
2021 The 21st International Conference on Control, Automation and Systems (ICCAS 2021)
Ramada Plaza Hotel, Jeju, Korea, Oct. 12∼15, 2021

Collision-free transport of 2D deformable objects
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Abstract: In this paper, we propose a novel system to transport 2D cloth-like deformable objects with mobile manipula-
tors and without collisions along a known path. First, a new deformation model that allows for real-time shape prediction,
based on the paradigm of deformable bounding box, is presented. Then, observability index maximization is applied
to obtain the model parameters with a reduced number of measurements. The transport task is next defined as an opti-
mization problem that incorporates the computed model and the transport route. A set of linear and nonlinear constraints
allows to limit the object’s deformations and rotations and to avoid obstacles, respectively. Simulation results are reported
to demonstrate the validity of our method.
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1. INTRODUCTION

Autonomous manipulation and transport of de-
formable objects is nowadays an active discipline in
robotics [1]. This topic seems particularly interesting for
industrial and medical applications that deal with objects
which are difficult to handle, toxic substances or infected
materials. In these cases, limiting human intervention
could prevent the workers from being injured or contam-
inated. In addition, the logistics sector can obtain great
benefits from autonomous transport of deformable ob-
jects, given the increasing number and the variety of con-
sumer goods. Using a multi-robot team to perform these
kinds of tasks allows not only to autonomously trans-
port large size or heavy deformable objects, but it also
increases the system efficiency and flexibility [2].

In working environments such as industries, the traf-
fic of people and materials is usually predetermined
and highly controlled. In particular, in the textile and
footwear sectors, among others, large pieces of fabric are
transported between different workstations in which they
are progressively transformed. From this perspective, we
develop a multi-robot transport system of cloth-like de-
formable objects that follows a prescribed route across
the environment. Due to the fact that obstacles may ap-
pear in the given path, the system deforms and/or rotates
the transported object as required to avoid collisions, with
minimal displacements of the manipulators. Minimal dis-
placements are convenient in order to reduce the object
deformation, the energy consumption and the number of
maneuvers of the manipulators. The transported object is
considered linear elastic, but its mechanical properties are
unknown to the system. Deformation and rotation of the
object are obtained by means of the deformable bound-
ing box (DBB) geometric model (see Fig. 1), which is
identified from a reduced set of measurements.

In general, one of the main concerns when dealing
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Fig. 1. Bounding box (BB) of an elastic sheet, held by
its four corners. Its main parameters are: the BB cen-
troid c, the BB dimensions dx, dy and dz , the BB ro-
tation around the vertical axis θz and a grasping point
Pi. The bold lines in red, green and blue represent
the BB x-y-z reference frame.

with manipulation of deformable objects is to control de-
formation effectively. Model-based approaches are more
common than those not considering deformation mod-
els [3], and many of them develop geometric strategies
due to their numerous advantages. Focused on spatial
constraints, geometric methods are based on assumptions
about the object that allow to quickly estimate its shape
under different grasping configurations [4].

Jacobian matrix based approaches provide a conve-
nient relation between deformation and the derivative
of the action that originates deformation. They can be
adopted in combination with other techniques, as the pre-
viously referred geometric methods. Hosoda and Asada
developed a visual servoing control strategy in which the
Jacobian of the robotic manipulator is estimated without
the knowledge of the true kinematic parameters [5]. A
different visual servo controller by Navarro-Alarcon et
al. [6] estimates from visual feedback the deformation
Jacobian matrix in real-time. The work by Ruan et al.
[4] also considers an approximated Jacobian for driving a
deformable object to a target shape. The Jacobian is here
estimated with a method based on the concept of dimin-
ishing rigidity. Recently, a cable manipulation framework
has been proposed with real-time estimation of the Jaco-

Citation: R. Herguedas, G. Lopez-Nicolas, C. Sagues. Collision-free Transport of 2D Deformable Objects. 
International Conference on Control, Automation, and Systems (ICCAS 2021), Jeju, Korea, October 12-15, 2021.



bian matrix, which represents a local linear deformation
model [7].

