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Abstract—A new smooth closed loop time invariant control law
is proposed for the exponential stabilization of mobile robots with
nonholonomic motion constraints. The control scheme relies solely
on visual information and includes an observer for the system
state estimation by means of the essential matrix. The problem
of model degeneracies due to short baseline is solved with the
definition of a virtual target that provides a stable estimation
of the essential matrix. The novelty of this paper lies in the
new vision-based control scheme with state observer which is
robust, ensuring convergence to the target location. The stability
of the system under the proposed control law is demonstrated
and experimental results show the goodness of the approach.

Keywords—Visual control, Essential matrix, Nonholonomic mo-
bile robots.

I. INTRODUCTION

Visual information has been extensively used for robot local-
ization, navigation and control. Visual control is an extensive
field of research in the design of motion controllers and it has
focused the attention of many researchers [1] [2]. In general,
visual control in mobile navigation refers to the pose control
of a vehicle in a closed loop using the input of a visual sensor.
We present a new approach to solve the problem of pose
stabilization of a robot by means of a state feedback control
law that relies on vision information. The system consists of
a mobile robot with a calibrated camera mounted onboard,
and a goal defined by a reference image taken at the target
location. The problem tackled is to design a visual control
that autonomously drives the robot to the goal by using only
the visual information.

There are some related works on control. The piecewise
smooth controller proposed in [3] has the characteristic of
not requiring infinite switching like other approaches, such as
the sliding mode controller. In [4], with a particular choice
of the system state variables, global stability properties are
guaranteed by smooth feedback control law. This is suitable to
be used for steering, path following, and navigation. The con-
trol law there allows forward and backward motions, whereas
in [5], the vehicle is requested to move only in the forward
direction, avoiding cusps in the paths by using a Lyapunov-like
based design for the control law. The discontinuous, bounded,
time invariant, state feedback control law proposed in [6] is
able to drive the robot to the target position without reversing
direction of its motion (forward or backward), and moving
along smooth paths. In [7], the pose of the mobile robot with
respect to a generic rigid object is controlled using image-
based visual feedback, and an adaptive control law is proposed
in the case of unknown height of the object points. Our

proposal presents a different control law that is exponentially
stable, and it is designed within a control scheme that includes
a visual perception procedure.

The problem of steering the robot to a target location can be
solved as a homing task defined directly on image features [8],
[9]. These approaches are usually simple and efficient but their
robustness directly depends on the performance of the features.
The robustness can be improved if the image information
extracted is filtered through the constraints imposed by the
geometric model across the views. Some traditional visual
control approaches are based on the epipolar geometry [10]–
[12], but this model degenerates with short baseline. So, as
the robot approaches to the target, the epipolar geometry be-
comes unstable. This problem has been solved using auxiliary
procedures at the last stage of the motion [13]. However, it
would be better to avoid the need of switching the model in
favor of robustness and simplicity. A good alternative is the
homography-based approach [14]–[19]. However, if no plane
is detected, the homography-based control fails. This problem
was solved through virtual planes [20], although in general,
estimations based on virtual planes with wide baseline are not
robust to mismatches, noise or occlusions. Here, we propose a
new method using the classic epipolar geometry but addressing
its drawbacks.

The computation of the essential matrix using the general
method with eight points [21] becomes ill-conditioned with
planar scenes. This issue has been addressed by using a mini-
mum set of five points and the intrinsic camera calibration [22].
A well known problem related with the epipolar geometry is
that this model becomes undefined when there is no translation
between the images (current and target). This results in a
poor and unstable estimation of the essential matrix with
short baseline. Instead of switching to another control law we
propose a novel approach avoiding short baseline degeneracies.
For this purpose we define a virtual target taking advantage
of the planar motion constraint as presented in [23]. The
virtual target is generated from the visual information of the
current and target images and it is defined out of the motion
plane and vertically with respect to the target. This procedure
relies on the epipolar transfer properties. The essential matrix
computed across the current image and the virtual target is
always well defined despite short baseline, allowing a stable
state estimation.

