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Abstract Revolution symmetry is a realistic assump-
tion for modelling the majority of catadioptric and diop-

tric cameras. In central systems it can be described by
a projection model based on radially symmetric distor-
tion. In these systems straight lines are projected on

curves called line-images. These curves have in gene-
ral more than two degrees of freedom and their shape
strongly depends on the particular camera configura-
tion. Therefore, the existing line-extraction methods

for this kind of omnidirectional cameras require the ca-
mera calibration by contrast with the perspective case
where the calibration is not involved in the shape of

the projected line-image. However, this drawback can
be considered as an advantage because the shape of the
line-images can be used for self-calibration. In this pa-

per, we present a novel method to extract line-images in
uncalibrated omnidirectional images which is valid for
radially symmetric central systems. In this method we
propose using the plumb-line constraint to find closed

form solutions for different types of camera systems,
dioptric or catadioptric. The inputs of the proposed
method are points belonging to the line-images and
their intensity gradient. The gradient information al-
lows to reduce the number of points needed in the min-
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imal solution improving the result and the robustness
of the estimation. The scheme is used in a line-image

extraction algorithm to obtain lines from uncalibrated
omnidirectional images without any assumption about
the scene. The algorithm is evaluated with synthetic

and real images showing good performance. The results
of this work have been implemented in an open source
Matlab toolbox for evaluation and research purposes.

Keywords Omnidirectional Vision · Line Features ·
Uncalibrated Images · Fisheye · Catadioptric · Single-

image · Matlab Toolbox

1 Introduction

The projection of a straight line on an image is in gene-
ral a curve called line-image. In conventional perspec-
tive cameras, a straight line is projected on the image
via a projection plane and the resulting line-image is a
2D straight line which can be recovered from 2 image

points. Notice that both the line-image and the projec-
tion plane have 2 degrees of freedom (DOF). As con-
sequence, part of the geometry of the 3D line, which
has 4 DOFs, is lost in the projection (unless in non-
central systems (Gasparini and Caglioti, 2011)). In non
perspective central systems the projection surface of a

straight 3D line is also a plane with 2 DOFs, however
the line-image is a curve with more than 2 DOFs due
to the non-linearity of the projection model. The ad-
ditional DOFs of these curves are deeply related with
the calibration of the system which is needed to define
one of these curves from 2 points. Moreover, the projec-
tion plane provides a constraint which can be exploited
to estimate the calibration whenever more than two
independent constraints are available (Devernay and
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Faugeras, 2001; Alvarez et al, 2009; Brown, 1971). Con-
sequently, with the appropriate approach, line-images
can be extracted without calibration.

Most approaches to extract lines from omnidirec-
tional central images use camera calibration to back
project the image points to normalized rays lying on
a unitary sphere around the viewpoint (Ying and Hu,
2004b; Bazin et al, 2010). In this space the representa-
tion of the line projection becomes linear and classical
approaches can be used. In the particular case of central
catadioptric systems the curve defining a line-image is
a conic. Some approaches extract these conics directly
on the images. In (Barreto and Araujo, 2005) conics
are computed using classical conic fitting approaches,
hence 5 DOFs are required in this fitting which is noise
sensitive. In (Bermudez-Cameo et al, 2012b) conics are
extracted on hypercatadioptric images although using
the calibration of the camera in the fitting. In (Ying
and Zha, 2005; Cucchiara et al, 2003) a Hough trans-
form approach is used to simultaneously extract lines

and calibration parameters from uncalibrated omnidi-
rectional images.

In the case of non linear projection with unknown
calibration, the location of additional edge points ly-
ing on the curve provides additional independent cons-

traints. This kind of constraint is known as plumb-line
constraint (Sturm et al, 2011) and it is one of the ap-
proaches used for self-calibration in central distorted
images. Most of the plumb-line based approaches solve

radial distortion models based on a transformation of
the radius of an image point after a linear projection.
Some of these models are the “even order polynomial

model” used in (Swaminathan and Nayar, 2000; De-
vernay and Faugeras, 2001; Thormählen et al, 2003;
Rosten and Loveland, 2011) and the “ division model”
proposed by Fitzgibbon in (Fitzgibbon, 2001) and ex-

tensively used in (Strand and Hayman, 2005; Wang
et al, 2009; Bukhari and Dailey, 2013; Melo et al, 2013).
These models are usually used to describe radial distor-
tion on conventional cameras and they can also be used
to fit catadioptric and dioptric systems.

Other kind of projection models try to describe the
physical phenomenon and the behaviour of the system,
e.g. the sphere camera model (Baker and Nayar, 1999;
Geyer and Daniilidis, 2000, 2001) for catadioptric sys-
tems (modelling the reflection of the light on the mir-
ror) or the classical fisheye models: the equiangular-
fisheye model (also known as equidistant projection),

the equisolid-fisheye model, the stereographic-fisheye
model and the orthographic fisheye model (Kingslake,
1989; Stevenson and Fleck, 1996; Ray, 2002). Actually,
fisheye lenses are constructed in order to satisfy such
models (Sturm et al, 2011). A validation of these geo-

metric models for real fisheyes is presented in (Schnei-
der et al, 2009). Assuming symmetry of revolution, these
models are encoded using a function h that relates the
elevation angle φ of the projection ray with the radius of
an image point r. The function r = h (φ) can be an ex-
plicit expression (Kingslake, 1989; Ray, 2002) or can be
defined as a series-based expression (Tardif et al, 2006;
Kannala and Brandt, 2006; Kannala et al, 2008b).

Apart from the plumb-line approach there exist other
methods for calibrating omnidirectional central cam-
eras. A survey of these methods can be found in (Puig
et al, 2012). We want to remark that, in spite of exist-
ing a considerable number of methods for calibrating
catadioptric systems (Wu and Hu, 2005; Barreto and
Araujo, 2005; Gasparini et al, 2009; Puig et al, 2011)
there are few methods for fisheye systems. A general
method for central systems that can be also used for
fisheyes is presented in (Scaramuzza et al, 2006). In
(Mei and Rives, 2007) the sphere model is used to ap-
proximate the fisheye model. A calibration method spe-
cific for fisheyes is presented in (Kannala and Brandt,

2006; Kannala et al, 2008a).This multi-view approach
uses a series-based description of the radially symmet-
ric model. The radially symmetric series-based model
is also used in a plumb-line calibration method for cen-

tral systems in (Tardif et al, 2006). More recently, in
(Alemán-Flores et al, 2014) line projections are detected
in uncalibrated distorted images using a Hough trans-

form approach.
In this paper we present an automatic method for

line extraction in uncalibrated images which is valid for
central dioptric and catadioptric cameras with symme-

try of revolution. This extraction allows us to segment
the collection of edges corresponding to line-images au-
tomatically. For this, we exploit two different line-image
constraints: point’s location (which is the constraint
typically used in the plum-line approach) and point’s
gradient constraint, using the gradients of the inten-

sity field. Constraints based on gradient are particu-
larly useful when the number of DOFs of the curve
is high. From each extracted line-image we obtain the
corresponding projecting plane since main calibration
information is implicitly computed. In our method we
do not assume any restriction in the orientation of 3D
lines. The input of the method is a single image con-

taining projections of lines. The output is a set of line-
images and their supporting edges, the corresponding
projection planes and the main calibration parameter
of the system. The main contributions of this work are
the following,

– An explicit closed form solution of the cons-
traints developed for the catadioptric sphere

camera model and for different fisheye pro-
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jection models . By contrast with (Tardif et al,
2006) each projection model is treated independently
obtaining a closed solution and reducing the number
of parameters to encode the distortion.

