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Abstract— Shape control involves bringing a deformable
object to a desired shape. In the shape control literature, the
positioning of the grippers on the object is usually predefined
(user-defined) and therefore considered as input information. In
this paper we address the gripper positioning problem for shape
control. We propose a deformation process within a simulated
fully-actuated scenario and introduce multi-scale centroid paths
as geometry describing points for which we prove individual
control feasibility. Analysis on the evolution of multi-scale
centroid paths through the fully-actuated deformation process
allows us to define an importance metric for gripper candidates.
Final gripper positions, based on the importance metric, are
obtained through optimisation. We present simulation results
for global and local shape control problems.

I. INTRODUCTION

Shape control is an emerging branch of control engineer-
ing that deals with the problem of bringing a deformable
object to a desired target shape with the use of robotic
manipulators (further formalisation of the problem in sur-
veys [1], [2]). Several works tackle deformation tasks from
different perspectives (for example [3]–[5] for shape control
or [6] for deformable object cutting). However, they share
a common factor: the positioning of the grippers on the
object is predefined (user-defined) and is therefore given
as input to the problem. A poor gripper setup may lead
to the non-feasibility of the deformation task, i.e., a good
gripper positioning may not only improve the control strategy
performance, but may also be decisive for the task's feasi-
bility (the importance of gripper positioning is illustrated in
the in the accompanying video). For a deformable object
to be fully actuated, within the context of shape control,
there should be a gripper positioned at every point along the
object. Unfortunately, a fully actuated system is not feasible
in real setups as it would require a very high number of
grippers. Even the discrete approximation, involving a large
number of grippers, would be problematic for a variety of
reasons, namely: lack of robot availability or incompatible
robot work-spaces (collisions). These issues give rise to
the definition of the problem addressed in this paper. This
problem addresses location of grippers along the object to
get the most out of the available number of grippers in an
specific shape control task.
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A. Related work

Within the non-rigid object context, a distinction should
be made between two research lines that, while sharing
certain similarities, focus on different problems: the grasp
quality problem and gripper positioning for deformation.
The former solves the problem of grip stability [7] and
actions performed with robotic hands on objects with a size
similar to that of the grasping hand. The latter assumes the
grasping problem is solved. It rather focuses on solving
the strategic gripper locations on large objects (generally
larger than the gripper size) to perform collaborative tasks
such as object transport or shape control. This problem
classification is presented in [8], where a method for in-
hand shaping of non-rigid objects is presented along with a
contact-point selection criterion. Regarding the second prob-
lem (gripper positioning) and focusing on cloth grasping, [9]
uses non-linear SVM on 3D visual information and defines
a criterion for selecting the best grasping point. Tackling
a similar problem: robot-assisted dressing, [10] proposes a
supervised deep neural network trained with synthetic data-
sets to perform grasping-point prediction and collaborative
manipulation. However, none of these approaches consider
the shape control task, as they focus on very specific textile
applications (mainly transport or folding) and single-gripper
scenarios. Our proposal considers a multi-gripper scenario
and adopts an optimisation approach closer to those de-
fined in multi-agent robot systems [11] [12]. For example,
[13] proposes a hybrid centralised/distributed multi-robot
deformable object manipulation method. Proposal in [14]
adopts a multi-agent strategy for shape control and transport
but the gripper positioning problem is trivially solved by
placing equidistant grippers along the contour. A similar
gripper distribution is adopted in the shape control proposal
defined in [15]. To our knowledge, there are no previous
approaches that focus on gripper positioning for collaborative
deformable object shape control.

B. Proposal approach overview

In this paper, we tackle the gripper positioning problem for
shape control by means of multiple robots with grippers. Our
approach consists of three main blocks (Fig. 1). In the first
one, we define a reference deformation process considering
a fully-actuated scenario. This provides us with a desirable
shape evolution of the object into the target shape. In the
second block we describe the error metric that is going to
define the importance of every contour point as a gripper
candidate. This error metric, based on geometric multi-scale
centroid paths (described in section III), is going to be
computed along iterations using the information provided by
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Fig. 1: Proposed approach overview scheme. On the left, the
main three blocks of the method. On the right, representative
illustrations of each block.

the reference deformation process. The output of the second
block is a gripper-importance array that serves as input in
the optimisation process in block three.