The approach proposed takes advantage of techniques of
control theory and two-view geometry from computer vision.
Our proposed control scheme is novel in that it processes
the visual information through the classical epipolar geometry
but solving its well known problems. An observer of the
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Fig. 1. Overview of the control loop. Image features are extracted and
matched between the image taken at the current location and the virtual
target image. The essential matrix is then estimated from the set of matches.
The observer estimates the state of the system and the control law gives the
velocities that lead the robot to the target location.

Fig. 2. Cartesian and polar coordinate systems in the target location.

robot state based on visual information through the essential
matrix has been designed for the adaptive estimation of the
system state which makes the full system to behave robustly
during the trajectory. Moreover, the stability of the system
is also demonstrated when there is uncertainty in the system
parameters.

An overview of the control scheme is shown in Fig. 1. The
control law is presented in Section II. The visual perception
procedure and the state observer are described in Sections
III and IV, respectively. Experimental results are presented in
Section V, and conclusions are given in Section VI.

II. CONTROL SCHEME

A. System model

The system to be controlled is a nonholonomic robot whose
model together with the sensory system is expressed in a
general way as {

ẋ = g(x,u)
y = h(x)

(1)

where x(t) denotes the state vector in Cartesian
(x(t), z(t), ϕ(t))T or polar (ρ(t), α(t), ϕ(t))T coordinates,
u(t) the system input vector consisting of the linear velocity
v(t) and angular velocity ω(t), and y(t) the output vector.
The coordinate system is illustrated in Fig. 2. The kinematics
of a unicycle robot can be expressed in Cartesian coordinates

as a function of the robot state and input velocities by ẋ
ż

ϕ̇

 =

[ − sinϕ 0
cosϕ 0
0 1

](
v
ω

)
. (2)

Traditionally, mobile robots have been modeled in Cartesian
coordinates. However, it has been shown (e.g. [4], [5], [6]) that
using polar coordinates may solve the problem contained in the
Theorem of Brockett [24] for the system stabilization, allowing
to design exponentially stabilizing, smooth, state feedback
control laws. Thus, the expressions in (2) are converted to
polar coordinates, being

x = −ρ sinψ and z = ρ cosψ . (3)

The alignment error α(t) is defined as the angle between the
robot body z-axis and the distance vector ρ,

α = ϕ− ψ . (4)

The kinematics of the system can be then expressed as ρ̇
α̇

ϕ̇

 =

 cosα 0
− 1
ρ sinα 1

0 1

( v
ω

)
. (5)

B. Control Law
In this section we describe the proposed control law. The

input velocities of the system are defined as a function of the
state variables as follows,

v = −kρ ρ cosα (6)
ω = −kα α+ kϕ ϕ (7)

where kρ, kα, and kϕ are positive constant gains of the control.
The constraints on these gains that make the control stable
are analyzed later. Introducing in (5) the input velocities just
defined, we obtain a closed-loop system described by equations
of the form

ρ̇ = −kρ ρ cos2 α

α̇ = kρ sinα cosα − kα α+ kϕ ϕ

ϕ̇ = −kα α+ kϕ ϕ (8)

Some examples of the evolution of the system under the
control velocities (6) and (7) are given in Fig. 3. The initial lo-
cations are distributed around the target with initial orientation
0 or π/2, while the target is located in (ρ, α, ϕ)T = (0, 0, 0)T

(Fig. 3 (left)). The robot reaches properly the target, although
some trajectories are not visually appealing, in particular those
in which the robot starts behind the target location. We define
the alternative but equivalent target location (0, π,−π)T , com-
plementing the previous case as can be seen in Fig. 3 (right).
While this alternative target trivially corresponds to the same
desired position and orientation of the robot, it results in a
different way of reaching the target. Thus, selecting initially
one of the equivalent targets we avoid trajectories with several
cusps. To do it, we redefine the angular velocity of the control
(7) as

ω = −kα (α− α∗) + kϕ ϕ , (9)
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Fig. 3. Simulations for different initial locations with ϕ(t = 0) = 0 (first
row) and ϕ(t = 0) = π/2 (second row). The target is (0, 0, 0)T (i.e. α∗ = 0)
and (0, π,−π)T (i.e. α∗ = π) in the left and right columns, respectively.

where α∗ = 0 if |ψ(0)| ≤ π/2 with α ∈ [−π, π], or α∗ = π if
|ψ(0)| > π/2 with α ∈ [0, 2π]. Hereafter, we consider without
loss of generality α∗ = 0, being the subsequent analysis
analogue for the case of α∗ = π.