– A gradient-based method to reduce the min-
imal solution. The proposed line-image constraint
is a representation of the plumb-line constraint of
the image space. Working in the image space allows
us to exploit the parallelism between the gradient
of the intensity field and the gradient of the curve
as additional independent constraint reducing the
number of points needed to define a line projection
when the calibration is unknown.

– A unified parametrization for any central sys-
tem with revolution symmetry. We deal with
different representations of central projections used
for catadioptric and dioptric systems. Instead of cal-
ibrating all the parameters of these models we focus
in a single calibration parameter r̂vl which repre-
sents the radius of the vanishing line and it is com-
mon to all these models. Besides, we relate this pa-

rameter with the existing models and explain how to
compute this relation whenever any central projec-
tion model can be expressed in the form r = h (φ).

– A practical and robust method for automatic
line-image extraction from uncalibrated om-
nidirectional images with revolution symme-

try . The proposed method has been implemented
in a Matlab toolbox for evaluation and research pur-
poses. This toolbox allows to extract the lines pro-
jections and the calibration of the system from a

single-image.

Preliminary results of this work have been presented
in (Bermudez-Cameo et al, 2013). Now, we extend the
analytical solution of the plumb-line constraint directly
solving the polynomials when possible. Besides, we go
into detail about the gradient-base method considering
different approximations. We also provide additional

details and new experiments with real images. In ad-
dition, we improve the contribution with the study of
the influence of the error in the principal point which
was not considered in our previous work.

The rest of the paper is distributed as follows. In
Section 2 we describe the covered catadioptric and fish-
eye projection models. In Section 3 we present the uni-

fied description to represent line-images when the sys-
tem has revolution symmetry. In section 4 we present
the constraints based on point’s location and the cons-
traints based on brightness gradient. Section 5 describes
the algorithm to extract line-images from omnidirec-
tional cameras without calibration. In section 6 we show
the results of the experiments used to validate the method.
Finally, in section 7 we show the conclusions.

Fig. 1 Catadioptric sphere camera model: The 3D point X
is projected onto the sphere. Then this point is backprojected
to a normalized plane through a virtual optic center located
a distance ξ from the effective viewpoint. This point is trans-
formed to the point x̂ on the centred image plane using the
collineation Hc = diag (fη,−fη, 1) .

Parabolic Hyperbolic

ξ η

Parabolic: 1 2p

Hyperbolic: cosχ = d√
d2+4p2

sinχ = 2p√
d2+4p2

Planar: 0 1

Fig. 2 Parameters of the unified sphere model for catadiop-
tric systems.

2 Projection Models for Central Systems with
Revolution Symmetry

In this section we introduce the projection models co-
vered by this work. When a projection system is central
the projected rays lie on a common fixed point called
viewpoint O. Assuming the system has revolution sym-
metry, the reference system of the camera has the origin
in the viewpoint O and the Z-axis is aligned with the
axis of revolution. Let X be a 3D point in homogeneous
coordinates X = (X Y Z 1)

T
. The point is projected

onto a unitary sphere around the viewpoint O of the
system. It is defined with two spherical coordinates φ

and ϕ as, x = (sinφ cosϕ, sinφ sinϕ, cosφ)
T

(see Fig.
1).



4 J. Bermudez-Cameo et al.

Depending on the projection model this point is
mapped on the image using different expressions. Notice
that any point lying on the revolution axis is projected
on an image point called principal point. Consider the
polar coordinates (r, θ) of an image point taking as re-
ference the principal point. If the camera is correctly
aligned with the axis of revolution we can observe that
the coordinate θ is related with the spherical coordinate
ϕ via the pixel aspect ratio kpar, as tan θ = ±kpar tanϕ
(the sign in this expression is used to model reflec-
tions in catadioptric systems). Catadioptric and diop-
tric systems are projection systems that conserve the
revolution symmetry. This means that the radius of a
pixel r̂ can be expressed in terms of the elevation angle
φ. Depending on the device a different expression for
r̂ = h (φ) is used.

In the following descriptions we assume that image
points are expressed in a reference centred in the prin-
cipal point. We also assume that pixel aspect ratio is
equal to one which is valid in digital imagery. A point in
this reference system is denominated with the notation

x̂. The transformation from this reference to the final
image coordinate system is the following,

u

v
1

 =

1 s u0
0 kpar v0
0 0 1

 x̂ . (1)

2.1 Projection Models for Catadioptric Systems

Under the sphere camera model (Geyer and Daniilidis,
2000; Baker and Nayar, 1999; Geyer and Daniilidis,
2001) all central catadioptric systems can be modelled
by a projection to the unitary sphere followed by a per-

spective projection via a virtual viewpoint located a
distance ξ from the effective viewpoint (see Fig. 1). Let
x̂ = (x̂, ŷ, 1)

T
be a point on an image referred to the

principal point and given the spherical coordinates φ
and ϕ of the corresponding point on the unitary sphere
then,

x̂ =
fη sinφ cosϕ

cosφ+ ξ
and ŷ = −fη sinφ sinϕ

cosφ+ ξ
. (2)

In polar coordinates the point is described by θ̂ = −ϕ
and

r̂ =
fη sinφ

cosφ+ ξ
=

fη tanφ

1 + ξ
√

tan2 φ+ 1
. (3)

The geometry of the projection system is described
by parameters ξ and η which have a different definition
depending on the system type (see Fig. 2).

Fig. 3 Fisheye camera models: The radius of the point on
the image is distorted by a function r̂ = h (φ).

Equiangular Stereographic Orthogonal Equisolid
Fisheye Fisheye Fisheye Fisheye

fφ 2f tan
(
φ
2

)
f sin (φ) 2f sin

(
φ
2

)
Table 1 Function r̂ = h (φ) describing fisheye projection
models.

2.2 Fisheye Models

Several models are used to describe point projection

in dioptric systems depending on the manufacturing
procedure of the lens (Kingslake, 1989; Stevenson and
Fleck, 1996; Ray, 2002). Assuming square pixel, these
models are expressed in polar coordinates (r̂, θ̂). For all

these models θ̂ = ϕ and the radius changes depending
on the camera type (see Table 1). The parameter f of
these models does not represent the focal distance of

the camera like in the case of the parameter f of the
sphere camera model presented in the previous section.

Notice that the stereographic projection is equiva-
lent to the projection in a paracatadioptric system. The
stereographic projection is also equivalent to the “di-
vision model” model of Fitzgibbon (Fitzgibbon, 2001)

when using a single parameter (r′ = k1
r

1−k22
).

3 Unified Description for Line Projection in
Central Systems with Revolution Symmetry

In this section we present a unified description for line-
images in dioptric and catadioptric imagery (Bermudez-
Cameo et al, 2012a), which is valid for central systems
with revolution symmetry.

Let Π = (nx, ny, nz, 0)
T

be a plane defined by a 3D
line and the viewpoint of the system O. The projected
line associated to the 3D line can be represented by n =
(nx, ny, nz)

T
. Then, the points X lying in the 3D line

are projected to points x. These points satisfy nTx = 0.
Using the spherical representation and assuming that
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Fig. 4 Representation of α̂ depending on r̂ for different cen-
tral projection systems with revolution symmetry. r̂ is nor-
malized with respect to the radius of the projection of the
vanishing line r̂vl.

θ̂ = ±ϕ (square pixel) this equality could be expressed
as

sinφ (nxx̂± ny ŷ) + nz r̂ cosφ = 0 . (4)

With the change of variable α̂ =
nxx̂± ny ŷ

nz
we can

isolate the model parameters from the normal descri-
bing the line, obtaining the expression,

α̂ = −r̂ cotφ . (5)

Notice that α̂ = α̂ (r̂), as a result of φ = h−1 (r̂)
when we have symmetry of revolution and square pixel.
Therefore, the constraint for points on the line projec-

tion in image coordinates for systems with symmetry
of revolution is

nxx̂± ny ŷ − nzα̂ (r̂) = 0 , (6)

where α̂ is a different expression for each camera model
depending on the radius and the model parameters (see
Table 2).