C. Problem formulation

Regarding the object to be deformed, we assume its
geometry is planar and there is no prior knowledge of
its physical properties (Young modulus, stiffness, etc). Our
proposal considers that the object's surface may lack texture
(i.e. we cannot rely on texture-based visual descriptors).
Then, the available object information consists of a set of
points of the object's visible surface (as it would be obtained
with the use of an RGB-D visual sensor). We also assume
that the surface of the object remains visible during the
deformation process, something that could be achieved with
optimal perception methods [16]. We define the object's
shape as its visible 2D surface (embedded in 3D Euclidean
space). As for the grippers, the number of available grippers
is G ≥ 2. At least two grippers are required in order to cause
any deformation on a steady-state deformable object when
inertia and gravity are negligible (a common assumption in
the shape control literature, for instance [3] and [17]). We
also assume that modifying gripper-to-object contact points
would hamper the shape control process and thus these will
not be modified during the deformation process.

For the problem setup, consider the set of points vn ∈
V = {vn, n = 1, . . . , N} in 3D space that represent the
discretised visible 2D surface of the object in its current
state (represented in Fig. 2). Within this set, an α-shape
contour extraction retrieves the boundary points vbm ∈ V b =
{vm,m = 1, . . . ,M} such thatV b ⊆ V . We will focus the
search of the best gripper points on the object contour. There-
fore, the set of contour points V b defines the solution space,
and each of the contour points vbm becomes a candidate for
gripper positioning. We define the discretised target shape
surface with points v̄p ∈ V̄ = {v̄p, p = 1, . . . , P} and
the target boundary subset v̄bq ∈ V̄ b = {v̄bq, q = 1, . . . , Q},
being V̄ b ⊆ V̄ and thus Q ≤ P . Current contour points vbm
and target contour points v̄bq are elastically matched at each

Fig. 2: Example of elastic contour matching, on which points
from the current shape vbm contour are elastically matched
at each step [18] to points on the target contour v̄bm.

simulation step using a multi-scale Laplacian-based FMM
[18]. The elastic matching assigns a target contour point
v̄bm ∈ V̄ b to each current contour point vbm. Note that this
matching is elastic and not necessarily homogeneous as it
maximises shape resemblance on a multi-scale level.

II. FULLY-ACTUATED DEFORMATION SCENARIO

One of the main problems that arise on shape control is
the lack of analysis along time. Methods need to rely on
local stability and local convergence. This complicates the
gripper positioning process: a position may not appear to
be important at the beginning of the deformation process but
may be of great relevance at a later stage. One might suggest
modifying the positioning of the grippers throughout the
deformation process, but this would not only be problematic
in practice but would also add additional complexity to the
shape control strategy design.

Considering the time-locality perspective problem, we
propose a deformation process within a fully-actuated sce-
nario (see the shape evolution simulation example in Fig. 1,
top right corner). The deformation that results from the
simulation steps is just one of the infinite possibilities (or
deformation paths) the object can take in order to reach
the target shape. However, this path in particular has three
characteristics that make it geometrically convenient:

1) Fully-actuated system: in the simulation we assume
an all-gripper configuration, this means ∀ vbm ∈ V b ∃ γg ∈
Γ such that vbm ≡ γg . Being Γ = {γg, g = 1, ...,G} the set
of grippers γg for which control actions ug ∈ R3 are defined.
Note that, in this fully-actuated approximation, G = M . We
define γγg ∈ R3 as the position vector of γg . Each of the
discrete contour points vbm can be actuated with a single
integrator model γ̇γg = ug .

2) Laplacian-based elastic matching: The elastic match-
ing between the current and the target shape is performed at
each step [18]. This optimises the shape resemblance on a
multi-scale level and thus minimises deformation energy.

3) Gripper action minimisation: The action of each
gripper ug is defined by its position error vector with respect
to its corresponding target point. A Procrustes optimisation
process applies a rigid transform to the target points and
minimises the point-to-point overall distance. This results in
an action energy minimisation.



It is important to mention that this reference deformation
process does not require to simulate the physics behaviour
of the object as it is merely geometrical. This fact implies
the need of assuming the object is behaving in a compliant
way under actions ug .

III. MULTI-SCALE CENTROID PATHS
A. The relevance of multi-scale centroids on shape control

Consider a planar deformable object in stationary state
(Fig. 3.1). One of its contour points vbfixed is position-
constrained (i.e. passive gripper in relative terms, recall G ≥
2). There is also an active gripper γg ≡ vbm. Now consider
a region Ω of the object such that its points lie within a
topological distance s from vbm. Following some user-defined
deformation task, we want to move the geometric centroid
cm of region Ω to a target point c̄m. The error vector is
defined as em = c̄m − cm, where cm and c̄m denote the
position vectors of cm and c̄m respectively. Assuming planar
deformation, we define a reference frame F with origin
at vbfixed, X-axis always pointing towards vbm (F rotates
jointly with vbm) and Y -axis is co-planar to the deformation
plane. Note that F allows to define object coordinates in 2D
(intrinsic coordinates). Vector v = (vbmx, 0), v