C. Stability Analysis of the control law
We study the stability of the closed-loop system under the

input control velocities previously defined (8).
Proposition 2.1 (Local exponential stability): The closed-

loop system (8) is locally exponentially stable if and only if
(kα − kϕ − kρ) > 0.

Proof: The linear approximation of the sinusoidal func-
tions that appear in our system can be written as sinα =
α+h.o.t. and cosα = 1+h.o.t. (where h.o.t. stands for high
order terms). Then, the linear approximation of the system is ρ̇

α̇

ϕ̇

 =

[ −kρ 0 0
0 kρ − kα kϕ
0 −kα kϕ

](
ρ
α
ϕ

)
+ h.o.t. (10)

This system is locally exponentially stable if and only if the
eigenvalues of the linearized system matrix are negative. The
eigenvalues are obtained solving the characteristic equation

(λ+ kρ)
(
λ2 + (kα − kϕ − kρ)λ+ kρ kϕ

)
= 0 (11)

yielding that Re(λ) < 0 if

kα − kϕ − kρ > 0 (12)

The control gains are positive by definition and the local
exponential stability is guaranteed if the selected control gains
hold (12).

Proposition 2.2 (Global asymptotic stability): The closed-
loop system (8) with the control gains selected following (12)

is globally asymptotically stable if

kα − 2 kϕ > 0 . (13)

Proof: In the following, the stability of the control scheme
is analyzed by means of the Lyapunov’s Direct Method [25].
We define the candidate Lyapunov function as

V (x) = xT Px+
kρ
2

sin2 α , (14)

where V (x) > 0 for all x ̸= 0, with

P =
1

2

[
1 0 0
0 kϕ −kϕ
0 −kϕ kϕ

]
. (15)

The derivative of (14) yields

V̇ = ρ ρ̇+ kϕ(ϕ− α)(ϕ̇− α̇) + kρ α̇ sinα cosα

= −kρ ρ2 cos2 α (16)

+kρ α sinα cosα

(
kϕ + kρ

sinα cosα

α
− kα

)
It can be seen that V̇ < 0 for all α ∈ (−π/2, π/2) if the
following constraint holds:

kα − kϕ − (kρ sinα cosα)/α > 0 . (17)

Since (sinα cosα)/α is bounded by 1, constraint (17) leads
to (12). We next study the case of α = ±π/2, which results
in V̇ = 0. In this case, we check the derivative of α in (8).

α̇(α = ±π/2) = ∓kα π/2 + kϕ ϕ . (18)

We can ensure that α̇ < 0 when α = π/2, and α̇ > 0 when
α = −π/2, if the following constraint holds:

−kα +
2

π
kϕ ϕ < 0 , kα +

2

π
kϕ ϕ > 0 . (19)

If the maximum bounds of ϕ are considered, i.e. ϕ = ±π
respectively, we obtain constraint (13). Therefore, the regulated
system is asymptotically stable for all α ∈ [−π/2, π/2].

In order to show the region of attraction of the equilibrium
x = 0 is global, we also analyze the case of α ∈ [−π,−π/2]∪
[π/2, π]. By checking the derivative of α in (8) we have

α ∈ [π/2, π] ⇒ α̇ < 0 ⇔ −π
2 kα + kϕ ϕ < 0 , (20)

α ∈ [−π,−π/2] ⇒ α̇ > 0 ⇔ π
2 kα + kϕ ϕ > 0 . (21)

where the most unfavorable case of α is used. These previous
constraints yields to constraint (13) when the maximum bounds
of ϕ are included. Thus, the global asymptotic stability of the
regulated system (8) is guaranteed if constraints (12) and (13)
holds.

