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Abstract— In this paper we tackle the problem of persistent
coverage, where a team of agents covers an area whose amount
of coverage degrades with time. The task is never accomplished
completely due to the coverage decay and the agents have
to revisit the domain persistently. In this framework, our
contribution is a novel approach which consists not only in
developing efficient motion to perform the coverage, but also
in covering the domain with a variable coverage action. The
agents can adapt its coverage power to the coverage error of the
actuator domain, being able to reduce the energy consumption
and the coverage error. We propose a new controller for the
coverage power and we demonstrate by means of simulations
that it is more efficient and flexible than developing the coverage
with constant power.

I. INTRODUCTION

The study of the persistent area coverage is of interest in
a lot of applications such as: cleaning, painting, monitoring,
lawn mowing, etc. In these problems, one or several agents
have to develop an action while moving over an area. The
energy consumption needed to cover the area is an important
parameter and researchers have proposed different strategies
and algorithms to address it.

The literature is nowadays focused on reducing the energy
consumption of the coverage by reducing the path length.
In general, the optimization problem is NP-hard and this
is made by computing a suboptimal path which covers
the whole domain [1], [2], [3]. In [1] authors compute
paths for lawn mowing and milling problems by means of
different algorithms. They give an approximation factor for
each algorithm taking into account the particularities of each
problem. In [4] a new strategy to increase the efficiency of
back and forth motions while covering seabed is proposed.
It takes into account the depth of the seabed, that modifies
the range of the sensor, to adapt the interspacing of each
lap avoiding overlaps. In [3], a strategy to divide area in
cells and develop optimal path over each cell to achieve a
complete and efficient coverage of the domain is presented.
These papers deal with efficient path planning area coverage,
but they do not take into account multi-robot environments.
[5] and [2] address efficiency of multi-robot approach. In [2],
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authors propose to divide the area into cells and construct
spanning trees as an efficient solution for the area coverage.
The union of the spanning tree of each robot covers the
whole domain. In [5] the efficiency of the coverage path
is increased by adapting the speed of the agents to the
frequency of variation of the features of the domain. There
are also authors that propose to build "informative paths",
that lies on computing a path taking into account how the
variables of interest are spread instead of computing a path
covering all the domain [6], [7].

On the other hand, there exist other authors which compute
the path online [8], [9], [10]. In [8] a Kalman filter is used to
minimize the estimation error as well as the motion energy
of the agents. In [10] a decentralized gradient technique is
used to compute a path within a horizon for a team of robots
and then, the path is modified using the information of a
decentralized data fusion between the neighbors to increase
the efficiency of the coverage. In [9] a gradient technique
is combined with a hierarchical grid decomposition of the
domain to develop the coverage orderly and reduce the
path length. These approaches are more flexible to changing
environments since they compute the direction to move
constantly and seem more appropriate to domains with decay.
However, none of them addresses the persistent coverage.

In this paper we focus on developing persistent coverage
by computing the path online. The contribution of this paper
is the proposal of a coverage action with variable power,
which allows to save energy and reduce error. As far as we
know, this is the first time that this problem is addressed.
There are applications that require a particular coverage
level, and higher coverage leads to a waste of energy, as
for example cleaning, or to bad results as painting. Here,
we propose a controller with an action proportional to the
weighted error of the coverage domain of each agent. For the
motion, we rely on the design proposed in [11] based on a
gradient for developing local coverage, and blob analysis to
develop a global strategy, and we adapt it to a new coverage
dynamics and error function. We assume that the coverage
information of the domain is available for all the agents, but
the coverage and motion actions are computed by each agent
and then, the proposal is scalable.