3.1 Line-Image Curve Representation and Unified
Main Calibration Parameter

Equation (6) is the homogeneous representation of the
line projection on the image. There exist two particu-

lar cases common to all the projection models showed
above. First we have the case in which 3D lines are
coplanar to the revolution axis. In this case nz = 0 and
the resulting line-image is a radial straight line passing
through the principal point, described as

α̂ r̂vl polynomial

Perspective f ∞ straight

Para r̂2

4fp
− fp 2fp conic

catadioptric

Hyper −f+cosχ
√
r̂2+f2

sinχ
f tanχ conic

catadioptric

Equiangular- −r̂ cot r̂
f

f π
2

non
Fisheye polynomial

Stereographic- r̂2

4f
− f 2f conic

Fisheye

Orthogonal- −
√
f2 − r̂2 f conic

Fisheye

Equisolid- 2r̂2−f2

2
√
f2−r̂2 f

√
2

2
quartic

Fisheye

Table 2 Parameters for different central projection systems
with revolution symmetry.

nxx̂± ny ŷ = 0 . (7)

The second particular case happens when n = (0, 0, 1)
T

.
In this case the line-image is the projection of the van-
ishing line. This projection is a circle centred at princi-

pal point and with radius r̂vl. This radius depends only
on the system geometry (see Table 2) and can be used
as a main calibration parameter independently of the

camera system. In this case, the line-image equation
has the form,

α̂ (r̂vl) = 0 . (8)

In Fig. 4 we show a comparison among different
α̂ (r̂) functions for different central projection systems.

The radius r̂ has been normalized with respect to r̂vl.
For the case of the orthogonal system, α̂ only makes
sense when r̂ < r̂vl.

The general form for a line-image is a curve. In most
cases, these curves can be also expressed as polynomi-
als. The catadioptric case has been deeply studied in
(Barreto and Araujo, 2005), and it has been proven
that the line-image is a conic. The stereographic case is
equivalent to the paracatadioptric projection therefore
the corresponding line-image is a conic encoded with
the parameters of the sphere model. The orthogonal-
fisheye line-image is also a conic but it is not encoded
with the parametrization of the sphere model. The eq-
uisolid line-image is a quartic (see Appendix A). For
other cases in general the curve is not a polynomial.

Each line-image is the projection of any 3D line
contained in a projection plane which is described by
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(a)

(b) Paracatadioptric (c) Hypercatadioptric

(d) Equiangular-Fisheye (e) Stereographic-Fisheye

(f) Orthogonal-Fisheye (g) Equisolid-Fisheye

Fig. 5 Representation of line-images on the image plane de-
pending on the projection model and with different values
of the elevation angle Φ of the normal n representing the
projection plane. (a) Elevation of the projection plane. (b-g)
Line-images when increasing the elevation angle Φ for differ-
ent projection models.

the normal vector n. Consider the orientation of the
central system is aligned with the vertical axis Z (see
Fig. 5 (a)) and the parametrization of this normal is

n = (cosΦ cosΘ, cosΦ sinΘ, sinΦ)
T

with the elevation
angle Φ, and the azimuth angle Θ (do not confuse with
the angles of the projecting ray of a point φ and ϕ).
Given a fixed value of Φ the relation between two dif-
ferent line-images with different azimuth angle Θ is a
rotation around the principal point. However, given a
fixed value of Θ a variation in the elevation angle Φ im-
plies a change in the curvature of the line-image. In Fig.
5, we show a parametric representation of line-images

(a) (b)

Fig. 6 Comparison of line-images on the image plane with an
equiangular-fisheye system using (a) the equiangular-fisheye
projection model and (b) the catadioptric sphere model with
ξ > 1. Each line-image corresponds to a different value of the
elevation of the normal n.

for different central projection systems with revolution
symmetry. We can imagine the projected line-image,
as the projection of the intersection of the projecting
plane with any sphere centred on the reference system.
We represent different line-images with a fixed value of
Θ but increasing the elevation angle Φ from 0 to π

2 . (see

Fig. 5 (a)). To compare the different systems each image
has been simulated for a different model but with the
same r̂vl. The outside region of this circle corresponds
to a FOV greater than 180 deg and the inside with a

FOV lesser than 180 deg. As in the example the sys-
tem is oriented from bottom to top the inside of the
circle corresponds to points with Z > 0 and the outside

the circle corresponds with points with Z < 0. Notice
that any line-image pass through both regions, as the
projection plane intersects the both regions in the 3D
space. This parametric representation corresponds to

the projection plane covering 360 deg around the axis
of revolution. An infinity 3D segment only fulfils a part
of the curve covering 180 deg.

3.2 The Sphere Catadioptric Model as Fisheye Model

Some authors have used the catadioptric sphere model

to calibrate fisheye models (Ying and Hu, 2004a; Cour-
bon et al, 2007). The stereographic projection is equiv-
alent to the paracatadioptric projection and it can be
directly encoded using the sphere model. From the def-
inition of Table 1 and using the half-angle formula,

r̂ = 2f tan

(
φ

2

)
= 2f

sinφ

cosφ+ 1
(9)

which is the equation (3) with ξ = 1 and η = 2. For
other cases (Ying and Hu, 2004a; Courbon et al, 2007)

propose to use the sphere model with ξ > 1 (in cata-
dioptric systems where 0 < ξ < 1).

In Fig. 6 we show a comparison of the line-images
of an equiangular-fisheye system using the equiangular-
fisheye projection model and the catadioptric sphere
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(a)

(b) (c)

Fig. 7 (a) Isometric view of two parallel lines. Comparison
of line-images of two parallel lines with an equiangular-fisheye
system using the equiangular-fisheye projection model (b)
and using the catadioptric sphere model (c). In green the
vanishing points of direction X.

model showing the limitations of using the catadioptric
sphere model for fisheyes. In order to illustrate these
limitations in more detail, in Fig. 7 we represent the line

projection of two parallel lines. In Fig. 7 (b) we show
the line projection of these lines using the equiangular-
fisheye projection model. The dotted circle represents

the projection of the vanishing line. The region inside
this circle corresponds to a FOV lesser than 180 deg
and the projections of 3D points with Z > 0. The re-

gion outside this circle corresponds to a FOV greater
than 180 deg and the projections of 3D points with
Z < 0. Consider the line-image L1. The part of L1 lo-
cated inside the circle corresponds with the part of the
plane with Z > 0 and the part of L1 located outside
the circle corresponds with the part of the plane with
Z < 0. As the 3D lines are parallel the line-images
intersects in two points corresponding with the vanish-
ing points (in green) of the direction of the lines. One
of the points corresponds to the positive direction and
the other with the negative. In Fig. 7 (c) we show the
projection of these lines using the catadioptric sphere
model with ξ > 1 proposed in (Ying and Hu, 2004a;
Courbon et al, 2007). Consider the line-image L1. The

part of the plane with Z > 0 is projected inside the
circle, however the part of the plane with Z < 0 is
projected in both regions: inside and outside the cir-
cle. That means that the line-image does not correctly
fit the line projection when the FOV is greater than

180 deg. In addition, the line-images intersect in four
points instead of two giving a sense of non-geometric
coherence: two of the intersections are the vanishing
points and two are points without geometric sense.

3.3 The Homogeneous Line-image Equation as a
Measure of Distance

The homogeneous expression of the line-image (6) de-
fines a family of curves located to an algebraic distance
from the original curve.

d(x̂, ŷ) = nxx̂± ny ŷ − nzα̂ . (10)

This algebraic distance is an approximation of the
metric distance from a point to the line-image and is de-

fined in pixels. In Fig. 8 we show the region defined by
a fixed threshold of 20 pixels around a given line-image
for different systems. The thickness of this region is ho-
mogeneous for catadioptric and stereographic systems

but it is not completely homogeneous for equiangular,
orthogonal and equisolid systems. However, in general
this distance can be used to discriminate if a point be-

longs to a line-image.