III. VISUAL PERCEPTION

An overview of the visual perception system within the
control scheme is shown in Fig. 1. Features are extracted and
matched between the image taken at the current location and
the virtual target image. The essential matrix E(t) is estimated
from the set of matches and the intrinsic camera calibration
parameters.



Fig. 4. Essential matrix relating two views. The camera optical centers are
C1 and C2. A 3D point P is projected in the images as (p1, p2). The
epipoles (e1 and e2) are the intersections of the baseline (the line joining the
optical centers of the cameras C1C2) with the image planes.

A. The Essential Matrix

Consider the geometry of the camera to be modeled by
perspective projection; and let us suppose two images obtained
with the same camera. The essential matrix across the views
(Fig. 4) is defined as

E = [t]×R =

[
0 −tz ty
tz 0 −tx
−ty tx 0

]
R , (22)

being R the rotation and t = (tx, ty, tz)
T the translation

between the cameras. The essential matrix can be related
with the fundamental matrix with E = KTFK, being K the
internal camera calibration [21]. It can be computed by solving
a linear system from a set of point correspondences between
the two views [21].

We assign the coordinate system to the target location as
shown in Fig. 2, where the camera optic axis coincides with
the z-axis of the robot frame. As previously described, the
configuration of the robot system is given by x = (ρ, α, ϕ)T .
The framework considered in our approach consists of the
target image taken at the desired location (i.e. at x = (0, 0, 0)T ,
with y = 0, being y the vertical coordinate), the current image
(at x = (ρ, α, ϕ)T , with y = 0) and a generated virtual target
image (at x = (0, 0, 0)T , with y = Y = cte ̸= 0). These
images are denoted as c (current), t (target) and v (virtual
target). This framework is shown in Fig. 5 (left), where the
essential matrices across the images are denoted as Ect, Etv
and Ecv . The essential matrix Ecv relating the current and
virtual images can be parameterized up to scale using

Rcv =

[
cosϕ 0 − sinϕ
0 1 0

sinϕ 0 cosϕ

]
, tcv = −

( −ρ sinψ
Y

ρ cosψ

)

with (22) as

Ecv =

[ −Y sinϕ −ρ cosψ −Y cosϕ
ρ cosα 0 −ρ sinα
Y cosϕ ρ sinψ −Y sinϕ

]
. (23)

Fig. 5. (Left) Essential matrices across the views. The virtual target is defined
above the target. (Right) A 3D point is projected into the three views as
(pc,pt,pv). The value of pv is computed by means of the epipolar transfer.

B. Definition of the Virtual Target
We need first to define the virtual target from the information

available: the current and target images. The virtual target is
defined at the beginning of the navigation (i.e. at t = 0). The
idea is to generate the virtual target using the epipolar transfer
across the three images [21]. For this purpose we need to
compute the three essential matrices (Fig. 5 (left)). Ect0 , where
subindex denotes t = 0, is estimated from the correspondences
between the current and target images and Etv is obtained
and normalized in the target location (0, 0, 0) up to a constant
height y = Y as

Etv =

[
0 0 1
0 0 0

−1 0 0

]
. (24)

On the other hand, the matrix Ect0 can be parameterized up to
an unknown scale factor from (22) with y = 0 and normalized
with

ρ0 = sign(Ect12)
√
(Ect12)

2 + (Ect32)
2 (25)

giving

Ect0 =

[
0 cosψ0 0

cosα0 0 − sinα0

0 sinψ0 0

]
, (26)

from which the following expression can be derived:

tanϕ0 =
Ect21E

ct
32 − Ect12E

ct
23

Ect12E
ct
21 + Ect23E

ct
32

. (27)

Note that ρ0 is never zero except if the initial position is in the
target location. We can write (23) to be compared with (26)
as

Ecv0 =

 −Y sinϕ0

ρ0
cosψ0

−Y cosϕ0

ρ0
cosα0 0 − sinα0
Y cosϕ0

ρ0
sinψ0

−Y sinϕ0

ρ0

 . (28)

Entries Ecv12 , Ecv21 , Ecv22 , Ecv23 and Ecv32 are known, as they are the
same as the corresponding entries of (26). Entries Ecv11 , Ecv13 ,
Ecv31 and Ecv33 depend on ϕ0, which is obtained from (27), and
Y/ρ0. We do not know ρ0 (because of the unknown scale)
and we do not care about Y except it is not equal to zero.
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Fig. 6. Evolution of the essential matrix entries of Ect (left) and using the
virtual target Ecv (right) during a simulation in which the robot is led to the
target location. They show the performance of the model with short baseline
at the end of the motion.