The idea of a deformable bounding box has been pre-
viously exploited in different ways and for various pur-
poses. Burchan et al. [8] described a probabilistic
roadmap motion planing strategy for deformable robots
where the robot’s deformation is obtained from a de-
formed bounding box. Navigation through confined
spaces is the objective pursued by Buchanan et al. [9],
which they accomplish by appliying the concept of de-
formable bounding box as an abstraction of an hexapod
robot model. In this case, the bounding box has fixed
length and height, and width is the variable dimension.
Also Tallamraju et al. [10] consider a 2D deformable
bounding box for motion planning, but their objective is
to transport a rigid payload with a team cooperative mo-
bile manipulators. Unlike these studies, we conceive the
DBB as a versatile 3D deformation model that accounts
for variations in all dimensions of the box (length, height
and width), which must be identified for each different
combination of objects and manipulator configurations.

Cooperative transport of deformable objects includes
early developments [11] and more recent ones [12], [13].
These studies deal with a common goal: performing path
planning without collisions with multiple manipulators,
which carry different deformable loads. In contrast to
our approach, these studies do not consider computing a
deformation model of the transported object or minimiz-
ing the motions that deform and rotate the object. We
also developed a strategy for simultaneous shape control
and transport of deformable objects [14]. In this previous
work, obstacle avoidance was not specifically addressed.

Our main contributions in the present study are a new
3D deformation model based on the DBB paradigm and
the proposal of the optimization problem that allows nav-
igation without collisions with minimal relative move-
ments of the grippers.

2. PROBLEM STATEMENT

Let us consider a large 2D cloth-like linear elas-
tic object being carried in a 3D environment by
a set of N ≥ 3 robots, each one equipped
with a fixed gripper. The robots obey single-
integrator kinematics and they grasp a set of points
P = {Pi = [Pix, Piy, Piz]

T
, i = 1, ..., N} of the ob-

ject’s boundary. These robot-object links are modeled as
spherical joints. The sequence of target points over time
r = {rk = [rxk, ryk]

T
, k = 1, ...,T} prescribes the

route in the plane the object’s centroid must follow. This
path passes through obstacles, which are detected by the
robots with onboard range sensors. A perception rangeR
is set for the robotic system, and the M obstacle points
lying within this range are aggregated in a global point
cloud Q = {Qj = [Qjx, Qjy, Qjz]

T
, j = 1, ...,M}.

The shape of the object is represented by its bounding box
(BB), defined by the centroid c = [cx, cy, cz]

T , which
is expressed in the global reference frame, the dimen-

sions d = [dx, dy, dz]
T and the rotation θz , which are

expressed in the BB reference frame (see Fig. 1).
The absolute velocity of the grasping point Pi in the

global reference is computed as

Ṗi = Ṗt + Ṗdi . (1)

Ṗt is the transport velocity of the grippers, that produces
global translation of the object along the target points
r, and is given a priori by the task definition. The ve-
locity of the grasping point with respect to the object
Ṗdi applies the actions that are responsible for obstacle
avoidance to the object. These actions, which we assume
quasi-static and are expressed in the BB reference frame,
are traction/compression deformations in the horizontal
plane G = [Gx, Gy, 0]

T and rotation around the vertical
axis φz . Note that in case no deformation is applied to
the BB, θz = φz .

Our system is conceived to transport an object so that
its centroid follows the given path without collisions, by
effectively exploiting the deformation properties of the
transported object. We seek to minimize the velocities of
the manipulators with respect to the object Ṗdi. Thus, we
define the following cost function:

γ =

N∑
i=1

‖Ṗdi‖ . (2)

Minimizing this cost function is appropriate not only
to reduce the object deformation and the energy con-
sumption of the robots, but also for safely driving the
system with minimal motions.