Consider for example the algebraic distance based
on polynomials (e.g. for hypercatadioptric systems d =√

xTΩcatax, see Appendix A ). Given a fixed threshold,
the region around the conic has a different thickness
depending on the elevation angle of the vector n. With
our proposal the distance is a good approximation in
regions close to the line-image.

In Fig. 9 (a) we show a comparison between the dis-
tance of a point to the line-image (blue dotted) and the
proposed algebraic distance (red) for hypercatadioptric
images. The algebraic distance approximates the real

distance in regions which are close to the line-image,
therefore can be used to discriminate if a point lies on
a line-image or not. In Fig. 9 (b) we show the same com-
parison but using the algebraic distance defined by the
expression of a conic on the image ( d =

√
xTΩcatax).

We can see how this distance does not approximate
well the metric distance in regions close to the curve.

We also show that this distance is lower than the metric
distance in vertical lines but higher when the lines are
horizontal. In practice that means that the thickness of
a region defined by a threshold varies considerably if
elevation of n changes.
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(a) Paracatadioptric (b) Hypercatadioptric

(c) Equiangular-Fisheye (d) Stereographic-Fisheye

(e) Orthogonal-Fisheye (f) Equisolid-Fisheye

Fig. 8 Region around a line-image defined by a fixed distance
of 20 pixels.
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Fig. 9 Comparison between metric distance (blue dotted)
and algebraic distances (red solid): (a) Our proposal (10).
(b) Conic based algebraic distance.

3.4 Line-Image Definition from Two Points

Given at least two points lying on a line-image de-
scribed by (6) we can obtain the normal n by solving
the homogeneous linear system

(
x̂i ±ŷi −α̂i

)
n = 0 for i = 1, ..., n with n ≥ 2.

(11)

where α̂ is a different expression for each camera sys-
tem (see Table 2) and the sign ’±’ is positive for dioptric
systems and negative for catadioptrics. The system is
solved by using a Singular Value Decomposition. In par-
ticular for the minimal case of two points and solving
for n we have

n =

 ŷ1α̂2 − ŷ2α̂1

± (x̂2α̂1 − x̂1α̂2)
x̂2ŷ1 − x̂1ŷ2

 . (12)

4 The Straight-Line Constraint on the Image

In Section 3 we have presented an unified line-image de-
scription of the line projection in systems with revolu-
tion symmetry. We have also presented the unified main

calibration parameter r̂vl encoding the calibration of
these systems. In this section we use this description to
develop and to particularize the plumb-line constraint

for the different projection models presented in Section
2. The goal is computing both, the main calibration
parameter r̂vl and the projecting plane of the line n.
The results are two kind of constraints: location based

constraints which allow to compute the line-image and
r̂vl from the coordinates of at least three points and
gradient based constraints which allow to compute the

line-image and r̂vl from the coordinates and the gradi-
ents of a minimum of two points.

4.1 Location Based Line-image Constraint

As presented in Section 3, the projecting plane Π des-
cribing the line projection is completely defined by two
points and the view-point. That implies that the cali-
bration of the system is embedded in the geometry of
this curve. If the calibration of the system is known,
the projecting plane normal n can be recovered from

two image points (11). However, when constraint (6) is
satisfied the line-image can be recovered even if camera
calibration is unknown. Notice that when the number
of equations defining (11) is greater than two we ob-
tain a redundant system. Therefore when having three
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(a) Planar (l1 + l2 + l3) = 0

(b) Paracatadioptric r̂vl =
√
l1r̂2

1
+l2r̂2

2
+l3r̂2

3

l1+l2+l3)

(c) Hypercatadioptric r̂vl =

√(
l1
√
r̂2
1
+f2+l2

√
r̂2
2
+f2+l3

√
r̂2
3
+f2

l1+l2+l3

)2

− f2

(d) Equiangular-Fisheye l1r̂1 cot
(
π
2
r̂1
r̂vl

)
+ l2r̂2 cot

(
π
2
r̂2
r̂vl

)
+ l3r̂3 cot

(
π
2
r̂3
r̂vl

)
= 0

(e) Stereographic-Fisheye r̂vl =
√
l1r̂2

1
+l2r̂2

2
+l3r̂2

3

l1+l2+l3

(f) Orthogonal-Fisheye l1

√
r̂2vl − r̂21 + l2

√
r̂2vl − r̂22 + l3

√
r̂2vl − r̂23 = 0

(g) Equisolid-Fisheye l1
r̂2
1
−r̂2

vl√
2r̂2

vl
−r̂2

1

+ l2
r̂2
2
−r̂2

vl√
2r̂2

vl
−r̂2

2

+ l3
r̂2
3
−r̂2

vl√
2r̂2

vl
−r̂2

3

= 0

Table 3 Three points line-image constraint for different central projection systems with revolution symmetry.

points lying on a line-image the rank of the homoge-
neous matrix must be two. Imposing this condition we
find a constraint using three points of a line image. The
line-image constraint can be written as

l1α̂1 + l2α̂2 + l3α̂3 = 0, where (13)

l1 = x̂2ŷ3− x̂3ŷ2, l2 = x̂3ŷ1− x̂1ŷ3 and l3 = x̂1ŷ2− x̂2ŷ1.

Thus, with three points lying on the line-image and

equation (13) it is possible to obtain the main calibra-
tion parameter r̂vl. Substituting the expression of α̂ in
In Table 3 we show the corresponding expressions for

each system which are computed by substituting the
expression of α̂ in (13) and expressing them in terms of
r̂vl.

– Computation of r̂vl in perspective systems. It
is not possible to extract any additional information
(Table 3 (a)).

– Computation of r̂vl in paracatadioptric and
stereographic systems systems. In these cases
the radius r̂vl is directly computed (Table 3 (b)(e)).
Notice that, as r̂vl must be positive only the positive

solution of the root square is a valid solution.
– Computation of r̂vl in equiangular-fisheye sys-

tems. For equiangular-fisheye systems the constraint
(Table 3 (d)) is solved by minimization. To initialize
this minimization the value of r̂vl is computed from
a linear approximation of the constraint

r̂vl ≈
π

2

√
1

3

(l1r̂21 + l2r̂22 + l3r̂23)

(l1 + l2 + l3)
. (14)

In Fig. 10 (a) we show some examples of line-images
defined with 3 points in equiangular-fisheye systems.

– Computation of r̂vl in orthogonal-fisheye sys-
tems. The equation in table 3 (f) becomes to the
bi-quadratic polynomial equation

c1r̂
4
vl + 2c2r̂

2
vl + c3 = 0 (15)

where

c1 =
3∏
i=0

3∑
j=1

(
(−1)

δi,j+1
lj

)
(16)

c2 =
3∑
i=1

l2i r̂
2
i

3∑
j=1

(
(−1)

δi,j l2j

)
(17)

c3 =
3∏
i=0

3∑
j=1

(
(−1)

δi,j+1
lj r̂j

)
(18)

δi,j being the Kronecker delta.
This equation has direct solution for r̂vl. Notice that
despite the bi-quadratic equation has a priori four

solutions, two of them are always negative (r̂vl =
±
√
r̂2vl) and in practice the wrong one can be dis-

carded using the equation of Table 3 (f) and reject-
ing the non-real solutions.