The paper is organized as follows: Section II presents the
problem formulation, introducing the coverage control and
the motion control of the agents. Section III presents an
algorithm to find objectives for the global strategy of cover-
age. Section IV shows simulation results of the control laws
proposed and compares our proposal with constant coverage
actuator. Finally, Section V provides the conclusions.
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II. PROBLEM FORMULATION

In this section we introduce the problem formulation
abusing of the notation by including the dependencies of
the variables just when they are defined. The aim is to reach
a desired coverage level Λ∗(x) > 0 for all the points x ∈ Dx

over a bounded domain Dx ⊂ R2.
We assume that mobile agents are holonomic, ṗi = u,

where pi(t) is the position of the i-th agent in a domain
Dp ⊂ R2 and u is the motion. Then pi(t) = [pi1(t), pi2(t)]

T

of each agent Ai of the team A = {A1, . . . ,AN} of N
agents. Note that Dp can be different from Dx.

A. Coverage control

Let us define r(t) as the Euclidean distance between a
point x and the position of the agent pi, and αi(r) as the
coverage action that an agent develops over points at distance
r. In this work, we restrict to actuators with limited range
so that their covering function is positive αi ≥ 0 in the
interior of the coverage domains Ωi(t), i ∈ {1, . . . , N} and
zero elsewhere. The coverage action of the team of agents is
defined as α(t, x) =

∑
i∈{1,...,N} αi. Furthermore we define

Λ(t, x) ∈ [0,∞) as the coverage developed by a team of
agents over a point x at time t.

The coverage information changes in each point x with
the following differential equation:

∂Λ

∂t
= A · Λ +B · α (1)

where A,B ∈ R, A < 0 is the state gain and B the input
gain. Note that A < 0 is required for stability. We assign
Λ(0, x) = 0, ∀x ∈ Dx, which means that at the beginning
all points are assumed as uncovered.

At this point let us introduce Φ(x) ∈ (0, 1], ∀x ∈ Dx, as
the priority to cover each point x. Φ is a map that weights
the interest of the points in the domain to give more priority
to particular zones of special interest. The quadratic coverage
error of the domain is defined as:

eDx(t) =

∫
Dx

Φ · (Λ∗ − Λ)2dx (2)

Assuming we have one agent and it is always inside the
coverage domain, we compute the evolution of the error:

∂eDx

∂t
= −2

∫
Dx

Φ · (Λ∗ − Λ) · (A · Λ +B · αi)dx (3)

And reordering terms:

∂eDx

∂t
= −2 ·

[∫
Dx

A · Φ · Λ · (Λ∗ − Λ)dx+∫
Dx

B · αi · Φ · (Λ∗ − Λ)dx

]
. (4)

Where the first term drives Λ to 0, and in general increases
the error, and the second term can be tuned by means of αi

to make it always positive or null achieving that the error
decreases, or at least increases as less as possible.

Let us define σi(r) as the normalized action of the agent
such that represents the intensity of the actuators of the
agents depending on the distance to its position and:∫

Ωi

σidx = 1. (5)

For example a lawn mower may be represented by a constant
σi whereas a spray painter may be represented as a decreas-
ing function with the distance r. Then we can write the action
of an agent as a gain multiplied by the normalized action:
αi = K · σi. Here, we introduce the proposed controller,
which is the main novelty of the paper:

K = C ·
[∫

Ωi

B · Φ · σi · (Λ∗ − Λ)dx

]2·q−1

, (6)

where C > 0 is the gain of the controller, q ∈ N, and the
powered term can be interpreted as the weighted error of the
agent’s domain. Thus, it is the formulation of a proportional
controller taking into account the distribution of the robots’
action in order to increase performance. Note that K ∈ R
and σi = 0, ∀x ̸∈ Ωi. In this way we obtain:

∂eDx

∂t
= −2 ·

[∫
Dx

A · Φ · Λ · (Λ∗ − Λ)dx+

K ·
(∫

Ωi

B · σi · Φ · (Λ∗ − Λ)dx

)]
= −2 ·

[∫
Dx

A · Φ · Λ · (Λ∗ − Λ)dx+

C ·
(∫

Ωi

B · σi · Φ · (Λ∗ − Λ)dx

)2·q
]
. (7)

Therefore, the second term is never negative and the agents
reduce the error according to the shape of the coverage action
thanks to the proposed controller.

