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Abstract— In this paper, we propose a formation control
system for deforming and transporting simultaneously a de-
formable object with a team of robots, modeled with double-
integrator dynamics. The goal is to reach a target configuration,
defined as a combination of shape, scale, orientation and
position of the formation. We augment this controller with
a set of control barrier functions (CBFs). The CBFs allow
us to satisfy fundamental constraints for the success of the
task: avoidance of agent-to-agent, agent-to-obstacle and object-
to-obstacle collisions, and of excessive stretching. We test the
performance of our proposal in different simulation scenarios.

I. INTRODUCTION

In recent times, we are witnessing a growing interest
towards developing autonomous systems with the capacity
of controlling the position and shape of flexible loads.
Whether from domestic or industrial perspectives, numerous
robotic techniques have been developed for executing tasks
like grasping deformable objects, cloth folding and rope
knotting among others [1], [2]. The high complexity of these
manipulation tasks often requires the coordinated action of
multiple agents, specially if the object is large, fragile, heavy
or the task is challenging in terms of dexterity [3], [4].

Formation control, which is one of the most actively
studied topics in multi-agent systems [5], naturally arises
as an effective solution for driving a team of robots to a
desired configuration. In this field, we can find linear control
approaches, which are easier to handle and faster to compute
than the nonlinear ones. This idea was exploited by Aranda
et al. in their formation controller [6]. This controller allows
to drive a 2D deformable object to a target configuration, de-
fined as a combination of size, orientation, centroid position
and relative distances between the agents grasping the object.
Dimarogonas and Kyriakopoulos analyzed the connection
between formation infeasibility and velocity alignment with
a linear consensus algorithm [7]. Fathian et al. developed
a linear distributed controller in which communication be-
tween the team members is not required, for agents with
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Fig. 1. The goal of our system is to steer the robotic team with the grasped
object to the target configuration, defined as a combination of shape, scale,
orientation and position of the formation. Our formation controller, which
drives the system to the target configuration, is augmented with control
barrier functions to avoid collisions and overstretching the object.

linear holonomic dynamics [8]. Affine formation controllers,
whose formulation is not necessarily linear, converge to a
configuration that represents an affine transformation of the
desired one. Lin et al. proposed one of the first works about
affine formation control [9]. In their proposal, the authors
provided necessary and sufficient conditions for stability of
the controller. A leader-follower distributed strategy by Zhao
[10] is able to track a desired formation with a controller that
is suitable for agents with different dynamic models. Zhao
et al. also included motion constraints in a different proposal
for rendezvous and formation control [11].

The specific tasks of shape control and transport of de-
formable objects are tackled in a wide variety of proposals.
Felix-Rendon et al. proposed a multirobot centralized control
scheme for controlling the position and orientation of the
agents to deform an object [12]. A hybrid centralized-
distributed approach by Alonso-Mora et al. develops a mo-
tion planning strategy of a team of robots that manipulate
a deformable object [13]. In this case, collision avoidance
and shape maintenance are guaranteed by a set of linear and
quadratic constraints. Another hybrid approach that combines
planning, control and deadlock prediction by McConachie et
al. is able to complete complex manipulation tasks [14]. A
system for simultaneous shape control and transport of de-
formable objects was presented in [15]. In that study, suitable
trajectories were obtained according to the non-holonomic
constraints of the robots and the admissible deformation
states of the object, without considering collision avoidance.

Safety is one of the major concerns in robotic systems.
Control barrier functions (CBFs) represent an effective and
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minimally invasive technique to implement provably safe
behaviors in systems with nominal, and potentially unsafe,
control laws. These functions are currently applied in many
different contexts, like collision-free multi-UAV transport of
rigid payloads [16], stochastic systems [17] and safe motion
control of robotic guides [18], among others.