– Computation of r̂vl in equisolid-fisheye sys-
tems. In equisolid-fisheye systems the equation in
table 3 (g) becomes to the bi-eight degree equation

8∑
m=0

ωmr̂
2m
vl = 0 . (19)

This equation (see Appendix C) has also a direct
solution for r̂vl.
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Perspective
Para- Hyper- Equiangular- Stereographic- Orthogonal- Equisolid-

Catadioptric Catadioptric Fisheye Fisheye Fisheye Fisheye

0 1
2fp

cotχ√
r̂2+f2

1
f

(
1− f

r̂
cot r̂

f
+ cot2 r̂

f

)
1
2f

1√
f2−r̂2

r̂(3f2−2r̂2)
2(f2−r̂2)3/2

Table 4 ∂α̂
∂r̂

1
r̂

for different central projection systems with revolution symmetry.

– Computation of r̂vl in hypercatadioptric sys-
tems (Table 3 (c)).
In hypercatadiopric systems the focal distance of the
camera is needed to compute the main calibration
parameter r̂vl. This is because two calibration pa-
rameters (f and χ) are involved and they cannot be
coupled to reduce a degree of freedom.
When f is known the equation in Table 3 (d) is
solved for χ and it yields

cosχ =
f (l1 + l2 + l3)

l1
√
r̂21 + f2 + l2

√
r̂22 + f2 + l3

√
r̂23 + f2

.

(20)

The focal distance f can be directly computed using

gradient constraints (see Appendix B) although the
method is quite unstable. In practice it is possible
to complete the extraction of the line-image with a
rough approximation of f .

4.2 Gradient-Based Line-Image Constraint

Here we present the line-image gradients for central sys-

tems with revolution symmetry, which gives additional
constraints for line-image fitting. They allow to reduce
the minimum number of points from three to two.

On the one hand, the normal direction to a line
image is described by the gradient of the homogeneous
expression (10) which is expressed by

∂d

∂x̂
= nx − nz

∂α̂

∂r̂

x̂

r̂
(21)

∂d

∂ŷ
= ±ny − nz

∂α̂

∂r̂

ŷ

r̂
. (22)

where ∂α̂
∂r̂ is computed from the definition of α̂ (see Ta-

ble 4).

On the other hand, given an intensity image I (x, y),
the gradient ∇I (x, y) = (∇Ix,∇Iy) of each edge lying
on a line-image is aligned with the gradient of the line-
image distance (10). The dot product between the ana-
lytical gradient (22) and the vector∇I⊥ = (−∇Iy,∇Ix)

T

(a)

(b)

Fig. 10 (a) Extraction of a line-image from three points.(b)
Extraction of a line-image from two points using gradient
constraint (in red the direction of ∇I). In this example, the
linear approximation is used for the two points method.

describes the parallelism between both gradients. This
expression can be written as

−∇Iynx ±∇Ixny + nz
∂α̂

∂r̂

1

r̂
(x̂∇Iy − ŷ∇Ix) = 0, (23)

and gives an additional constraint when solving a line-
image. In particular, knowing the system calibration
and given the location and the gradient of a single point
lying on a line-image , the linear system

(
x̂ ±ŷ −α̂
−∇Iy ±∇Ix ∂α̂

∂r̂
1
r̂ (x̂∇Iy − ŷ∇Ix)

)
n =

(
0
0

)
(24)
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can be solved for n resulting

n =

∇Ixα̂+ ∂α̂
∂r̂

ŷ
r̂ (x̂∇Iy − ŷ∇Ix)

∇Iyα̂− ∂α̂
∂r̂

x̂
r̂ (x̂∇Iy − ŷ∇Ix)

ŷ∇Iy + x̂∇Ix

 . (25)

4.3 Unified Computation of Main Calibration
Parameter r̂vl

In previous sections, we have solved the plumb-line prob-
lem using the exact expression of α̂. In this section we
explore the alternative of approximating α̂ (r̂) using a
generic description depending on r̂ and the main cali-
bration parameter r̂vl. The goal of this approach is per-
forming a direct method to exploit the gradient infor-
mation in line-image extraction. In practice that means
recovering the line-image and the main calibration pa-
rameter r̂vl from two edge points reducing the number
of iterations needed in a RANSAC approach.

Important aspects to consider are the degree of the
approximation and the approximating point (the point

around which the neighbourhood of the function is ap-
proximated).

Linear approximation When approximating α̂ (r̂) by a

linear function we consider the adequate approximating
point is r̂vl. In this case (r̂ = r̂vl) implies α̂ = 0 (see
Section 3 and Fig. 4), and simplifying the expression it

becomes

α̂ (r̂) =
∂α̂ (r̂vl)

∂r̂
(r̂ − r̂vl) . (26)

This kind of linear approximation is similar to se-
ries description of distortion function used in (Tardif
et al, 2006). However, notice that in our approach we
are approximating α̂ around r̂ = r̂vl instead of approx-
imating α̂ around r̂ = 0. When linearizing the function
α̂ around r̂ = 0 the derivative of the function is equal

to 0 (see Fig. 4) for all the systems meaning that the
approximation is a constant α̂ (r̂) = α̂ (0) not depend-
ing on r̂ which is a worse approximation 1.

In addition, linearising around r̂vl allows computing
r̂vl even if the class of the central system is unknown.
Using (26) as approximation of α̂ the system (24) be-
comes

(
x̂ ±ŷ −r̂ 1

−∇Iy ±∇Ix x̂∇Iy−ŷ∇Ix
r̂ 0

)
m =

(
0
0

)
(27)

1 In the case of an orthogonal system the derivative of the
function at r̂ = r̂vl is ∞ meaning that this is not the proper
point for linearisation

which can be solved from the coordinates and the gra-
dient of two image points obtaining the vector m =

λ
(
nx, ny, nz

∂α̂(r̂vl)
∂r̂ , nz

∂α̂(r̂vl)
∂r̂ r̂vl

)T
. The main calibra-

tion parameter r̂vl can be computed directly from m as
r̂vl = m3

m4
.

In this vector, nz and ∂α̂(r̂vl)
∂r̂ are coupled, therefore

n can not be completely recovered. However if we know
the system kind we can include the value of ∂α̂(r̂vl)

∂r̂ in
the equation system (see Table 5) and the equations
system becomes

(
x̂ ±ŷ −K1r̂ K1

−∇Iy ±∇Ix K1
x̂∇Iy−ŷ∇Ix

r̂ 0

)
m =

(
0
0

)
(28)

where m = λ(nx, ny, nz, nz r̂vl)
T

. In this case both, r̂vl
and n are directly computed from m.

Notice that in this case we have 3 DOFs and 4 equa-

tions, therefore we still have margin for using a higher
approximation.

Second order approximation If we consider the second
order approximation in the neighbourhood of r̂ = r̂vl

α̂ (r̂) =
∂α̂ (r̂vl)

∂r̂
(r̂ − r̂vl) +

1

2

∂2α̂(r̂vl)

∂r̂2
(r̂ − r̂vl)2 (29)

which, using Table 5, can be expressed in terms of con-
stants depending on the system kind

α̂ (r̂) = K1 (r̂ − r̂vl) +
1

2

K2

r̂vl
(r̂ − r̂vl)2 (30)

therefore the system (24) becomes

mT


x̂ −∇Iy
±ŷ ±∇Ix

−r̂ (K1 −K2)
(x̂∇Iy−ŷ∇Ix)(K1−K2)

r̂(
K1 − K2

2

)
0

−K2

2 r
2 K2 (x̂∇Iy − ŷ∇Ix)

 =
(

0 0
)

(31)

where m = λ
(
nxr̂vl, ny r̂vl, nz r̂vl, nz r̂

2
vl, nz

)T
. Having 4

DOFs this description allows to construct a system of

four equations from two points lying on the line-image.