Then, we can assign Y/ρ0 an arbitrary value (not equal to
zero) determining Ecv0 . In practice, a good option is to select
Y in the same order of magnitude as the initial ρ0, i.e. Y = ρ0,
and so Y/ρ0 = 1.

We know the three essential matrices Ect0 , Etv and Ecv0
relating the three views and we can apply the epipolar transfer
to generate the virtual target (Fig. 5 (right)). Let us consider
pc and pt two corresponding points in the current and target
images, respectively. The objective is to find the corresponding
point in the virtual image. The required point pv matches
point pc in the current image and pt in the target image.
Therefore, it must lie on the epipolar lines corresponding to
pc and pt. These epipolar lines lc and lt can be computed
since the matrices Ecv0 and Etv are known:

pTc E
cv
0 pv = 0 ⇒ lTc = pTc E

cv
0 . (29)

pTt E
tvpv = 0 ⇒ lTt = pTt E

tv . (30)

The required point pv is the intersection of the epipolar lines

pv = lc × lt =
(
(Ecv0 )Tpc

)
×
(
(Etv)Tpt

)
. (31)

This procedure is repeated for all the correspondences
between the current and the target image at the beginning of the
navigation. Thus, the virtual target image is defined with these
computed points. This virtual target allows to compute Ecv(t)
along the navigation to be used in the control law. Note that
control performance depends on the quality of the estimated
virtual target at t = 0. The advantage of using this virtual target
is that Ecv , unlike Ect, is well defined as the current image
approaches to the target and the baseline between them reaches
zero. Therefore, the problem of short baseline degeneracies is
avoided. This is illustrated in the example depicted in Fig. 6.

IV. STATE ESTIMATION AND NONLINEAR OBSERVER

A. State Computation
The state of the robot x = (ρ, α, ϕ)T can be computed

from the essential matrix Ecv . We first normalize the essential
matrix up to a fixed, although unknown, scale. Ecv can be
normalized by Ecv13 except when |ϕ| = π/2, and in that case
we can normalize by Ecv11 and we have

E =

{
Ecv/Ecv13 if |ϕ| ̸= π

2
Ecv/Ecv11 if |ϕ| = π

2
(32)
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Fig. 7. Simulations without observer for initial positions (x, z, ϕ) at
(−2, 5, 45◦) (first row) and (−0.2, 0.3, 45◦) (second row). Left: Evolution
of the real value of ρ (solid line) and the value used in the control (dashed
line). Right: Evolution of ϕ.

Where we denote E the normalized essential matrix Ecv with

E =
Ecv

Ecv13
=

 tanϕ −ρ cosψ
Y cosϕ 1

ρ cosα
Y cosϕ 0 −ρ sinα

Y cosϕ

−1 −ρ sinψ
Y cosϕ tanϕ

 if |ϕ| ̸= π

2
(33)

E =
Ecv

Ecv11
=

 1 −ρ cosψ
Y sinϕ

1
tanϕ

ρ cosα
Y sinϕ 0 −ρ sinα

Y sinϕ
−1

tanϕ
−ρ sinψ
Y sinϕ 1

 if |ϕ| = π

2
(34)

The current epipole ec and virtual target epipole ev are given
by the null space Ecv ec = 0 and eTv Ecv = 0. Solving for the
epipoles we obtain

Ecv ec = 0 ⇒ ec =

(
tanα,

Y

ρ cosα
, 1

)T
(35)

eTv Ecv = 0 ⇒ ev =

(
− tanψ,

Y

ρ cosψ
, 1

)T
(36)

From the first components of the epipoles we can directly
compute α and ψ. Alternatively, we can use tanα = −E23