In this paper, we build our proposal upon a recent study
[19]. This study developed a formation controller for multi-
agent systems with single-integrator dynamics that allows
steering a team of robots, which carry a 2D deformable
object, to a desired configuration. That controller is well
suited for the considered scenario because it creates tightly
coordinated and optimal motions. Our approach extends this
previous work with a new double-integrator formulation of
the formation controller. Despite the technical challenges
that arise (more complex structure of the controllers, more
difficult system integration...), this extension is interesting
for the addition of inertial effects to the system, which are
important in many practical scenarios. It also brings about the
potential to control the robot-object contact forces. Moreover,
being able to set the robots’ accelerations is key for avoiding
collisions [20]. We augment our nominal controller with
CBFs, that allow us to guarantee agent-to-agent, agent-to-
obstacle and object-to-obstacle collision avoidance, as well
as to prevent overstretching the object. Figure 1 shows an
overview of our proposal. The main contributions in the
present study are a novel formation controller for agents with
double-integrator dynamics, the formal proof of stability of
the formation controller’s shape term, and the set of CBFs
for object-to-obstacle collision and overstretching avoidance.

II. PROBLEM STATEMENT

Let us consider a formation of N robots carrying a
deformable object in R2. Pi = [Pix, Piy]

ᵀ, i = 1, ..., N
denotes the center of agent i. For every agent, we assume
the object is attached to it at that center point. We stack the
agents’ centers in a matrix P = [P1,P2, ...,PN ] ∈ R2×N .
The centroid of the formation is g = 1

NP1N , where 1N is a
column vector of N ones. We consider the double-integrator
model to describe the robots’ dynamics:[

Ṗi
P̈i

]
=

[
0 I2×2
0 0

] [
Pi
Ṗi

]
+

[
0

I2×2

]
Ui , (1)

where xi = [Pi, Ṗi]
ᵀ is the state of the formation agent i

and Ui = [Uix, Uiy]
ᵀ, i = 1, ..., N is its control input. Note

that our centralized control design can access the state infor-
mation of all agents. We model the robot-object links as free
rotating joints. The goal is to drive the deformable object to
a target configuration, that we set as a combination of shape,
scale, position and orientation of the robotic formation. Our
proposal to solve this problem is not to control explicitly the
configuration of the object, but the configuration of the for-
mation of robots that manipulate the object. This solution is
especially useful for manipulating highly deformable objects,
which adapt their structure closely to the shape of the forma-
tion, and for performing manipulation tasks that require many
manipulators. We encode the target shape of the formation as

a set of positions Pdi = [Pdix, Pdiy]
ᵀ, i = 1, ..., N , that

we stack in a matrix Pd = [Pd1,Pd2, ...,PdN ] ∈ R2×N .
Without loss of generality and for simplicity, we define
the target shape centered in the desired formation centroid
gd = 1

NPd 1N . The target formation scale is sd and the
target formation orientation is θd. Then, we define the target
configuration as

PT = sdRd(θd)(Pd − gd1
ᵀ
N ) + gd1

ᵀ
N , (2)

where Rd(θd) ∈ SO(2) is the 2D rotation matrix corre-
sponding to an angle θd.

In addition, we consider that there are obstacles in the
environment, which make agent-to-obstacle and object-to-
obstacle collision avoidance mandatory requirements to reach
the target configuration.

III. FORMATION CONTROL FOR AGENTS WITH
DOUBLE-INTEGRATOR DYNAMICS

The control strategy we propose consists of a series of
terms that are focused on controlling each one of the con-
figuration parameters: shape, scale, position and orientation.
In particular, the control of the first two variables, shape
and scale, represents the object’s deformation controller.
Translation and rotation of the formation produce global
movements that do not modify the relative positions of the
agents, and therefore they do not deform the object.

A. Deformation control
In this section, we describe the shape and scale controllers.
Shape control. Firstly, in order to control the shape of the

formation we define the following cost function [19]:

γ =
1

2
‖Pb −HPdb‖

2
F , (3)

where ‖ · ‖F denotes the Frobenius norm,

Pb = P− g 1ᵀ
N , (4)

Pdb = Pd − gd1
ᵀ
N , (5)

H =

[
h1 −h2
h2 h1

]
. (6)

H is a transformation matrix that optimally aligns Pb and
Pdb, the matrices of all agents positions with zero centroid
[6]. We compute the two terms h1 and h2 as follows:

h1 =
tr(PbP

ᵀ
db)

tr(PdbP
ᵀ
db)

, h2 =
tr(Pb(SPdb)

ᵀ)

tr(PdbP
ᵀ
db)

, (7)

where S = [(0, 1)ᵀ, (−1, 0)ᵀ]. The scale and orientation of
the formation can be obtained from H as s2 = |H| and
θ = atan2(h2, h1) ∈ (−π, π] respectively, where the atan2
operator represents the four quadrant inverse tangent.

