)2
− 2 t−T1

T2−T1
+ 1

)
+ 1

If t > T2,
{

hd
13(t) = 0

hd
33(t) = 1

where gt = αx sin(ktφt). The constant parameterkt rep-
resents the curvature of the path followed. Ifkt = 1 the
robot will follow a straight line path to the target, a higher
value will produce more rotation at the beginning of the
motion (i.e.kt > 3), then the lateral error will be corrected
faster but the scene could get out of the field of view of the
camera. In our simulations we have selectedkt = 1.5 . The
variableφt, which is the angle of the straight line joining the
current position of the robot with the target position, can be
computed using the plane parallax (Appendix A). From the
parallax relative to the plane that induces the homography,
with at least two points not belonging to the plane, the
epipole in the target (etx) image gives

φt = − arctan (etx/αx) .

The desired functions depend on the homography and then
they depend on the initial position. As the robot moves,
the previous equations adapt the evolution of the homog-
raphy desired values guaranteeing the convergence to the
target. Several examples for different initial positions are
shown in Fig. 3. The starting positions are (−10,−25,−5◦),
(10,−20, 15◦) and (5,−15, 35◦) while the target is in all
the cases (0, 0, 0◦). The desired trajectorieshd

13 andhd
33 are

shown in Fig. 3 (a) and (b) respectively. The trajectories
of h13 and h33 obtained are the same as the desired ones.
The resulting path is shown in Fig. 3(c), each example is
represented with a different line style. In these simulations
the values ofT1 andT2 have been selected as40s and80s
respectively.

D. Stability Analysis

In order to analyze the stability of the proposed control,
we define the next Lyapunov function:V = Vx + Vz + Vφ,

V =
(x(t)− xd)2

2
+

(z(t)− zd)2

2
+

(φ(t)− φd)2

2
. (12)

This function is related with the control parameters (3) and
is positive definite taking into account the desired trajectories
to be tracked. Now we analyze this function in each interval
of time and in each quadrant of our reference, having the
target in the origin. In1st and 2nd quadrant the target is
behind the initial position and the robot moves backwards,
and in 3rd and 4th quadrant the target is in front of the
initial position. After differentiating the Lyapunov candidate
function we haveV̇ = V̇x + V̇z + V̇φ,

V̇ = −(x−xd) v sin φ+(z−zd) v cos φ+(φ−φd)ω . (13)

The analysis of each term oḟV to show it is negative is
summarized in Table I. For this analysis we need to study
the sign of the velocities given by the control law (9),

{
v = h13 d ν13

α2
x h33 nz

+ d ν33
nz

ω = ν13
αxh33

The analysis on the signs of the previous expressions lead
to the confirmation ofV̇ < 0. For this task we also have
to study the sign of the homography elements used in the
control (3), knowing thatx = −z tan φt ,

{
h13 = αx

cos φt

(
sin φ cos φt + z sin(φ− φt)nz

d

)

h33 = 1
cos φt

(
cosφ cosφt + z cos(φ + φt)nz

d

)

The procedure followed is similar to the presented in
Table I, and it is not shown here. Taking this into account, the
control of the system is stable in the Lyapunov sense. The
desired functions to be tracked are bounded by definition,
and the inputs designed for the tracking controller (10) are
known to represent an exponentially stable error dynamics
[17], so the tracking error converges to zero exponentially.

It is known that(x, z, φ) = (0, 0, 0) ⇔ H = I. Using our
control, we have at the end of motionh13 = 0 andh33 = 1.
Given thathd

13 = h13 = 0, from the tracked trajectories, we
havehd

13 ∼ φt , and thereforex = 0 (see Fig. 1). Taking
this into account, we need to prove that the final pose is
the desired one. It can be proved that havingh13 = 0 and
h33 = 1, if x = 0 or z = 0 or φ = 0 then H = I. The



TABLE I

ANALYSIS OF EACH TERM OF THE DERIVATIVELYAPUNOV CANDIDATE

FUNCTION (13) TO SHOW IT IS STRICTLY NEGATIVE.

Quadrant 1,3 Quadrant 2,4
V̇φ(t ≤ T1) = (φ− φd) ω φ− φd > 0 φ− φd < 0
|φd| > |φ| w < 0 w > 0

V̇φ(t > T1) = φ ω φ < 0, w > 0 φ > 0, w < 0

Quadrant 1,2 Quadrant 3,4
V̇z(t ≤ T1) = (z − zd) v cos φ z − zd > 0 z − zd < 0
|zd| < |z| v < 0 v > 0

V̇z(t > T1) = z v cos φ z > 0, v < 0 z < 0, v > 0

Quadrant 1,4 Quadrant 2,3
V̇x(t ≤ T1) = x− xd > 0 x− xd < 0

= −(x− xd) v sin φ φ < 0 ⇒ v < 0 φ < 0 ⇒ v > 0
|xd| < |x| φ > 0 ⇒ v > 0 φ > 0 ⇒ v < 0

x > 0 x < 0

V̇x(t > T1) = −x v sin φ φ < 0 ⇒ v < 0 φ < 0 ⇒ v > 0
φ > 0 ⇒ v > 0 φ > 0 ⇒ v < 0

demonstration is straightforward from (3). Thus, we have in
our problem that we finally get the desired pose:

h13 = 0 , h33 = 1 and x = 0 ⇔ H = I .