This result is particularly useful for the case of equian-
gular fisheye system. As presented in Section 4.1, most
of the equations of Table 3 have an analytical solution.
However in the case of the equiangular fisheye system

the constraint has not a closed solution and it is solved
by minimization.
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Para- Hyper- Equiangular- Stereographic- Orthogonal- Equisolid-
Catadioptric Catadioptric Fisheye Fisheye Fisheye Fisheye

K0 = α̂(r̂vl) 0 0 0 0 0 0

K1 = ∂α̂(r̂vl)

∂r̂
1 cosχ π

2
1 ∞ 2

K2 = ∂2α̂(r̂vl)

∂r̂2 r̂vl 1 cos3 χ π 1 ∞ 6

Table 5 Derivatives of function α̂ (r̂) at r̂vl.

Fig. 11 (a) Top-view of the simulated scenario. (b) Isometric
view of the simulated scenario.

In addition, in this last proposal for the case of

equiangular-fisheye the value of K1 − K2

2 = 0 mean-
ing that the equations system (31) simplifies becoming

mT


x̂ −∇Iy
±ŷ ±∇Ix
π
2 r̂ −

π
2r̂ (x̂∇Iy − ŷ∇Ix)

−π2 r
2 π (x̂∇Iy − ŷ∇Ix)

 =
(

0 0
)

(32)

where m = λ(nxr̂vl, ny r̂vl, nz r̂vl, nz)
T

and the comput-
ing of n and r̂vl is direct.

Finally, we consider the case of the orthogonal fish-

eye. As the derivative in r̂vl is ∞ it makes sense to use
a second order approximation in the neighbourhood of
r̂ = 0 obtaining the system

(
x̂ ±ŷ 1 − 1

2r
2

−∇Iy ±∇Ix 0 (x̂∇Iy − ŷ∇Ix)

)
m =

(
0
0

)
(33)

where m = λ
(
nxr̂vl, ny r̂vl, nz r̂

2
vl, nz

)T
.

In Fig. 10 (b) we show an example of a line-image
defined with two points and the corresponding gradient
of the intensity field I at these points. In this example,
the linear approximation is used.

In all these methods we are using as input the co-
ordinates of two points and the gradient orientation at
these points. As gradient information is usually noisy,
we propose low-pass filtering the gradient orientation
to increase the precision.

(a) Paracatadioptric (b) Hypercatadioptric

(c) Equiangular-Fisheye (d) Stereographic-Fisheye

(e) Orthogonal-Fisheye (f) Equisolid-Fisheye

Fig. 12 Extraction example on synthetic images simulating
different classes of central systems.

5 Uncalibrated Line-Image Extraction

In this section we present the algorithm for line-image
extraction from uncalibrated omnidirectional cameras.
The algorithm relies on the constraints presented in
Section 4.1 based on a minimal set of 3 points. The al-
gorithm is also developed for using gradient constraints
(Section 4.3), based on a minimal set of 2 points. The
proposed algorithm is described next (see Fig. 13).

The inputs of the method are the edges and their
gradients obtained from a Canny detector (see Fig. 14
(a)). These edges are stored in connected components

called boundaries and the gradient orientation is low-
pass filtered to reduce noise. Then, a first splitting of
the boundaries is done based on the variation of the gra-
dient orientation. Each split is called a sub-boundary.
The threshold of this splitting process has been cho-
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Agorithm Selector

Fig. 13 Uncalibrated line-Image extraction procedure.

sen to minimize the number of splits. Therefore a sub-
boundary can contain more than one segment. Not all

the line-images contain relevant information about cal-
ibration (e.g. vertical lines). For this reason, a heuris-
tic criterion is used to select a subset of these sub-
boundaries containing relevant line-images. This heuris-

tic technique is explained as follows.

We define the descriptor κ = ssize · ∆θ which in-
creases as the sub-boundary is better for computing r̂vl
where ssize is the size of the sub-boundary and∆θ is the
angle covered by the sub-boundary rounding the prin-
cipal point. Sub-boundaries are sorted by κ and then
the ones which cover 50% of an accumulated histogram
of κ are chosen (see Fig. 14 (b)).

Once we have selected boundaries containing line-
images well conditioned for computing r̂vl we use a
RANSAC-based approach (Fischler and Bolles, 1981)
(see Algorithm 1). Points of a boundary are selected
randomly to generate candidate line-images which are

voted by the other points of the boundary. Two ap-
proaches are provided depending on the constraint con-
sidered:

3-points r̂vl estimation: r̂vl is estimated from the
location coordinates of a minimum of three points of

(a)

(b)

(c)

Fig. 14 Steps in the line-image extraction: (a) Canny. (b)
Preprocessing. (c) Line-Extraction

Algorithm 1 RANSAC approach for computing a set
of line-images from a boundary of edge points.

for each boundary do
while boundary contains line-images do

for iAttempt = 1 to nAttempts do
x̂k = randomPoints (x̂boundary);
[r̂vl,n] = computeLineImage (x̂k)
dist = computeDistance (n, x̂boundary)
x̂th = computeThresholdPoint (n, x̂k, δpx)
threshold = computeDistance (n, x̂th)
votes (iAttempt) = dist < threshold

end for
lineImage.add (getMaxV otedLI (votes))
x̂boundary = removeV otingPoints (x̂boundary, votes)

end while
end for
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the boundary and the line-image constraint presented
in Section 4.1.

2-points r̂vl estimation: From the location coor-
dinates of a minimum of two points and theirs gradients
we can compute r̂vl using the approximations presented
in Section 4.3.

From any of these approaches, the normal vector n
is computed from the defining points and r̂vl using the
expression (11). The distance to determine if a point
is lying on the line-image is the algebraic distance (10)
which is fast enough for the intensive evaluation needed
in a RANSAC or in a Hough transform approach. In
Fig. 8 we can see the different thickness for a given
threshold depending on the different kind of systems.
The region is not perfectly uniform along the curve but
enough to decide which points belong to the line-image.
Given a fixed threshold the thickness of this region
also changes depending on the elevation of the projec-
tion plane n. That means that a threshold being good

enough for fitting some lines could not be good enough
for others. To deal with this problem we compute a dif-
ferent threshold for each attempt of the RANSAC pro-

cess (see Algorithm 1 ). Given a fixed threshold (δpx in
Algorithm 1) describing the thickness of the region in
pixels, we compute the algebraic threshold correspond-

ing to the line-image computed in the current attempt.
As the algebraic threshold changes with each line-image
we call it dynamic threshold (notice that δpx remains
constant). The process to estimate this dynamic thresh-

old from δpx and the vector n describing the line image
is the following: Because of the nature of the RANSAC
process we also have the location of the points defin-

ing the line-image of a given attempt (x̂k in Algorithm
1). As we have computed the line-image passing though
these points we can compute the analytical gradient of
the line-image on these points using equations (21-22)
defining two straight lines passing though the points x̂k
and orthogonal to the line-images (see Fig. 15). Along
these straight lines we can define a point from a given
distance δpx of the line-image. On these points we com-
pute the algebraic distance (10) and we consider its
mean the threshold for the testing points.

Each point of the boundary whose distance is minor
than the dynamic threshold gives a vote for the candi-
date. The most voted candidate is selected as best fit.
From the previous procedure we obtain for each line-
image: the points lying on it, the corresponding nor-
mal vector, and an estimation of the calibration via the
r̂vl value. From the collection of estimations for r̂vl we
compute a single value using the median. Thanks to
the pre-selection based on κ most of the line-images
return similar values of r̂vl getting a small number of
spurious. In Fig. 16 we show a box-plot representing

Fig. 15 Computing the dynamic threshold from the defining
points of the line-image.