Cost function (3) provides a measure of the difference in
shape between Pb and Pdb. Then, we propose the following
shape controller that consists of a linear combination of the
negative gradient of γ and the time derivative of the negative
gradient of γ:

UH = −k1H∇Pγ − k2H
d(∇Pγ)

dt
=

= k1H(HPdb −Pb) + k2H(ḢPdb − Ṗb) , (8)



where k1H and k2H are control gains. Controller (8), inspired
by the one proposed by Fathian et al. ([8], eq. (22)), drives
the formation of robots optimally to decrease γ and its time
derivative, which implies a reduction of the difference in
shape between the current Pb and the target Pdb. However,
if the difference is large, since there is no control over
the evolution of the shape from Pb to Pdb, UH may
switch the position of two neighboring robots. E.g., if the
initial clockwise ordering of the positions in a three-agents
formation is {1, 2, 3}, UH may change it to {2, 1, 3}. Due
to the fact that the formation is carrying an object, this kind
of behavior could damage the object. We deal with this issue
by defining a correction control term

UG = k1G(PbP
+
dbPdb−Pb)+k2G(ṖbP

+
dbPdb− Ṗb) , (9)

dbwhere P+ is the right Moore-Penrose pseudoinverse of matrix
Pdb and k1G and k2G are control gains. This term is based
on an optimal affine transformation that aligns Pdb with
Pb, in a least-squares manner. For numerical reasons, UG

is compatible with any Pdb different from a straight line,
and it limits the movements of the agents to those that
produce the deformation modes of stretch and shear. I.e. UG

steers the team towards the optimal affine deformation of
Pdb (PbP

+
dbPdb) and prevents those maneuvers that produce

undesired folds and twists [19]. Thus, we combine the control
terms UH and UG as follows:

Uγ = αHUH + αGUG , (10)

where αH and αG are weights that regulate the contribution
of each term. If the difference between Pb and Pdb is
large, αG should be greater than αH . Otherwise, a greater
αH can increase the convergence rate. Uγ represents the
shape controller of the formation. This controller drives the
formation to the desired shape Pdb by applying deformations
that are close to the stretch and shear affine modes, as we
will prove next.

In order to prove the stability of the system under Uγ , we
will show the condition for the system matrix to be Hurwitz
and also that the input matrix is constant. The closed-loop
equation of the system (1) under Uγ has, for the ith agent
and with xbi = [Pbi, Ṗbi]

ᵀ, the form

ẋbi = Axbi +B =

[
0 1
a21 a22

]
xbi +

[
0
b2

]
, (11)

where

a21 = −αHk1H + αGk1G(P
+
dbiPdbi − 1) , (12)

a22 = −αHk2H + αGk2G(P
+
dbiPdbi − 1) , (13)

b2 = αH(k1HHPdbi + k2HḢPdbi) . (14)

The roots of the system matrix A are computed as

λ =
1

2
(−αHk2H + αGk2GP

+
dbiPdbi − αGk2G

± ((αHk2H − αGk2GP+
dbiPdbi + αGk2G)

2

− 4(αHk1H − αGk1GP+
dbiPdbi + αGk1G))

1
2 ) . (15)

For A to be Hurwitz, the real part of its roots must satisfy
Re(λ) < 0. Regarding the input matrix B, note that Ḣ = 0
under Uγ , as we prove later. Then, B is a constant matrix.
Therefore, if we set the control parameters so that A is Hur-
witz, the system is asymptotically stable under the controller
Uγ . In Section V we report example values of the control
parameters such that Re(λ) < 0.