E21

and tanψ = E32

E12
. Finally, the angle ϕ can be computed

from (4) or (33)-(34). Notice that there is an ambiguity in
the solution of the angles: (α,α+ π) and (ψ, ψ+ π), that can
be solved using a priori information (for example if the robot
is initially behind or in front of the target) or using the point
correspondences [21]. The state parameter ρ can be computed
up to the unknown fixed scale Y as follows

ρ =
ρ

Y
=

{ √
(E12)2 + (E32)2 cosϕ , if |ϕ| ̸= π

2√
(E12)2 + (E32)2 sinϕ , if |ϕ| = π

2

(37)



B. State Observer
In this section, we design a Luenberger observer [26] [27]

that improves the performance of the control scheme. The
problem of generating an estimate of the state of system is
referred to as the problem of designing an observer.

Let the closed-loop of the state system to be defined by
ẋ = g(x,u). We now define the general observer dynamics{

˙̂x = g(x̂,u)− L(ŷ − y)
ŷ = h(x̂)

(38)

where L is the constant gain of the observer. In the previous
section IV-A, we have shown the procedure to estimate the
values of ρ, α and ϕ from the essential matrix. However,
the estimation of ρ is obtained up to a unknown scale factor.
The effect of this issue in the control performance is depicted
with two examples in Fig. 7. In the first simulation, the initial
location is far from the target, with underestimation of ρ, and
it results in low velocities and slow convergence. On the other
hand, in the second simulation the initial location is close
to the target, with overestimation of ρ, which leads to an
oscillating behavior in the orientation of the robot. Although
the overdamping behavior showed is stable, this decrease on
performance due to the unknown scale factor could lead to
instability with higher overestimation of ρ. We will show that
an observer on the state variable ρ improves the performance
of the control. We focus on this variable particularizing to a
reduced-order observer for ρ with

˙̂ρ = −kρρ̂ cos2 α− Lρ(ŷρ − yρ) , (39)

where Lρ is the gain of the reduced-order observer. The
measurement of the variable yρ can be defined as a function
of the control outputs and the essential matrix entries. The
derivatives of the entries of the essential matrix E with respect
to time give

Ė11 = Ė33 = ω/ cos2 ϕ

Ė12 = −v/Y − E12E33ω

Ė21 = (v/Y − E32ω)/ cosϕ

Ė23 = E12ω/ cosϕ

Ė32 = −E33v/Y + E32E33ω (40)

The parameter Y can be solved from the derivative of entry
E12. Analogue expressions for Y could be obtained with E21

or E32. So, we can compute Y = −v/(Ė12 + E12E33ω) and

yρ = ρ Y =
−ρ v

Ė12 + E12E33ω
, (41)

where the value of Ė12 is computed with Ė12(t) = (E12(t)−
E12(t−∆t))/∆t and ρ is obtained from (37). Denoting δ =
Ė12 +E12E33ω, note that (41) becomes singular in particular
situations (δ = 0, for example when ϕ = ψ = 0).

If (39) is subtracted from the system dynamics, and we write
eρ = ŷρ − yρ, then{

ėρ = −
(
kρ cos

2 α+ Lρ
)
eρ if δ ̸= 0

ėρ = −kρ cos2 α eρ if δ = 0
(42)
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Fig. 8. Simulations with observer for initial positions (x, z, ϕ) at
(−2, 5, 45◦) (first row) and (−0.2, 0.3, 45◦) (second row). Left: Evolution
of the real value of ρ (solid line) and the value used in the control (dashed
line). Right: Evolution of ϕ. The observer improves the performance (compare
with Fig. 7).

Proposition 4.1 (Stability analysis of the observer): The
reduced-order observer error dynamics defined in (42) is
stable.

Proof: From the previous equations, the dynamic be-
haviour of the error (42) is asymptotically stable if δ ̸= 0,
given that (kρ cos2 α + Lρ) > 0 for any Lρ > 0, and (42) is
stable if δ = 0 because of (kρ cos

2 α) ≥ 0. So, we conclude
that the observer (39) is globally stable.