B. Motion control

In this section we obtain the motion control law for cov-
erage purposes using ideas from [9], [11]. The objective of
our motion control law is to keep decreasing the error. Thus,
we want to minimize the variation of the error computed
in (7) of each agent with respect to its own position. Then,
we compute the gradient of the variation of the error with
respect to the position of agent i:

uloci (t) =
∂

∂pi

(
∂eDx

∂t

)
=

− 4 · q · C ·
(∫

Ωi

B · σi · Φ · (Λ∗ − Λ)dx

)2·q−1

·∫
Ωi

B · Φ · ∂σi
∂r

· pi − x

∥pi − x∥
· (Λ∗ − Λ)dx. (8)

From this gradient we can extract the direction of the
motion, ûloci (t), to get the maximum benefit covering the
neighborhood of the agent:

ûloci =
uloci

∥uloci ∥
, (9)



if ∥uloci ∥ ̸= 0 and null vector otherwise. However, gradient
techniques are known to get stuck in local minima and,
when the error in the coverage domain is low, the benefit
of covering the neighborhood of the agent is small. Because
the information decays in other parts of the domain, it may
happen that the error over the domain eDx increases. Thus,
we propose to combine the gradient strategy with a global
law ugloi (t) that depends on the coverage of the whole
domain to bring the agents to places with higher error and
improve the performance of the coverage.

To reach other parts in the domain with higher error we
propose a strategy to select global objectives pobji (t) ∈ Dp,
which is developed in Section III, and a control law to reach
the global objective. Let us define dobji (t) as the Euclidean
distance from the position of the agent to the position of
its objective, and kGi (d

obj
i ) ∈ [0, 1] as the global gain. For

example:

kGi = tanh

(
2 · dobji

R

)
, (10)

where R is the range of the coverage action. This function
is near 1 until the distance to the objective is in the range of
the coverage actuator and then it decreases to 0 when agent
is in the objective. It is a good choice since it is maximum
until the objective is being covered, but it is not the only
one. Finally, the global control law:

ugloi = kGi · pi − pobji

∥pi − pobji ∥
. (11)

To combine both global and local control laws let us
introduce the local error ςΩi(t) ∈ (−∞, 1] as:

ςΩi =

∫
Ωi

Φ · σi ·
(Λ∗ − Λ)

Λ∗ dx (12)

Compared with (2), this is a more qualitative error indicating
that agent’s neighborhood is satisfactorily covered when it is
negative or 0 and viceversa. Let us also introduce a local
weight W loc

i (t) and a global weight W glo
i (t):

W loc
i = (ς+Ωi

)β (13)

W glo
i = 1− (ς+Ωi

)β (14)

where β ∈ R+ is a constant parameter to be adjusted
depending on the desired behavior of the algorithm and
the parameters of the problem, and ς+Ωi

= max (0, ςΩi).
Further details will be provided in the simulation section.
The objective direction of the coverage ucovi (t) is obtained
with:

ucovi =W loc
i · ûloci +W glo

i · ugloi . (15)

Finally, we compute the motion control law ui(t) as follows:

ui = ki · (1− ς+Ωi
) · ucovi , (16)

where ki ∈ R is the motion gain and represents the maximum
velocity of each robot. The term (1 − ς+Ωi

) slows down the
robot to develop coverage in the neighborhood when the
local error is high, and speed up the agent when the error is
close to 0 to leave the area. Note also that the weights make

the agents to obey local control law when the local error
is high, moving slowly in the direction of the gradient of
the error, and performing coverage carefully. And makes the
agent to obey global control law when the local error is low,
heading towards new uncovered areas rapidly to increase the
performance of the coverage. This combination of local and
global strategies was firstly presented in [9] where a proof
of total coverage was given for environments without decay.
In this case, reaching the total coverage of the area is not
possible since agents are not able to cover all the domain
simultaneously, but as it will be shown in the simulations a
steady error is reached when the coverage decay is equal to
the agents’ coverage capability.

III. SELECTION OF GLOBAL OBJECTIVES

In this section we propose a strategy to find areas with
high error and to assign each agent its global objective pobji .
It is based on blob detection of the uncovered information
previously introduced in [11]. We use this algorithm to find
islands of uncovered information in the maps Λ, and then we
compute their sizes and their centroids. With this information
we propose a criterium to select the objective based on the
uncertainty and the proximity of the blobs.