We will show that s, θ and g are invariant under Uγ . We
start with s and θ, by obtaining

ḧ1 = tr(PdbP
ᵀ
db)
−1tr(P̈bP

ᵀ
db) = tr(PdbP

ᵀ
db)
−1tr(UγP

ᵀ
db)

= tr(PdbP
ᵀ
db)
−1tr(αH(k1H(HPdbP

ᵀ
db −PbP

ᵀ
db)

+ k2H(ḢPdbP
ᵀ
db − ṖbP

ᵀ
db))

+ αG(k1G(PbP
ᵀ
db(PdbP

ᵀ
db)
−1PdbP

ᵀ
db −PbP

ᵀ
db)

+ k2G(ṖbP
ᵀ
db(PdbP

ᵀ
db)
−1PdbP

ᵀ
db − ṖbP

ᵀ
db))) . (16)

Taking the derivative of tr(PbP
ᵀ
db) = tr(HPdbP

ᵀ
db) [19], we

obtain tr(ṖbP
ᵀ
db) = tr(ḢPdbP

ᵀ
db). We apply these relations

in (16) to get ḧ1 = 0. By following the same procedure
for ḧ2, we obtain ḧ2 = 0, which yields Ḧ = 0. Given that
the controller acts over accelerations and assuming that the
system is at rest at initial time, we determine that Ḣ = 0
and Uγ does not modify s and θ.

Scale control. At this point, we are able to control the
shape of the object carried by the formation of robots, but
for controlling the deformation of the object we must control
also the scale of the formation. We propose the following
controller:

Us = −k1ses(1/s)HPdb − k2sṖb , (17)

where k1s and k2s are control gains and es = s − sd is
the scale error. This controller produces a uniform scaling
of the goal shape HPdb which is proportional to the scale
error and the velocity of the agents. Then, we define the
deformation controller UD as the addition of the shape and
scale controllers:

UD = Uγ +Us . (18)

B. Full controller with translation and rotation control

As we highlighted previously, translation and rotation of
the formation produce global motions that do not affect the
shape and scale of the team. We consider a scheme similar
to Us for the translation Ug and rotation Uθ controllers:

Ug = −k1geg1ᵀ
N − k2gṖ , (19)

Uθ = −k1θeθSHPdb − k2θṖb , (20)

where k1g , k2g , k1θ and k2θ are control gains, eg = g− gd
is the formation centroid’s position error and eθ = θ− θd is
the formation orientation error. Ug is essentially a standard
proportional controller for double-integrator dynamics, and
Uθ is a control term that applies the desired orientation θd
to the target shape. We prove next that g is invariant under



Uγ . The acceleration of g is computed as

g̈ =
1

N
P̈ 1N =

1

N
(αH(k1H(HPdb −Pb)

+ k2H(ḢPdb − Ṗb)) + αG(k1G(PbP
+
dbPdb −Pb)

+ k2G(ṖbP
+
dbPdb − Ṗb)))1N . (21)

By definition, we know that Pdb 1N = 0, Pb 1N = 0 and
Ṗb 1N = 0. Thus, g̈ = 0, and g is invariant under Uγ .

Then, we propose the full formation controller

Uf = UD +Ug +Uθ , (22)

which represents a linear combination of the deformation,
translation and rotation controllers. In the next section, we
define a set of linear constraints based in CBFs that allow
us to guarantee a safe state of the system at all times.

IV. SAFE CONTROL WITH CBFS

A. Collision avoidance

Due to the fact that the previous controller does not
take into account explicitly collision avoidance, we need an
additional strategy to complement the formation controller
Uf . Collisions may occur: between two agents (agent-to-
agent), between an agent and an obstacle (agent-to-obstacle)
and between the object and an obstacle (object-to-obstacle).
In contrast to other multirobot systems, where the agents are
not linked by a solid structure, collision avoidance is more
challenging in our case: the robots are grasping the object,
and their maneuvers must always respect the admissible
deformation states of the object. Control barrier functions
(CBFs) provide a robust, flexible and minimally invasive
solution to this issue. We adapt and extend the centralized
formulation proposed by Wang et al. [20], for collision
avoidance in a team of robots that are assigned different
position goals. Our system can be written in the affine form