100

200
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900

3P 2P First 2P Second

Fig. 16 Dispersion in values of r̂vl for the different extracted
line-images. 3P for 3-points approach, 2P First for 2-points
linear approximation approach and 2P Second for 2-points
second order approximation approach.

the dispersion in the values of r̂vl from the line-images
extracted in Fig. 14. The estimation for the value of r̂vl
is similar in the three approaches. Finally, main calibra-

tion parameter and normals are refined in a non-linear
optimization process and then, the line-images are re-
extracted using this value.

6 Experiments

We present different experiments to validate the pro-
posal and to compare the two approaches presented in
section 5. The accuracy in line extraction and calibra-

tion is measured using synthetic images with known
ground-truth. We also evaluate the influence of the er-
ror in the principal point and compare our results with

a calibration method. Finally, we present experiments
to show the behaviour of the method with real images.

6.1 Experiments with Synthetic Data

To evaluate the accuracy of the algorithm we have used
synthetic images generated for the different catadioptric
and dioptric models considered in Section 2. A useful
measure for comparing calibration estimations among
the different systems is the radius of the vanishing line
r̂vl. This radius depends only on the calibration and it
is a magnitude common to any central system.

First experiment evaluates the deviation of the esti-
mated radius of the vanishing line r̂vl. The setup of the
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(a)

(b)

(c)

Fig. 17 Estimation of r̂vl from uncalibrated line extraction.
(a) 3-points approach, (b) 2-points linear approximation ap-
proach, (c) 2-points second order approximation approach. In
all, the horizontal axis corresponds to the actual r̂vl and the
vertical axis to the estimated one.

(a)

(b)

(c)

Fig. 18 Angle deviation between obtained normals and
ground truth. (a) 3-points approach, (b) 2-points linear
approximation approach, (c) 2-points second order approxi-
mation approach.
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experiment is the following: Given an scene composed
by segments in a corridor (see Fig. 11) we want to char-
acterize the error of estimation in r̂vl. For each value of
r̂vl and for each system we generate 10 different images
with a resolution of 1024 × 1024 pixels. A randomized
perturbation in the orientation and location of the ca-
mera is introduced in each capture. From each image
we obtain a value of r̂vl and a set of line projections
described by the normal vector n. The experiment is
repeated for each proposed method.

In Fig. 17 we show the deviation of the estimated
radius of the vanishing line r̂vl, which has been normal-
ized to make it independent from the image size. For
each value of r̂vl we have computed 10 estimations of
r̂vl using 10 different images; we represent the mean of
these estimations. The normalized value r̄vl = 1 corres-
ponds to the case of vanishing line projection passing
through the corner of the image (e.g. with a resolution
of 1024 × 1024, values in pixels of r̄vl = r̂vl

724 ). When
r̄vl < 1 the FOV of the system is greater than 180 de-

grees. Otherwise the FOV of the system is smaller than
180 degrees.

Fig. 17 (a) depicts the results using the 3-points-
r̂vl estimation. Fig. 17 (b-c) depicts the results using
the 2-points-r̂vl estimation when using first and second
approximation. For the case of the hypercatadioptric

system we show two curves. The continuous curve co-
rresponds to the estimation of r̂vl assuming that pa-
rameter f is known. The dashed line corresponds to

the the estimation of r̂vl when none of the parameters
are known.

Another measure of the accuracy in estimation is

the deviation in the orientation of the normals n des-
cribing the line projections. In Fig. 18 we show the er-
ror in degrees between the ground truth normals and

the estimated ones depending on r̄vl. From each image
the mean of the deviations of all the line-projections is
used. As we have 10 samples for each value of r̄vl we
also compute the median of these values.

We observe that, in general, accuracy in r̂vl esti-
mation decreases when the radius is greater than the
image size (values of r̄vl greater than one). That means
that the smaller the FOV of the system the lesser the
accuracy of the algorithm. The extreme case is the per-
spective camera where r̂vl =∞ and curvature of lines is
independent from the focal distance. We also note that
the hypercatadioptric case is more difficult to solve than
others because of the multiple parameters involved. The
accuracy decreases considerably in systems with FOV
less than 180 degrees. However if one of the calibra-
tion parameters is known the behaviour is similar to

the other systems. In Fig. 12 we show some examples
of the simulated images for different catadioptric and

dioptric devices and the corresponding extracted line-
images.

Influence of principal point accuracy In the previous
experiment we have assumed that the principal point is
known. To evaluate the robustness of the algorithm we
evaluate the influence of Gaussian error in the principal
point. The ground-truth of calibration r̂vl is fixed to 750
pixels and the image size is 1024×768 pixel (FOV > 180
deg). In Fig. 19 we represent the error when estimating
the main calibration parameter r̂vl and the error in de-
grees between the ground-truth normals describing each
line projection and the estimated ones. For the case of
the hypercatadioptric system we estimate r̂vl and the
normals n assuming that parameter f is known. We can
observe that the median of the error in the deviation of
the normal does not exceed 0.5 degrees.

Calibration method comparison The objective of our
proposal is the extraction of line projections in central
system when the calibration is unknown. In addition

we compute the radius of the vanishing line r̂vl which
is considered the main calibration parameter of the sys-
tem. To illustrate the behaviour of our proposal we have

carried out a “proof of concept” comparison between
our approach and the method proposed in (Barreto and
Araujo, 2005). We use the same imagery as input as in
both methods.

Although the results from both methods can be di-
rectly compared due to the similarity of the projection
models, there are some difference we need to take into

account:

– The proposal of (Barreto and Araujo, 2005) is only
valid for catadioptric systems, hence we cannot com-
pare the approaches proposed for fisheye systems.

– In (Barreto and Araujo, 2005) the full calibration is
performed in a closed form. Our proposal does not
compute the principal point.

– Although a self-calibration is possible with (Barreto
and Araujo, 2005) approach, in practice it is a hard
problem with 5 degrees of freedom hence in the tool-
box the user has to manually select the contours
containing the line-images. By contrast our toolbox
is automatic and the supervision of the user consists
of the parameters tuning.

The input image is a synthetic image of a para-
catadioptric system used in the previous experiments
with a ground truth of r̂vl = 500 pixels. The method
presented in (Barreto and Araujo, 2005) gives a re-
sult of r̂vl = 485.94 pixels. Our method, returns a
value of r̂vl = 500.36 pixels. Notice that, while Bar-

reto’s method is computing the full calibration, we as-
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(a) (b) (c)

Fig. 20 Line extraction on uncalibrated omni-images (3-points algorithm). (a) Paracatadioptric. (b) Hypercatadioptric. (c)
Equiangular-Fisheye

sume the principal point is known having not skew-

ness. In Fig. 21 (a) we show the output image of the
method presented in (Barreto and Araujo, 2005) con-
taining the line-images used for calibrating and in Fig.
21 (b) the output of our proposal showing the extracted
line-images. We can see that the parametric represen-
tation of the line-images in both images is similar.

6.2 Experiments with Real Images

In order to show how the method works with real im-
ages several tests have been performed with different
catadioptric and fisheye cameras. The principal point

has been coarsely estimated. The 3-points algorithm
have been used for all these examples. In Fig. 20 (a)
we show the behaviour of the proposal using paracata-
dioptric images from the CatPack toolbox (Barreto and
Araujo, 2006). In Fig. 20 (b) we show our results in hy-
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Fig. 19 Influence of principal point: (a) r̂vl estimation error.
(b) angle estimation error.
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Fig. 21 Output of the toolboxes showing the line-images:
(a) Method of Barreto & Araujo. (b) Our proposal.

percatadioptric images with resolution of 1280 × 1024
pixels and has been acquired with a hypercatadioptric
system composed of an IDS uEye camera and an hyper-
bolic mirror made by Neovision. In Fig. 20 (c) a fisheye
based camera is used. The images has been taken with
an iPhone 4S camera (3264×2498 pixels) and a Nexus 4
camera (3264×2448 pixels) with an equiangular fisheye

for cell phones made by Pixeet. Notice that line-images
of parallel 3D lines intersect in the vanishing points of
the image because line-images have been well extracted.