Therefore, stability is guaranteed for the proposed observer
but not asymptotic stability. However, we demonstrate in
the following section that global asymptotic stability of the
control scheme is not compromised. An example of the control
scheme with the observer is shown in Fig. 8. Comparison with
Fig. 7 shows that the convergence is faster and the control
performance improves with the use of the observer.

C. Stability Analysis with Uncertain Parameters

The proposed control law uses the value of the distance to
the target location ρ, which is estimated up to unknown fixed
scale Y (i.e. ρ0) assuming that the observer is not used. Next,
the stability of the system in the presence of this uncertainty
is studied.

Proposition 4.2 (Stability with uncertainty): The closed-
loop system (8) with the control gains selected following (13)
is globally asymptotically stable despite uncertainty in the
state parameter ρ if

kα − kϕ − kρ/ρ0 > 0 (43)

Proof: The following demonstration uses a similar proce-
dure as in Proposition 2.2, but now including the unknown
parameter ρ0 from the estimation of ρ in the computed



velocities (6). The closed loop (8) is then:

ρ̇ = − 1

ρ0
kρ ρ cos2 α

α̇ =
1

ρ0
kρ sinα cosα − kα α+ kϕ ϕ

ϕ̇ = −kα α+ kϕ ϕ (44)

The linear approximation of the system is now ρ̇
α̇

ϕ̇

 ≈

[ −kρ/ρ0 0 0
0 kρ/ρ0 − kα kϕ
0 −kα kϕ

](
ρ
α
ϕ

)
(45)

Then, the local exponential stability is guaranteed if the
selected control gains hold (43).

We define again the Lyapunov function V (x) = xTPx +
(kρ sin2 α)/2 as given in (14) and, following similar steps,
we obtain again constraint (13) to guarantee stability prop-
erties for all α. Therefore, constraints (43) and (13) are the
sufficient conditions for asymptotic stability in the presence of
uncertainty in parameter ρ.

V. EXPERIMENTAL VALIDATION

In this section we present the experimental evaluation con-
sisting of different simulations and real experiments showing
the performance of the proposed control scheme.

A possible choice for the control gains keeping the stability
constraints (12) is:

kρ = 0.03 , kϕ = 0.1 , and kα = 0.3 . (46)

This selection fulfil constraints (12) and (13), and the control
law with the control gains chosen (46) is globally asymptot-
ically stable. With regard to the uncertainty in parameters,
from constraint (43), we have the minimum bound for the
uncertainty in ρ0 is

ρ0 >
kρ

kα − kϕ
. (47)

Using the selection proposed in (46), the asymptotic stability
with uncertainty in ρ would be guaranteed if ρ0 > 0.03/(0.3−
0.1) = 0.15. Notice in any case that for ρ0 under 0.15,
the stability region is still enlarged in practice by using the
observer previously presented.

The simulated scene consists of a cloud of 3D points
randomly distributed. The set of points are projected into the
camera image plane (size 640 × 480 pixels) to obtain the
point correspondences used to compute the essential matrix
and subsequently the velocities for the motion are computed
by the control law. Simulations from different initial locations
are depicted in Fig. 9. showing successful convergence of the
system.

We have defined the calibration matrix of the general pinhole
camera model as

K =

[
f mx s x0
0 f my y0
0 0 1

]
=

[
640 0 0
0 480 0
0 0 1

]
, (48)
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Fig. 10. Evolution of ρ (left) and ϕ (right) in the presence of calibration
errors. Each graphic depicts a set of simulations with varying parameters: focal
length (first row), x0 (second row), and y0 (third row).The initial location in
these simulations is (x, z, ϕ) = (3,−8, 40◦).

where f is the focal length of the camera and mx, my are the
pixels per distance unit in the x and y directions respectively;
s is the skew parameter and (x0, y0) are the coordinates of
the principal point. The estimation of the essential matrix
requires the internal camera calibration. Thus, we test the
performance of the control law associated with the uncertainty
of the camera calibration parameters. The values of K have
been fixed to (48), while the values known by the controller in
the simulations of Fig. 10 are changed. The value of the focal
length is changed from 3 to 9 mm for a real value of 6 mm. It
can be seen in Fig. 10 (first row) that the variation of f only
affects to the convergence time. The principal point coordinates
are changed from −10 to 10 pixels for a real value of 0
pixels. The variation of x0 does not affect to the convergence
except a final error in the orientation, as shown in Fig. 10
(second row). For example an error in x0 of 10 pixels yields
to an error in the final orientation of −1.79 deg. The system
converges to the goal with any variation on y0, (the resultant
plots are superposed in Fig. 10 (third row)). Thus, assuming
usual uncertainties in the camera calibration parameters, the
final location errors can be disregarded.