ẋij = f(xij) + g(xij)Uij , (23)

where xij = [Pij , Ṗij ]
ᵀ, Pij = Pi −Qj , Uij = Ui −Wj

and f(xij) and g(xij) are locally Lipschitz continuous
functions, which describe how the agents are coupled with
each other via the controller. Note that Qj and Wj are the
position and control input, respectively, of agent j, which
can be a robot of the formation (and then Qj = Pj ,
Wj = Uj) or an obstacle. In the latter case, we must
set Wj = 0 (obstacles cannot be controlled). Then,
we propose the following condition for collision avoidance,
which restricts the distance between i and j to a minimum
value:

‖Pij‖+
∫ tf

t0

Ṗ⊥ij (t)dt ≥ Dmin
ij , (24)

where

Ṗ⊥ij =
Pᵀ
ij

‖Pij‖
Ṗij (25)

is the normal component of the relative velocity Ṗij ,

tf =
Ṗ⊥ij (tf )− Ṗ⊥ij (t0)

αi + αj
+ t0 (26)

for Ṗ⊥ij (tf ) = 0 is the time instant after having applied the
maximum braking accelerations αi and αj (‖P̈i‖∞ = αi),
and Dmin

ij is the minimum allowed distance between i and
j. If j is an obstacle, αj = 0. After manipulation of the
previous equations, and taking t0 = 0, we get the candidate
CBF for i and j

hij = 2(αi + αj)(‖Pij‖ −Dmin
ij )− Ṗ⊥2ij , (27)

which is defined in R for both the safe and the unsafe regions.
By definition [21], we know that hij(xij) is a CBF if there
exists an extended class K∞ function ε(hij(xij)) such that

sup
Uij

[Lfhij(xij) + Lghij(xij)Uij ] ≥ −ε(hij(xij)) , (28)

where L represents the Lie derivative. By using this defini-
tion and substituting our candidate CBF (27), we obtain a
set of linear constraints with respect to Uij :

Pᵀ
ijṖij

Pᵀ
ij

‖Pij‖
Uij ≤ (αi+αj)P

ᵀ
ijṖij+

‖Pij‖
2

ε(hij) . (29)

These constraints guarantee that the system will maintain
a minimal distance of Dmin

ij between the center of agent i
and the center of agent/obstacle j. This implies that agents
and obstacles are circles with regard to collision avoidance.
However, if ‖Pab‖ ≥ Dmin

ac + Dmin
bc , where a and b are

neighboring agents and c an obstacle, c could penetrate into
the formation. This behavior is undesired in the present case,
because it would result in an object-to-obstacle collision.

The strategy we propose to solve this issue consists in
deploying a set of virtual agents Pvk = [Pvkx, Pvky]

ᵀ
, k =

1, ..., V over the contour edges of the formation polygon.
These virtual agents add new distance constraints with re-
spect to the obstacles, and their virtual inputs are computed
as the linear combination

Uvk = (1− ν)Ui + νUj , (30)

where ν = ‖Pvk−Pi‖/‖Pj−Pi‖ and Pvk is the position of
the virtual agent in the edge i j. This strategy preserves the
desired safety distance Dmin

ij . In addition, the computational
cost of the system does not increase substantially, since no
new control inputs are added (the virtual inputs are computed
from the ones of the real agents).

B. Overstretching avoidance

Yet minimally invasive over Uf , the collision avoidance
system may separate two agents beyond the deformation
limit of the carried object. We can write the condition
to avoid overstretching the object as a restriction on the
maximum distance between i and j:

‖Pij‖+
∫ tf

t0

Ṗ⊥ij (t)dt ≤ Dmax
ij , (31)

where

tf =
Ṗ⊥ij (t0)

αi + αj
− t0 (32)

and Dmax
ij is the maximum allowed separation between i

and j. Note that this distance can be set differently for each



pair of agents, so that more fragile parts of the object are
constrained to a higher extent than the rest. The following
CBF candidate integrates the previous equations as

h′ij = 2(αi + αj)(D
max
ij − ‖Pij‖)− Ṗ⊥2ij . (33)

By substituting (33) in (28) we get the new set of constraints

Pᵀ
ij

‖Pij‖
ṖijP

ᵀ
ijUij ≤ −(αi + αj)P

ᵀ
ijṖij +

‖Pij‖
2

ε′(h′ij) .