b
mx > 0 defines

the position of vbm in F 's reference frame. Considering vbfixed
constitutes a free-rotating point, and disregarding momentum
dissipation along the object, a tangent velocity action uθ

g on
vbm generates a rotation θ with respect to vbfixed on all object
points (Fig. 3.2). This means that the geometric centroid cm
of any region Ω will rotate the same angle θ with respect
to vbfixed. On the other hand, an action uv

g = (uv
gx , 0) on

vbm generates a velocity vector field in all object points
that have positive x coordinates (again, disregarding energy
dissipation, i.e. the vector field of the velocity does not decay
except by its own definition). This vector field represents the
stretching or compressing process of the object and applies
an affine transformation T ∈ R2×2 on points with positive
x coordinates. We define T in F coordinates:

T =

[
vb
mx+uv

gx

vb
mx

0

0 1

]
, (1)

with determinant |T | = 1 + uv
gx/v

b
mx and vbmx > 0 (recall

the definition of F). We assume vbmx+uv
gx > 0 as to prevent

flipping the points of the object. With these considerations,
|T | satisfies |T | > 0 and provides a ratio of area variation
for differential surface elements. When |T | < 1, the object
is being compressed in the X direction. Similarly, |T | > 1
implies a stretching process on the direction of the X axis.
The centroid of a differential element of surface at some
point x is cd = [x+ dx/2, y + dy/2]

⊺. The change on cd
after applying the T transform yields:

ċd = Tcd − cd =

[
uv
gx

vb
mx

(x+ dx
2 )

0

]
. (2)

In any region Ω, given that ∃x ∈ Ω such thatx > 0,
all surface differential elements with x > 0 contribute in
moving the centroid cm of the region in the direction of uv

g .

1. 2.

3. 4.

Fig. 3: 1. shows elements that define the centroid control
problem. Amongst them, error em: defined from cm to c̄m. In
2. the velocity vector fields generated by actions uv

g and
uθ
g can be visualised. 3. and 4. provide examples that

illustrate how control actions uv
c̄m , uθ

c̄m and uv
c̄m,i

,uθ
c̄m,i

can
be applied consecutively to reduce error em.

So far we defined two generic actions uθ
g and uv

g on vbm.
Action uθ

g allows us to control the rotation of cm in any
given configuration. However, in order for uv

g to control the
position of cm in the direction of X , two conditions must be
satisfied: 1) ∃x ∈ Ω such thatx > 0, and 2) vbmx +uv

gx > 0.
For the moment, let us assume both conditions are satisfied.
We define circle Om centred at F 's origin with radius
rm = ∥c̄m∥ (Fig. 3.3). When ∥c̄m∥ ≥ ∥cm∥, cm is contained
within Om. This means line l = cm + tv̂, t ∈ R (v̂
being the unitary vector in the direction of v), will always
intersect Om in, at least, one point qm. This allows to
define the control law: uv

g = αuv
c̄m , uθ

g = αuθ
c̄m , where

0 < α ≤ 1 is the control gain. Vector uv
c̄m defines the

position error of the intersection point qm along line l (if
there are two intersection points, qm is the closest to c̄m).
Similarly, uθ

c̄m defines the angular error along circle Om. The
consecutive execution of these control actions brings cm to
c̄m, which leads to the reduction of error em. Things get
more complicated when ∥c̄m∥ < ∥cm∥ as the intersection of



line l with circle Om is not ensured (Fig. 3.4). Considering
this, the condition for the intersection to happen is rm ≥
∥cmy∥. We can define a circle Op with rp = ∥cmy∥ that
satisfies this condition. Circle Op intersects the error vector
em at point p. Point p and cm define vector emp

= b em, with
b ∈ R, 0 < b < 1. Note that Oi infinite circles can be defined
with ri ∈ [rp, ∥cm∥), i ∈ N. All of these circles generate
intersections c̄mi with em. The intersections lie between
cm and p and provide infinite reachable target points and
thus reducible error vectors emi

in the direction of the error
em. Generalising, regardless of ∥c̄m∥ and ∥cm∥, a circle Oi

centred at (0, 0) can be always defined in such a way that its
intersection with em generates a reachable target point c̄mi

.
Control laws:

uv
g = αuv

c̄m,i , uθ
g = αuθ

c̄m,i (3)

applied consecutively, move cm in the direction of emi
=

a em (with a ∈ R, 0 < a ≤ b) and thus reduce error
em. Since point vbm, by definition, is always going to be
within Ω and vbmx > 0, condition 1: ∃x ∈ Ω such that
x > 0 is always satisfied. On the other hand, for larger
values of ri, both ∥emi