V. SIMULATION RESULTS

Several simulations have been carried out to demonstrate
the validity of the approach presented. Performance with
image noise and with calibration errors is analyzed. The
simulated data is obtained by generating a virtual planar
scene consisting of a distribution of random 3D points. The
scene is projected to the image plane using a virtual camera;
the size of the virtual images is640 × 480 pixels. In each
loop of the control, the homography between the current and
target image is computed from the matched points, and the
control law sends the velocities (v, ω) to the robot. The values
of the control gains used in the simulations arek13 = 1 and
k33 = 0.2; andT1 = 40s, T2 = 80s.

The initial position of the simulations carried out (Fig. 4)
is (−5,−15,−5◦) and the target position is (0, 0, 0◦). Two
simulations are shown, one without noise and the other
adding white image noise to the points with a standard
deviation of σ = 0.3 pixels. The motion of the robot is
shown in thex and z-coordinates and with the rotationφ;
the evolution ofh13 and h33 obtained is also shown. It
can be seen that the method converges properly in spite of
image noise. In Fig. 4(h) the final position error is shown
for different increasing values of the image noise, showing
also a good performance with noise.

When the control law matrix is computed, the parameter
αx of the calibration matrix is used. Besides, at the beginning
of this paper we have assumed that the principal point is in
the centre of the image. In Fig. 5 we show the performance
of the control to calibration errors. The value of the focal
length of the control law has been fixed tof = 6 mm and
then, its real value is modified to see the final position error
obtained, Fig. 5(left). In Fig. 5(right) the value ofx0 used
in the control is zero while its real value is changed. Results
show that a rough calibration is enough for the convergence.
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Fig. 4. (a-g) Simulation without noise (thick line) and with image white
noise ofσ = 0.3 pixels (thin line). (h) Final error varying the image noise.

This approach does not compute the decomposition of the
homography, therefore we need to know neither the value of
the normal (n) to the plane that generates the homography
nor the distance to it (d). As previously explained we
have considered the parameternz/d as a constant gain of
the control. In Fig. 6 we show the effect of this in the
performance of the control. The real distanced from the
origin to the plane in these simulations is15 m., and the real
value of nz is −0.69, while the values used in the control
are modified. The results shows that the convergence of the
method is not affected and good final position errors are
obtained.

VI. CONCLUSIONS

In this paper we have presented a new homography-based
visual control approach that deals with the nonholonomic
constraints of the platform. The control law is obtained from
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the input-output linearization of the system, transforming
the visual control problem into a tracking problem where
the desired trajectories of the homography elements used as
input of the control are defined. This method uses neither
the homography decomposition nor any measure of the 3D
scene. Simulations show the robustness of the control to
image noise and calibration errors.

APPENDIX

A. Plane Parallax

In the method presented in this paper we use the plane
parallax concept [8]. We describe it to give the reader a
self contained explanation. Let us suppose the computed
homographyH induced by planeπ and the projections in
both images (p1,p2) of a point (p) not belonging to the
plane (Fig. 7). The corresponding point ofp1 through the
homographyH is p̄2 = Hp1. The line joiningp2 to p̄2 is the
epipolar line ofp in the second image. Repeating the process
with another pointq, the line joiningq2 to q̄2 is obtained.
The intersection of these two lines determine the epipolee2.
Once the epipolee2 is computed the fundamental matrix
can be obtained using the homography asF = [e2]×H
where, given the epipole in homogeneous coordinates,e2 =
(ex, ey, 1)T , [e2]× denotes a3 × 3 skew-symmetric matrix.
Then, the epipolar geometry is determined and the epipole
in the first imagee1 can be computed (Fe1 = 0).

Therefore the epipole in the target image can be easily
obtained from a homographyH and two points not belonging
to the plane ofH. In our visual servoing method we call
current image the image taken at the current position as the
robot moves; the target image is the one taken at the desired
position. Then, the epipole in the target image iset. As we
consider that the robot moves in a planar surface only the
x-coordinate of the epipole (etx) will be used.

Fig. 7. Parallax relative to a plane.

Usually more than two points out of the plane will
be available; moreover, we have to take into account the
presence of outliers. Therefore a RANSAC algorithm can be
used to obtain the best estimation of the epipoles. Once a
set of straight lines result as inliers, the epipole is computed
as the intersection of these lines. Due to noise they will
not intersect exactly in one point, so the Singular Value
Decomposition (SVD) is used to get the intersection point.
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