(34)
These constraints prevent stretching the object more than
Dmax
ij between every pair of agents i and j.

C. Quadratic-programming based controller

Finally, we introduce the previous constraints into a
quadratic-programming (Q-P) based controller, which out-
puts the safe control inputs U = [Uᵀ

1 ,U
ᵀ
2 , ...,U

ᵀ
N ]

ᵀ ∈ R2N :

Given Uf ,P, Ṗ, D
min
ij , Dmax

ij , αi, αj

minimize
U

ξ =

N∑
i=1

‖Ui −Ufi‖22

(35)
subject to:

AijU ≤ bij , ∀i 6= j, i = 1, ..., N, j = 1, ..., N +M ,
AkjU ≤ bkj , k = 1, ..., V, j = 1, ...,M ,
A′ijU ≤ b′ij , ∀i 6= j, i = 1, ..., N, j = 1, ..., N ,

‖Ui‖∞ ≤ αi, i = 1, ..., N

where M is the number of obstacles, Aij , Akj and A′ij are
defined as

A∗∗ = [0, ...,Pᵀ
∗∗Ṗ∗∗

Pᵀ
∗∗

‖P∗∗‖
, ...,−Pᵀ

∗∗Ṗ∗∗
Pᵀ
∗∗

‖P∗∗‖
, ..., 0] ,

(36)
being subscript ∗∗ the corresponding indexes and the first
non-zero terms in the ith/kth position and the second in the
jth position,

bij = (αi + αj)P
ᵀ
ijṖij +

‖Pij‖
2

ε(hij) , (37)

bkj = ((1− ν)αi + ν αj)P
ᵀ
kjṖkj +

‖Pkj‖
2

ε(hkj) , (38)

b′ij = −(αi + αj)P
ᵀ
ijṖij +

‖Pij‖
2

ε′(h′ij) . (39)

The Q-P based controller computes, for each agent, the
closest control input Ui to the nominal Ufi that satisfies
the collision and overstretching avoidance constraints.

V. SIMULATION RESULTS

A. Comparison between Uf and the Q-P based controller

We evaluate the performance and robustness of our
proposal in two different simulation scenarios, created in
Matlabr. The first scenario allows us to test the formation
controller and the Q-P based controller in a standard transport
task. We consider a team of N = 4 robots that transport a
rectangular deformable sheet, in an environment with two

static obstacles. This sheet is modeled in 3D with the As-
Rigid-As-Possible (ARAP) technique [22], but we focus
on the configuration of its 2D projection on the horizon-
tal plane. The goal is to drive the object from an initial
squared configuration to a rectangular target configuration,
in a different place and with different orientation. Agent-
to-agent, agent-to-obstacle and object-to-obstacle collisions
must be avoided, as well as excessively stretching the object.
The control parameters are configured so that they satisfy
Re(λ) < 0: k1H = 4, k2H = 2, k1G = 4, k2G = 2,
αH = 1, αG = 10, k1s = 3, k2s = 1, k1g = 0.2,
k2g = 1, k1θ = 3, k2θ = 1, ε = 3hij , ε′ = h′ij , sd = 1,
θd = 0 and the control time step is 0.01 [s]. Note that
the method does not need fine tuning of the parameters to
achieve a satisfactory performance. For uniformity purposes,
αi = 5 [m/s2], Dmin

ij = 1 + dr [m], where dr = 0.35
[m] is the diameter of the robots (considered as circles),
and Dmax

ij = 5 [m] ∀i 6= j. We also include 16 virtual
agents, evenly distributed in the formation contour edges. We
compare two cases: the system with Uf as is and the system
with U from the Q-P based controller, which includes Uf

and the CBFs. Figure 2 shows the results in the two cases.
The first image, at the left, shows that Uf steers the system
successfully to the desired configuration of the formation.
However, the obstacle is not evaded, and it penetrates into the
formation. This undesirable event is corrected in the second
case with the CBFs, from the second to the fourth image
at the right, and the target configuration is still achieved.
In both cases, we can see that the robots deform the object
without compromising its structural integrity, thanks to UG

and the overstretching avoidance CBF.