∥ and ∥uv
c̄m,i∥ decrease. Regarding

that emi
= aem, one can always find a larger ri that results

in a sufficiently small a > 0 so that uv
c̄m,i generates an action

uv
g such thatuv

gx < vbmx and thus condition 2: vbmx+uv
gx > 0

can be always satisfied.
Recall Ω is defined by the topological distance s. When

s = 0, centroid cm is equivalent to vbm. Similarly, when
s = smax (smax is the maximum topological distance within
the object) centroid cm is equivalent to the global centroid
of the object. A set of uniformly distributed distance values
sλ ∈ S = {sλ, λ = 1, . . . ,Λ}, where s1 = 0 and sΛ =
smax, can be defined. For a contour point vbm, all centroids
cλm (generated with topological distances sλ) constitute a
multi-scale centroid path Cm = {cλm, λ = 1, . . . ,Λ} (See
Fig. 4). Centroids within path Cm represent the group of
shape-geometry describing points for which we can surely
reduce position error, at least individually, with actions over
contour point vbm and a fixed contour point vbfixed. Note that,
since G ≥ 2, there is always one gripper that can act as
fixed gripper. Centroids defined with small sλ values will
describe smaller regions of the shape's geometry in finer
detail, whereas centroids defined with large sλ values will
describe larger regions of the shape's geometry but in a more
ambiguous manner. This fits the nature of deformable objects
as the uncertainty of the action's effects on object points
increases with distance to the actuator.

B. Multi-scale centroid path error and gripper importance

Contour point vbm has an assigned target point v̄bm with an
associated multi-scale centroid path C̄m. A rigid translation
(pure translation, no rotation) is applied to centroids in C̄m

such that CΛ
m ≡ C̄Λ

m (Fig. 5). This transformation is not ar-
bitrary: in shape control, error vectors should not depend on
the current and target object's relative positions. On the other
hand, orientations at intermediate scales carry information

Fig. 4: Centroid error paths Cm and C̄m for a current and a
target shape are represented. Each path is defined by a series
of centroids cλm and c̄λm defined at different scales λ.

Fig. 5: Error vectors eλm are defined for each centroid cλm
with their target centroids c̄λm.

about the object's shape and thus relative orientation between
centroid paths should remain unchanged. Error vectors eλm
are defined for each centroid cλm with their target centroids
c̄λm. Maximum scale sΛ takes the value of the largest smax

value amongst the current and the target shape. This means
the shape with lowest smax will have more than one centroid
at CΛ

m (or C̄Λ
m, given the case). This can be observed in

Fig. 5, where several error vectors start from cΛm.
Using the information of the fully-actuated simulation

process we define the importance wm ∈ W = {wm,m =
1, . . . ,M} of contour points vbm as gripper candidates with

wm =

K∑
k=1

Λ(k)∑
λ=1

∥eλ(k)m (k)∥, (4)

where K ∈ N are the number of iterations in the reference
simulation. Larger values of wm imply a more relevant
position. From a shape control perspective, wm contains
the accumulated multi-scale centroid path error, in other
words: it carries the information of the amount of error
being perceived by contour point vbm during the reference
deformation process. Contour points that do not perceive
much error are not strategically located as they will not allow
control laws to reduce a large amount of error.

IV. GRIPPER POSITIONING OPTIMISATION

Gripper importance values wm ∈ W (4) conform vector
w ∈ RM , w = [wm]. A local-maxima search on w
selects the most relevant gripper candidates vbj ∈ V j =
{vbj , j = 1, . . . , J} such thatV j ⊆ V b (shown in green in
the video). These relevant candidates have an associated



importance value of wj . Vector τ ∈ RJ , with elements
τj = 1/wj , represents the assignation cost of each relevant
gripper candidate vbj . Assignation costs in τ are normalised
as τ̂j = τj/max(τ ). A vector of booleans χ ∈ BJ

constitutes the decision variable of the optimisation:

χ = argmin
χ

(
χ⊺τ̂ +

β

dmax

∥∥∥∥χ⊺V

χ⊺χ
− (cΛ)⊺(k = 1)

∥∥∥∥
2

)
,

subject to 2 ≤ χ⊺χ = G.
(5)