3. DEFORMABLE BOUNDING BOX MODEL

3.1 Model overview
In this section, we present a novel deformation model

based on the paradigm of deformable bounding box.
Definition 1: Ground-parallel bounding box. The

ground-parallel bounding box (GPBB) is the minimal
box that contains the object at certain instant and whose
top and bottom faces are parallel to the ground plane.

The GPBB is the ground-parallel box that best approx-
imates the real shape of the object. Then, the variation
over time of the dimensions and rotation of the object’s
GPBB, ḋ = [ḋx, ḋy, ḋz]T and θ̇z , is what we model with
the DBB. While this model is unable to explain local ef-
fects and limits the kinds of actions that can be applied to
the object, it also presents different advantages. Its com-
pact and general structure allows to encapsulate the prop-
erties of objects with different shapes and sizes, grasped
with different number of grippers in diverse configura-
tions. The model can be rapidly determined for each sys-
tem due to its reduced number of parameters, and when
using it for optimization, as we will describe in Section 4.,
it can be efficiently evaluated.

Our target problem requires to modify the shape of the
object over time in order to avoid obstacles. Therefore,



the dimensions of the object’s BB are going to change
over time too. The DBB model we propose can be ex-
pressed in a Jacobian matrix that maps the inputs of the
grippers to the dimensional and rotational derivatives of
the BB:[

ḋx ḋy ḋz θ̇z

]T
= J u = J

[
Ġx Ġy φ̇z

]T
, (3)

being J = [kij ] with i = {1, ..., 4} and j = {1, 2, 3},

ḋ =
(
dk − d(k−1)

)
�
(
d(k−1) (tk − t(k−1))

)
, (4)

and similarly for Ġ,

θ̇z = (θzk − θz(k−1))/(tk − t(k−1)) , (5)

and similarly for φ̇z , where ‘�’ is the element-wise divi-
sion and tk−t(k−1) is the time interval between the states
dk and d(k−1).

The interaction matrix J in (3) includes 12 different
parameters, 9 of which vary depending on the object
properties and the number and configuration of the grip-
pers. We consider that k13 = k23 = k33 = 0, provided
that the rotation velocity is small and, therefore, defor-
mations are independent from the global rotations of the
object, i.e. centrifugal effects are negligible. It can be
seen that the deformation velocities ḋ and Ġ are given
as a ratio. This is a requirement for having an appropri-
ate scaling of the deformation and rotation units, and it is
also common when defining deformations in the frame-
work of solid mechanics. The gripper relative velocities
Ṗdi can be computed from the inputs u in the following
manner:

Ṗdi = R ([0, 0, φ̇z]T × pi + (Ġ ◦ sgn(pi))/2 ◦ d),
(6)

pi = RT (Pi − c) , (7)

where R ∈ SO(3) is the rotation matrix from the BB to
the global coordinate systems, ‘×’ is the cross product
operator and ‘◦’ is the element-wise product operator.

One of the main ideas behind these equations is the
action-counteraction requirement. This requirement al-
lows to prevent global displacements of the object by ap-
plying the half of the traction/compression inputs, from
opposing directions at each of the two horizontal axes of
the BB reference frame. The general rule for guarantee-
ing the action-counteraction requirement consists in posi-
tioning theN grippers around c so that they are separated
less than π radians from each of the neighboring ones.

3.2 Model identification
Once the structure and properties of the model are set,

a method for obtaining the 9 non-zero parameters of the
Jacobian matrix J, which depend on the object properties
and the grasping configuration, is developed. The strat-
egy consists in taking different measurements of ḋ and
θ̇z from randomly chosen u’s. Then, an estimate of the
model parameters is obtained by solving the system of

equations. An ordinary least-squares approach provides
the solution by linearly adjusting the parameters to the set
of S > 3 measurements:

Jvect = [k11, k12, ..., k43]
T

=
(
AT A

)−1
AT b , (8)

A = blkdiag(


Ġx1 Ġy1

Ġx2 Ġy2

...