B. Test with perturbations and dynamic obstacles

In the second scenario we test a challenging transport task,
which includes three obstacles, two dynamic and one static,
and perturbations acting over the controller. We assume that
we can measure the position and velocity of the obstacles,
and we set the perturbations as random noise applied to
U for modeling sensing and actuation errors, in the range
[−0.05αi, 0.05αi]. We consider a team of N = 5 robots,
and the goal is to steer the deformable sheet from a square
to a pentagonal shape, in a different place and with different
orientation. The control parameters are configured as in the
previous experiment, but Dmin

ij = 0.5 + dr [m] for the
agent-to-agent collision avoidance (for the agent-to-obstacle
and object-to-obstacle collision avoidance, Dmin

ij = 1 + dr
[m]), we include 15 virtual agents and the control time
step is slowed down to 0.03 [s]. Figure 3 shows eight
different simulation instants of the system in the test scenario.
We can see that the controller steers the formation to PT
without collisions. The admissible deformation states are
preserved, and excessive stretching is also avoided. Notice
that when the existing constraints force the team to deform,
this deformation is affine (see Fig. 3, third from the left at the
top). Figure 4 depicts the values of γ and the control errors.
If the level of noise in the control input is high, it might be
necessary to increase the safety distance in order to guarantee



Fig. 2. The goal is to drive the formation of 4 robots (orange) and the object (blue mesh) from the initial configuration P at (0,0) to the target configuration
PT (black) at (10,10). In the first simulation (left image) PT is reached at t = 25 [s] but the CFBs are not active, and the collision with the lower
obstacle (brown circle) is not avoided. In the second simulation (2nd to 4th images, t = 2, 8, 20 [s]), PT is reached without collisions. Sixteen virtual
agents are represented as orange ‘×’. We also depict the robots trajectories and the formation shape at even intervals.

Fig. 3. The goal is to drive the formation of robots and the object from the initial configuration P at (0,0) to the target configuration PT at (10,10)
with challenging conditions: noise applied to U and dynamic obstacles. From left to right and from top to bottom, we show eight different simulation
instants (t = 0, 1, 2, 4, 6, 8, 10, 40 [s]). We can see that the system avoids all kinds of collisions to reach PT safely. Overstretching is also prevented, and
deformation states of the object are restricted to the admissible modes.

Fig. 4. Values of γ, es, eθ and 0.1|eg | in the test with perturbations and
dynamic obstacles.

collision avoidance at all times. In these tests, the execution
of (35) takes around 3 [ms] to resolve, on average.

We include additional material in the attached video.

VI. CONCLUSION

We have presented a formation controller for agents with
double-integrator dynamics that allows steering a team of
robots to a desired configuration. Due to the fact that
the robots carry a 2D deformable object, CBFs are de-
fined to avoid agent-to-agent, agent-to-obstacle and object-
to-obstacle collisions, as well as to prevent overstretching
the object. Simulation results of the integrated Q-P based
controller show good performance of the method in a chal-
lenging scenario with perturbations and dynamic obstacles.



REFERENCES

[1] J. Sanchez, J. A. Corrales, B. C. Bouzgarrou, and Y. Mezouar,
“Robotic manipulation and sensing of deformable objects in domestic
and industrial applications: a survey,” The International Journal of
Robotics Research, vol. 37, no. 7, pp. 688–716, 2018.

[2] H. Yin, A. Varava, and D. Kragic, “Modeling, learning, perception,
and control methods for deformable object manipulation,” Science
Robotics, vol. 6, no. 54, p. eabd8803, 2021.

[3] Z. Feng, G. Hu, Y. Sun, and J. Soon, “An overview of collaborative
robotic manipulation in multi-robot systems,” Annual Reviews in
Control, vol. 49, pp. 113–127, 2020.