Let us define Ψ(t) = {ψ1, ψ2, ..., ψj , ..., ψM} as the
collection of M(t) global objectives, ψj(t) ∈ Dx. Let us
also define πj(t) as the collection of points of the domain
composing each blob and whose global objective is ψj(t),
Π(t) =

∪M
j=1 πj as the collection of points of the domain

assigned to objectives ψj . Finally, let us introduce T as the
tolerance or percentage of admissible error, and π∅(t) =
{x ∈ Dx|(Λ∗−Λ) ≤ T ·Λ∗} as the collection of points that
are covered. The method to select the global objectives is
described in Algorithm 1.

The algorithm starts by checking if some of the M
global objectives ψj have been covered. Those covered are
erased from the list of global objectives Ψ and the points
πj assigned to the objective are released. It also checks if
there are objectives that are closer than a distance R, which
is the coverage radius of the agents. Those objectives are
also erased and their points released to try to merge them
and to get a bigger blob in the blob searching procedure.
Afterwards, the domain to obtain the new blobs of the scene
is computed by subtracting the covered points π∅ and the
assigned points Π from the domain to cover Dx. With
blob(Dblob) the candidate centroids ψf and the points πf

of the F regions of the space to be covered are obtained.
Then, the candidate centroids ψf are checked to see if they
belong to the points πf of the blob. If the centroids ψf are
inside the blob, they and the points of the blobs πf are saved,
whereas the blob domain is reduced with the points of the
new found blob.

Once the checking is complete, it is possible that some
centroids fall outside of their respective blobs. This is not a
desired situation because due to the coverage range of the
agent, it is possible that once the agent has arrived to the
global objective, it cannot reach uncovered points causing
a blockage. In this case, the image is eroded. This results



Algorithm 1 Blob-based algorithm for the selection of global
objectives

Require: Dx, π∅, Ψ, πj ;
Ensure: Ψ, πj ;

1: for j = 1,..,M do
2: if ψj ∈ π∅ then
3: Π = Π− πj ; Ψ = Ψ− ψj ;
4: end if
5: end for
6: for j = 1,..,M do
7: dmin

j = min(∥ψj − ψr∥), (r ̸= j)
8: end for
9: for j = 1,..,M do

10: if dmin
j < R then

11: Π = Π− πj ; Ψ = Ψ− ψj ;
12: end if
13: end for
14: Dblob = Dx −Π− π∅;
15: while Dblob ̸= ∅ do
16: (ψ1, ..., ψF , π1, .., πF ) = blob(Dblob);
17: for f=1,..,F do
18: if ψf ∪ πf ̸= ∅ then
19: ΨM+1 = ψf ; πM+1 = πf ;
20: Dblob = Dblob − πf ;
21: end if
22: end for
23: Dblob = erode(Dblob);
24: end while
25: Assign eroded points to the nearest blob;

in the elimination of the points in the domain that are in
contact with covered or assigned points in such a way that
the irregularities of the blob that cause the centroid to fall
outside the blob are eliminated. Afterwards, blob analysis
is repeated while the blob domain is not null. Finally, the
eroded points are assigned to the nearest blob. It is possible
but unlikely that, due to symmetries, no global objectives are
found. In that case the nearest uncovered point is the only
global objective until the symmetry breaks.

The choice of the objective pobji for each agent i is done
with a criterion that weights distance to the centroids, and
coverage error inside the blob assigned to each centroid. We
follow the same approach of [11] where the areas with the
higher error are assigned to the closest agent iteratively.

This is an heuristic approach which follows intuition,
driving agents to big and close uncovered areas, but others
could be followed with the requirement that from pobji agent
j reach uncovered points. For example the one presented
in [12] is valid and simply drives agents to the closest
uncovered points. That solution is simpler, Although it is
also less effective to develop the coverage.