ĠxS ĠyS

 ,

 Ġx1 Ġy1

...

ĠxS ĠyS

 ,

...,

 Ġx1 Ġy1 φ̇z1
...

ĠxS ĠyS φ̇zS

) , (9)

b =
[
ḋx1, ḋx2, ..., ḋxS , ḋy1, ..., ḋyS , ..., θ̇zS

]T
. (10)

The accuracy of the resulting model depends on the
quality and the quantity of the S measurements. Instead
of obtaining J from random u’s, in both value and num-
ber, more robust estimates can be obtained by means of
an observability index. The observability indexes, which
derive from the alphabet optimalities, provide statistical
information about the parameters variance and the nu-
merical conditioning of the model by analyzing the nu-
merical properties of the regressor matrix A [15]. Robot
calibration techniques have exploited these indexes in
multiple ways, either developing calibration techniques
robust to sensor noise [16] or selecting the best index for
different applications [17]. Therefore, selecting the in-
puts to the system as the ones that maximize one of these
indexes is convenient not only to reduce the uncertainty
of the parameters of J, but also to decide the number of
measurements to take. We study five different observ-
ability indexes and their utility for obtaining the DBB
model, with σL ≤ σL−1 ≤ ... ≤ σ1 the L singular values
of A: O1 = (σL σL−1 ... σ1)1/L/S1/2, O2 = σL/σ1,
O3 = σL, O4 = σ2

L/σ1 and O5 = (
∑L

i=1 1/σi)
−1.

We optimize these indexes with a modified version of
the DETMAX algorithm [18]. This algorithm improves
the experiment design by iteratively exchanging inputs,
so that an observability index is maximized for a fixed
experiment size. The rows of A are inserted from a set of
candidate inputs, which is created by combining different
values of Ġx, Ġy and φ̇z that lie within the expected oper-
ational limits. An optimal experiment design, and hence
the regressor matrix A, is obtained when the algorithm
converges to a maximum index value. Then, the selected
inputs are applied to the object to get the matrix of mea-
surements b (see (10)). Finally, the model parameters are
obtained from equation (8).

4. COLLISION AVOIDANCE WITH
MINIMAL DISPLACEMENTS

As we stated previously, we propose to solve the prob-
lem of transporting a deformable object while avoiding
collisions by means of optimization techniques. The
current inputs u that will drive the object to the future



collision-free state are those that deform and rotate the
DBB to avoid the incoming obstacles. Therefore, the op-
timization is not performed at the current position of the
object and the manipulators, but it is applied to a BB with
the centroid at the future position c′. This future BB cen-
troid is computed as the furthest point rk lying within the
detection range of the system and at a distance from the
detection limit greater or equal than the semi-diagonal of
the horizontal projection of the current BB. The vertical
component is computed from the grippers’ height.

We define the optimization problem at c′ as follows:

Given P, c′,d,u,J,R

minimize
u

γ (11)

subject to C,ulim ,

where C = {Cj , j = 1, ...,M} is a set of nonlinear
constraints, whose number coincides with the number of
obstacle points, and ulim includes the linear constraints
with the upper and lower limits of u.

The nonlinear constraints C are responsible of obsta-
cle avoidance, and can be computed as:

Cj = ‖Bj‖ − ‖qj‖ ≤ 0 , (12)

Bj = −(δ + δs)(qj/‖qj‖)/(nT · (qj/‖qj‖)) , (13)

qj =

R

 cos(θ′z) − sin(θ′z) 0
sin(θ′z) cos(θ′z) 0

0 0 1

T

(Qi − c′) .