In the real experiments, the mobile robot used is a Pioneer
P3-DX from ActivMedia, Fig. 11. The robot is equipped with
a Point Grey Research Flea2 camera mounted on top and
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Fig. 9. Simulations for three different initial positions. The target location is (0, 0, 0◦) and the initial locations are (x, z, ϕ) = (−4,−6,−50◦) with solid
line, (x, z, ϕ) = (−2,−10, 0◦) with dotted line, and (x, z, ϕ) = (3,−8, 40◦) with dashed line. The evolution of the system state (ρ, α, ϕ) is depicted (first
row), as well as the output velocities (v, ω) and a top view of the robot motion (second row).

forward looking. Notice that the field-of-view constraints of
the visual sensor are not taken into account specifically in the
approach presented. In order to ensure keeping the features
of interest in the field of view during the robot control, the
standard camera can be replaced with an omnidirectional one
without any modification of the control scheme. For simplicity,
we use here a standard camera rather than an omnidirectional
one. The camera is connected to a laptop onboard the robot
(Intelr CoreTM 2 Duo CPU at 2.50 GHz). The images
are acquired at size 600 × 800, and an example of images
taken during one of the experiments is shown in Fig. 12.
The putative matches have been obtained using the Lucas and
Kanade tracking algorithm [28], [29]. The presence of image
noise or mismatches needs to be assumed and we use the
RANSAC method [30] to reject wrong matches. The point
correspondences obtained after the robust estimation of the
essential matrix are depicted in Fig. 12 (left). The middle
image in Fig. 12 shows the virtual points computed to define
the virtual target. The evolution of the tracked points on the
image plane during the motion of the platform are shown in
Fig. 12 (right).

The results of three different real experiments are depicted
in Fig. 13. The acquired image data is processed using the
OpenCV library (www.intel.com). The velocities computed are
sent to the robot, at a rate of 12 Hz, through the serial port
using the ARIA library (www.activrobots.com). In each row
of Fig. 13, the computed velocities and the resultant evolution
of the robot for three different initial locations are depicted.

Fig. 11. The experimental platform, a Pioneer P3-DX from ActivMedia.

The final error measured is around several centimeters. The
results obtained from the experiments carried out show the
performance of the proposal. The control performance is subor-
dinated to the obtention of a minimum set of correspondences
between the current and target images. Otherwise, the essential
matrix cannot be estimated, leading to failure of the control.
On the other hand, the geometric constraint imposed through
the essential matrix increases the robustness of the system to
spurious putative matches or image noise.

VI. CONCLUSION

We have presented a new vision-based control approach for
the stabilization of mobile robots. The contribution is a control
scheme with an observer that relies on visual information
provided through the essential matrix. The evolution of the



Fig. 12. Left: Initial image of an experiment with the point features detected. Middle: Target image with the points matched (circles) and the computed virtual
target points (squares). Only ten points are depicted for clarity. Right: Trajectories of the points in the image tracked during the navigation (only ten are depicted).
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Fig. 13. Experiments with the real platform. Three experiments are shown, one per row.The output velocities (v, ω) are depicted (left and middle columns)
and a top view of the robot motion (right column).



system under our control scheme has been shown to be
globally asymptotically stable. This approach overcomes the
critical issue of the essential matrix degeneracies with short
baseline by means of a virtual target. The experimental evalu-
ation consists of simulations and real experiments showing the
performance of the proposal. The proposed scheme requires
part of the scene to be shared by the current and target images
in order to find enough matches for computing the essential
matrix. Although we have used a standard camera in the
experiments, an omnidirectional camera can be used directly
in the same way to overcome field-of-view constraints.
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