IV. SIMULATION RESULTS

In this section we present simulation results of the control
strategy proposed. The coverage domain Dx is a 100× 100

units square area and Dp = R2. The state and the input gains
are constant A = −1/200, B = 1/400, and the coverage
priority is also a constant Φ = 1 ∀x ∈ Dx. The team is
composed by 6 agents whose motion control parameters are:
β = 1/5, ki = 3 and whose coverage range is R = 10. In
our problem K is saturated between 0 and 3000, and the
tolerance T is 20%. We choose q = 1 and C = 12 · 104. We
carry out several experiments changing Λ∗ and σi to test the
effectiveness of the proposal. Let us introduce the average
absolute error:

êDx(t) =

√
eDx∫

Dx
Φdx

(17)

and the integrated average error:

ēDx(t) =

∫ t

0
êDxdt

t
(18)

We present a first simulation of the behavior of the system
with Λ∗ = 50 and:

σi(r) =

{
3

π·R6 (r
2 −R2)2 r ≤ R
0 r > R

(19)

This is a quadratic function normalized with the relationship
(5) used in other coverage approaches [13], [14].

The evolution of the coverage map is shown in Fig. 1.
Whereas the evolution of the coverage power, average abso-
lute coverage error, and a boxplot of the histogram of the
coverage evolution is shown in Fig. 2. Fig. 3 shows the
evolution of the motion control action. In 250 seconds the
error reaches a steady value with an absolute average error
around 11. The boxplot chart and the coverage maps show
that most of the points are around the coverage objective
but there are also points over and below the objective. The
shape of the coverage action and the dynamical behavior of
the coverage of the domain prevents that all the points reach
and keep the objective with zero error simultaneously. The
coverage power and the motion action seems to be noisy but
is an accordion effect produced by showing 1000 time units.
In the second simulation, we present in Fig. 4 the results of
an experiment with the same parameters except Λ∗ = 100.
In this case the error reaches a similar percentage with an
absolute steady value around 17. It takes around 300 units
of time and the power consumption doubles the previous
simulation.

In the third simulation we present a comparison between
the constant coverage power and our variable coverage power
with Λ∗ = 50. We develop 100 simulations starting at
random positions with the same variables than the first sim-
ulation, and also 100 with each one of the following values
of the coverage power: K = {100, 300, 500, 700, 900}. In
Fig. 5 we show the results. The evolution of the error
with time shows that the variable coverage is the fastest
in reaching the steady state and with a final value of 8.
In this case, the only constant power that reaches a lower
value is K = 500, which is a very similar value to the
average variable power, in this case, the average power over
time of our variable coverage is 499. Over K = 500, the
error reaches a minimum and then it grows since the domain
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Fig. 1. Results of simulation 1. Evolution of the coverage map. Small circles represent the position of the agents and the coverage domain is represented
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Fig. 3. Results of simulation 1. Motion action of the agents. x-axis
represents time. Continuous line represents the total motion action. Dotted
line the global component and dashed line the local component.

becomes over-covered. Integrating the error over time, the
variable coverage has the lowest value. Finally, the average
path length (PL) shows that low power results in shorter path
lengths since the term (1 − ςΩi) slows down agents when
the domain is uncovered and viceversa, when the domain is
covered or over-covered the path length grows and reaches
around twice the variable coverage path length. The fourth
simulation (Fig. 6) is carried out with the same parameters
of the third one but Λ∗ = 100. The conclusions are similar
to the ones before. The variable coverage reaches a steady
state faster and reaches a low error level. The only constant

controller that reaches lower steady error is the one with
K = 1000, very similar to the average coverage power of
the variable controller that is 980. The integrated error is also
lower than any of the constant power, and path lengths of
lower coverage level are smaller, but it grows as the power
grows. In these two simulations, it is shown how the same
variable coverage controller is able to adapt the coverage
power level to different coverage objectives.

V. CONCLUSION

In this paper we tackled the problem of persistent area
coverage with a variable coverage power. We have developed
a formulation and proposed a new control algorithm based
on that formulation. Finally, we evaluate the performance of
our control algorithm and the results are compared with the
performance of the coverage with a constant power coverage
actuator. The variable coverage is able to adapt its action
to different references achieving lower error and less power
consumption.
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