(14)

Bj is the intersection point between the ray qj , which
is the obstacle point in the BB reference frame, and
one of the box faces with normal n (column vectors
[1, 0, 0]T , [−1, 0, 0]T , ..., [0, 0,−1]T ). The scalar product
nT · (qj/‖qj‖) indicates the relative orientation between
the face normal n and qj . The intersections of qj with the
6 faces of the BB are computed, and the one pointing to-
wards the same side than n (positive scalar product), and
being inside the face limits, is selected as the valid Bj .
The distance δ of a BB face to the origin, augmented by
the safety threshold δs, and the face limits are computed
from the estimated future state of the BB [d′, θ′z]. In turn,
the future state of the BB is computed in the following
manner:

[d′, θ′z]T = [d, θz]T ◦ (J u ∆t) , (15)

∆t = ‖c′ − c‖ / ‖Ṗt‖ . (16)

Then, if the inequality (12) holds ∀j, the nonlinear con-
straints are satisfied.

The linear constraints ulim are obtained from the
minimum and maximum dimensions (dmin

w , dmax
w , w =

{x, y, z}) and rotations (θmin
z , θmax

z ) of the BB: (dmax
x − dx)/dx

(dmax
y − dy)/dy

(dmax
z − dz)/dz

θmax
z

 ≥ Ju∆t ≥


(dmin

x − dx)/dx
(dmin

y − dy)/dy
(dmin

z − dz)/dz
θmin
z

 .

(17)
An optimal solution of this problem is provided by a pat-
tern search optimization algorithm, which is able to han-
dle the nonlinear constraints.

5. RESULTS AND DISCUSSION

We test the performance and validity of our DBB
model and the optimization strategy by means of sim-
ulations in Matlab®. Different kinds of deformable
objects and configurations are studied by modify-
ing the properties of a mesh composed of standard
mass–spring–damper elements.

5.1 Objects with different properties
The validity of our system is tested with materi-

als of different mechanical properties. We define a
base model consisting in a 2 × 3 meters mesh of
mass–spring–damper elements (see Fig. 1), with 150
nodes and stiffness, damping and nodal mass of 20 N/m,
0.5 N s/m and 0.01 kg respectively. Note that the model
properties are completely unknown to the system. A set
of 20 different objects is created by evenly increasing the
stiffness of the base model from 20 to 970 N/m, while the
damping, nodal mass and number of nodes are left unal-
tered to avoid combined effects (for instance, increasing
the nodal mass at the same time as stiffness could com-
pensate vertical deformations). The objects are held by
four grippers, one at each corner, and the DBB model is
obtained by maximizing O1 from a set of S = 8 mea-
surements. We consider O1 because this observability
index provides the most accurate DBB models, in terms
of mean squared error, and the amount of 8 measure-
ments due to a convenient balance between model ac-
curacy and computational cost. After this, the object is
transported following a specified linear trajectory across
a circuit, which contains a narrow corridor (2.5 m wide
and 1920 points) and a short cylinder (1.0 m in height
and 180 points) as obstacles (see Fig. 2). The perception
range R is set to 5.0 m, and a value of δs = 0.3 m is
chosen for guaranteeing collision avoidance in all cases.

After running the simulations for all the proposed ma-
terials, the values of several variables have been col-
lected. Figure 3 shows, at the top, two box plots with
the cost function values γ of the tested materials, at those
simulation instants where obstacles are detected and the
optimization is executed. In the top plot we have aggre-
gated the values γ of all materials, and the bottom plot
includes the mean values of γ in each simulation. We can
see that the mean values for all materials are quite sim-
ilar, and no outliers appear in the upper box plot. The
lower box plot shows that the objects with lower stiff-
ness, 20 N/m and 70 N/m, show higher γ values. This
is due to the fact that higher deformations are required to
compensate the greater flexibility of these objects. Figure
4 includes, at the top, the box plots of 45 different sim-
ulation instants. The box plots represent the aggregated
distances of each node in the object meshes of all mate-
rials to their nearest obstacle point. In case the node is
contained in the convex hull of an obstacle, i.e. if colli-
sion occurs, the distance is negative. Therefore, collision
avoidance is verified by the fact that all distances in the
plots are greater than zero. Considering these results, and
the fact that all models are linear elastic and the geometric