[4] R. Herguedas, G. Lopez-Nicolas, R. Aragues, and C. Sagues, “Survey
on multi-robot manipulation of deformable objects,” in IEEE Interna-
tional Conference on Emerging Technologies and Factory Automation
(ETFA), 2019, pp. 977–984.

[5] K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent
formation control,” Automatica, vol. 53, pp. 424–440, 2015.

[6] M. Aranda, J. A. Corrales, and Y. Mezouar, “Deformation-based shape
control with a multirobot system,” in IEEE International Conference
on Robotics and Automation (ICRA), 2019, pp. 2174–2180.

[7] D. V. Dimarogonas and K. J. Kyriakopoulos, “A connection between
formation infeasibility and velocity alignment in kinematic multi-agent
systems,” Automatica, vol. 44, no. 10, pp. 2648–2654, 2008.

[8] K. Fathian, T. H. Summers, and N. R. Gans, “Robust distributed for-
mation control of agents with higher-order dynamics,” IEEE Control
Systems Letters, vol. 2, no. 3, pp. 495–500, 2018.

[9] Z. Lin, L. Wang, Z. Chen, M. Fu, and Z. Han, “Necessary and
sufficient graphical conditions for affine formation control,” IEEE
Transactions on Automatic Control, vol. 61, no. 10, pp. 2877–2891,
2016.

[10] S. Zhao, “Affine formation maneuver control of multiagent systems,”
IEEE Transactions on Automatic Control, vol. 63, no. 12, pp. 4140–
4155, 2018.

[11] S. Zhao, D. V. Dimarogonas, Z. Sun, and D. Bauso, “A general
approach to coordination control of mobile agents with motion con-
straints,” IEEE Transactions on Automatic Control, vol. 63, no. 5, pp.
1509–1516, 2018.

[12] J. Felix-Rendon, J. C. Bello-Robles, and R. Q. Fuentes-Aguilar, “Con-
trol of differential-drive mobile robots for soft object deformation,” ISA
Transactions, vol. 117, pp. 221–233, 2021.

[13] J. Alonso-Mora, R. Knepper, R. Siegwart, and D. Rus, “Local motion
planning for collaborative multi-robot manipulation of deformable ob-
jects,” in IEEE International Conference on Robotics and Automation
(ICRA), 2015, pp. 5495–5502.

[14] D. McConachie, A. Dobson, M. Ruan, and D. Berenson, “Manip-
ulating deformable objects by interleaving prediction, planning, and
control,” The International Journal of Robotics Research, vol. 39,
no. 8, pp. 957–982, 2020.

[15] G. Lopez-Nicolas, R. Herguedas, M. Aranda, and Y. Mezouar, “Si-
multaneous shape control and transport with multiple robots,” in IEEE
International Conference on Robotic Computing (IRC), 2020, pp. 218–
225.

[16] A. Hegde and D. Ghose, “Multi-UAV collaborative transportation of
payloads with obstacle avoidance,” IEEE Control Systems Letters,
vol. 6, pp. 926–931, 2022.

[17] A. Clark, “Control barrier functions for stochastic systems,” Automat-
ica, vol. 130, p. 109688, 2021.

[18] K. A. Hamed, V. R. Kamidi, W.-L. Ma, A. Leonessa, and A. D. Ames,
“Hierarchical and safe motion control for cooperative locomotion of
robotic guide dogs and humans: A hybrid systems approach,” IEEE
Robotics and Automation Letters, vol. 5, no. 1, pp. 56–63, 2020.

[19] M. Aranda, J. Sanchez, J. A. Corrales Ramon, and
Y. Mezouar, “Robotic motion coordination based on a geometric
deformation measure,” IEEE Systems Journal, 2021, doi:
10.1109/JSYST.2021.3107779.

[20] L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for
collisions-free multirobot systems,” IEEE Transactions on Robotics,
vol. 33, no. 3, pp. 661–674, 2017.

[21] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in European Control Conference (ECC), 2019, pp. 3420–3431.

[22] O. Sorkine and M. Alexa, “As-Rigid-as-Possible surface modeling,”
in Proceedings of the Fifth Eurographics Symposium on Geometry
Processing. Eurographics Association, 2007, pp. 109–116.