If a gripper is positioned at vbj , the optimisation variable
χj = 1. Otherwise, χj takes the value of 0. The first term in
the minimisation function represents the cost of assignations
with respect to the gripper importance wj . The second term
penalises the distance between the centroid of the allocated
grippers positions and the object's global centroid cΛ(k =
1). Matrix V ∈ RJ×3 is obtained by stacking the position
vectors vb

j ∈ R3 of vbj and dmax is the maximum distance
from a contour point vbm to the object's global centroid at the
initial instant cΛ(k = 1). Although the centroid distance is
normalised with dmax, it should be relevant only in the case
of evenness of wj . For this reason β > 0 is set to low values,
in our simulations β = 0.1. The second term is designed
to enhance the effectiveness of control actions as it favours
uniformly distributed grippers. A more distributed gripper
setup favours larger vbmx values and, since vbmx + uv

gx > 0,
it also allows larger velocity actions. The constraint in (5)
guarantees that all available grippers G are allocated. Note
that G should have values G ≤ J , as J defines the size of
the decision variable χ.

V. GRIPPER POSITIONING RESULTS

The method has been tested on several examples that range
from local to global deformations and mixed global-local
cases. Fig. 7 shows several of these examples, each row
contains a specific shape control problem. The first column
shows the shape-control problem to be solved. The contour
of the current shape is shown in red and the contour of the
target shape in blue. Both contours are connected with grey
lines that represent the initial elastic contour matching (for
k = 1). A Procrustes transform has been applied to the target
shape in order to minimise matched-point distance. The
second column illustrates the fully-actuated deformation pro-
cess simulation. The evolution of the current shape through
iterations can be visualised along the vertical-axis. The last
two columns show the results results obtained by applying
the grippers positioning method for different numbers of
available grippers G. Contour points are plotted with circles
of size proportional to their importance value wm. Gripper-
free contour points are represented in blue colour, whereas
gripper positions are represented by red dots with overlap-
ping crosses. The third column shows the results when a
larger number of grippers G is selected, while the fourth
column presents results for lower G values. A qualitative
analysis of the results of each example is presented below.

The first case represents a highly global case of deformation.
A certain similarity can be found between the value of wm

of the current contour points (size of the blue circles on the
last two columns) and the magnitude of the position error
between assigned points dm = ∥v̄b

m(k = 1) − vb
m(k = 1)∥

(length of the grey lines on the first column), being v̄b
m ∈ R3

the target point's position vector. The higher effectiveness of
wm as indicator (compared to dm) is better exemplified in
the second row example. Fig. 6 shows the values of d̂m =
dm/max(d) and ŵm = wm/max(w) along the contour
points of the current shape (being d ∈ RM , d = [dm]). Note
the two local maxima points marked on the plot (contour
points 60 and 73) and their representation over the shape
contour on Fig. 7 (second row, first column). Concerning
d̂60 (blue point), vb60 would have higher importance as
gripper candidate. However, vb73 (yellow dot) represents a
much better candidate as it favours control over the shape's
appendix. Fig. 6 gives a better insight on this comparison by
showing the results of applying a point-to-point trivial control
law (ug = α(v̄b

g − vb
g)) for both gripper configurations (in

simulation, using ARAP model [19] [20]). More simulations
of the point-to-point control law being applied to bad and
well conditioned gripper positioning can be visualised on
the attached video. In some cases, the local nature of the
trivial control law leads to an error increase during the
transitory period, even with good gripper configurations (e.g.
last simulation). Third row exemplifies how relevant the
second term of the optimisation function becomes on shape
control tasks involving symmetries. All of the 6 grippers
positioned on the first result (column 3) have the same wm

value. The gripper centroid criterion works effectively and
allows for a more favourable distribution of grippers. The last
two examples are local deformation cases containing straight
lines (low descriptor richness) and are properly addressed.

VI. CONCLUSIONS

We have developed a gripper positioning method for multi-
robot shape control. A reference deformation process has
been proposed considering a fully actuated ideal scenario
that allows for a global analysis of the shape evolution over
time. Accumulation of multi-scale centroid paths' error over
iterations defines our gripper-importance metric. We proved
feasibility of centroid points control and thus emphasised the
relevance of our gripper importance metric, which serves as
input for the gripper location optimisation. Note that models
like the one presented in [5], based on decreasing stiffness,
are not applicable in this gripper positioning problem as they
do not involve a shape matching process that is aware of
the target shape. However, it would be interesting to test
how our gripper positioning metric interacts with particular
control laws from the literature such as [3] or [5]. Our
metric could also be tested in cases in which the object's
volumetric information is available as the process explained
in section III theoretically holds for 3D volumetric objects.
Lines and circles would become their 3D analogous (planes
and spheres) and the properties of the analogous 3D affine
transform T generalise to 3D as well.
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