Fig. 2. First test circuit (top view and side view below).
Starting at (0,0,1.7) and following the linear trajec-
tory in green, the object is transported by 4 grippers
represented with red dots. The deformable object is
depicted as a blue mesh, with an orange circumfer-
ence around it that represents the perception range of
the system. The obstacles, in black, are a narrow cor-
ridor in the left corner of the image and a short cylin-
der in the middle. The BBs of the object over time
are represented as blue boxes.

nature of our system, it can be seen that the performance
of the model is not significantly affected by the variations
in the object mechanical properties. The average compu-
tational cost of an optimization is 0.4525 seconds with a
3.20 GHz Intel Core i7-8700 CPU.

5.2 Number and position of the grippers
The configuration of grippers transporting the object

also affects the DBB model. In this section, we an-
alyze this influence with 8 different gripper configura-
tions. These configurations are created with an increas-
ing number of grippers N = 3, ..., 10, which are posi-
tioned around the object’s boundary with the angular rule
2πi/N . Folds and wrinkles are created in the object with
this configuration rule, which allows us to test this kind
of effects in the system. The mechanical properties of the
object are the ones of the base model, but the stiffness is
modified to 400 N/m. The perception range R is again
set to 5.0 m, and a value of δs = 0.25 m is chosen.

In the circuit for these tests (see Fig. 5), the object
follows a 10 m radius semicircular trajectory that goes
over a pair of short cylinders (0.7 m in height and 174
points) and next to a wall (1.5 m wide, 1368 points). We

Fig. 3. Box plots with all γ values and the mean value of
γ in each simulation. At the top, we show the results
with the 20 different materials, and at the bottom the
results with the 8 different gripper configurations.

Fig. 4. Box plots of the distances of each node in
the object mesh to the nearest obstacle, at 45 sim-
ulation instants. The top box plots contain the dis-
tances from the meshes with all the considered ma-
terials. The bottom box plots contain the distances
from the meshes with the 8 different gripper config-
urations. We can see that no collisions occur since
all distances are greater than zero, which means that
the mesh nodes are outside of the convex hull of the
obstacles.

Fig. 5. Second test circuit (top view and side view be-
low). In this case, 4 grippers transport the object
following a 10 m radius semicircular trajectory (in
green) that goes over the cylinders and next to the
wall.



compare again the values of γ for the different configura-
tions at those simulation instants where the optimization
is executed in Fig. 3, at the bottom. As in the previous
tests, the highest cost values correspond to the cases with
the most flexible objects, i.e. when the mesh is held by
3 and 4 grippers. The box plots over time with the dis-
tances from the mesh nodes to the nearest obstacle point,
in all configurations, are depicted in Fig. 4 at the bottom.
It can be seen that collisions are prevented in all cases
when the objects go over the cylinders as well as next to
the wall, with minimal distances greater than zero at ev-
ery simulation instant. The average computational cost
of an optimization execution is 0.2931 s. To summarize,
we have verified that the DBB model and the optimiza-
tion strategy are valid for different gripper configurations
with no significative affection to its performance even in
the presence of folds and wrinkles.

6. CONCLUSION

We have presented a novel method for multi-robot
transport of deformable objects with collision avoidance.
The core of the method is a new model based on the
paradigm of deformable bounding box. This model can
be obtained with a small number of measurements thanks
to the maximization of the observability index O1. Once
obtained, it is introduced into an optimization loop that
minimizes the grippers velocities at the same time that
obstacles are avoided. We have reported simulation re-
sults that show the validity and performance of our sys-
tem in different scenarios and with different system con-
figurations. We think this strategy has potential applica-
tions that may be useful for different purposes, thanks to
its adaptability to general transport problems.
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