In second experiment we have applied the algorithm

to an image sequence taken with a camera in hand.
The objective of this experiment is evaluating the ro-
bustness of the proposal when supervision is not avail-

able. The sequence has been acquired with a Nexus 4
camera using an equiangular fisheye with a resolution
of 1920 × 1080 pixels 2. Each frame is independently

computed to emphasize the robustness of the proposal
without supervision. The processing has been off-line
computed using the 3-points approach. In Fig. 22(b)
we show the estimation of the main calibration param-

eter r̂vl along the sequence. The mean estimation for
r̂vl is 568.41 pixels and the standard deviation is 9 pi-
xels, meaning that the proposal is robust enough to be
applied in a sequence of images (an implementation in
real-time must consider aspects not addressed in this
paper). As this scenario is composed of parallel lines,
a qualitative measure of the quality of the extracted
line-images is the location of the vanishing points on
these images. Line-images from video (see Fig. 22(a))
intersect at the vanishing points of the image (notice
that we do not have imposed this constraint).

The presented approach can be tested with a tool-
box for Matlab 3 available on line. This toolbox allows

to obtain the calibration of a fisheye or a catadioptric
system just from a single picture. The setup is very sim-

2 webdiis.unizar.es/%7Ebermudez/suppMat.html
3 webdiis.unizar.es/%7Ebermudez/toolbox.html
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Fig. 22 Line extraction on uncalibrated sequence: (a) Ex-
tracted line-images in sequence (b) r̂vl estimation in blue)
r̂vl mean value in red

ple because neither specific pattern nor special move-
ments of the camera are needed.

7 Conclusion

We have presented a method to extract line-images
from uncalibrated central images with revolution sym-
metry. We consider a general framework which encodes
projection models for dioptric and catadioptric system
using a common main calibration parameter (the radius
of the vanishing line r̂vl). We characterize the line pro-
jections for different types of catadioptric and dioptric

systems evaluating common properties. Due to the re-
lation between projection models and curvature of line-

images an estimation of the main calibration parame-
ter of the system is obtained simultaneously. We ob-
served that line-images are correctly extracted and the
obtained normals are accurate enough to be used in 3D
computations. Nevertheless, in hypercatadioptric sys-
tems the accuracy is lower because two calibration pa-
rameters are involved. However, the accuracy is similar
to the other systems if one of the parameters is known
or when the FOV of the system is greater than 180 de-
grees. Besides characterizing the proposal it has been
tested with real images from catadioptric and dioptric
systems. Tests with real and synthetic images can be
replicated with an implementation of the method pro-
vided as open source for research purposes.
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A Polynomials Describing Line-Images

Some of the line-images in central systems with revolution
symmetry can be expressed as polynomials. In this Appendix
we show the description of these line images using polynomi-
als for Catadioptric systems, Equisolid-fisheye, Stereographic-
fisheye, Orthogonal-fisheye and Equisolid-fisheye systems.

Catadioptric and Stereographic-fisheye(
x̂2 x̂ŷ ŷ2 x̂ ŷ 1

)
Ωcata = 0 (34)

where

Ωcata =


n2
x sinχ2 − n2

z cosχ2

2nxny sinχ2

n2
y sinχ2 − n2

z cosχ2

2f sinχnxnz
2f sinχnynz
f2 sinχ2n2

z

 (35)

Ortogonal-Fisheye(
x̂2 x̂ŷ ŷ2 x̂ ŷ 1

)
Ωortho = 0 (36)

where

Ωortho =


−n2

x − n2
z

−2nxny
−n2

y − n2
z

0
0

f2n2
z

 (37)
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Equisolid-Fisheye(
x̂4 x̂3ŷ x̂2ŷ2 x̂2 x̂ŷ3 x̂ŷ ŷ4 ŷ2 1

)
Q = 0 (38)

where

Q =



−4 (n2
x + n2

z)
−8nxny

−4n2
x − 4n2

y − 8n2
z

4f2 (n2
x + n2

z)
−8nxny
8f2nxny
−4
(
n2
y + n2

z

)
4f2

(
n2
y + n2

z

)
−f4n2

z


(39)

B Computing the Focal Distance in
Hypercatadioptric Systems

In this Appendix we expand a way for computing the focal
length in hypercatadioptic systems. This allows us to compute
both calibration parameters. Instead of using the plumb-line
constraint or a combination between plum-line and gradient
constraints the normal n can be computed from a pair of
points using the gradient constraint (23).

(
−∇Iy1 ±∇Ix1 ∂α̂1

∂r̂
1
r̂1

(x̂1∇Iy1 − ŷ1∇Ix1)

−∇Iy2 ±∇Ix2 ∂α̂2

∂r̂
1
r̂2

(x̂2∇Iy2 − ŷ2∇Ix2)

)
n =

(
0
0

)
(40)

In practice, the solution is noisy and does not imply a real
advantage with respect to the two point’s location approach
(11).

The previous constraint (40) using 2 points and their
gradients is enough to define a line-image. Therefore, when
adding a third point with (23) in (40) one of the equations
can be expressed in combination of the other two. In practice
this means that,

$1
∂α̂1

∂r̂

1

r̂1
+$2

∂α̂2

∂r̂

1

r̂2
+$3

∂α̂3

∂r̂

1

r̂3
= 0 (41)

where

$1 = (∇Ix2∇Iy3 −∇Ix3∇Iy2) (x̂1∇Iy1 − ŷ1∇Ix1) (42)

$2 = (∇Ix3∇Iy1 −∇Ix1∇Iy3) (x̂2∇Iy2 − ŷ2∇Ix2) (43)

$3 = (∇Ix1∇Iy2 −∇Ix2∇Iy1) (x̂3∇Iy3 − ŷ3∇Ix3) (44)

This constraint is similar to (13) but using gradients (no-
tice that location information is also used).

As noted before, gradient information is noisier than lo-
cation information, therefore there is no advantage in using
this constraint instead of (13). However, there is a case in
which this constraint is useful. The constraint (13) is solved
for each system in Table 3. Most of the devices taken into ac-
count have a single calibration parameter defining distortion.
This is the case of equiangular, stereographic, orthogonal and
equisolid. The parabolic case is defined by two parameters f
and p but a coupled parameter rvl = fp can be used instead.
In these cases the constraint involving three points can be
used to estimate the calibration of the system. However, in

the hyperbolic case the two parameters χ and f can not be
coupled and only one of them can be estimated from this
constraint.

By contrast, when simplifying the equation (41) for hy-
percatadioptric systems we found that mirror parameter χ is
not involved:

$1
1√

r̂21 + f2
+$2

1√
r̂22 + f2

+$3
1√

r̂23 + f2
= 0 (45)

As consequence, the focal distance f can be computed
from the gradient orientation and the location of three points
lying on a line-image.

Equation 45 can be expressed as a polynomial of degree
8 (but bi-quartic),

4∑
m=0

βmf
2m = 0 (46)

where βm = βm,123 + βm,213 + βm,312 and

β0,ijk = −$4
i r̂

4
j r̂

4
k + 2r̂4i r̂

2
j r̂

2
k$

2
j$

2
k (47)

β1,ijk = 2
(
2r̂2i r̂

2
j r̂

2
k + r̂4i

(
$2
j +$2

k

))
$2
j$

2
k + ...

−2$4
i r̂

2
j r̂

2
k

(
r̂2j + r̂2k

)
(48)

β2,ijk = r̂2j r̂
2
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(
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(
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j +$2

k −$2
i

)
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j$
2
k

)
...
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(49)

β3,ijk = r̂2i
(
$2
i

(
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j +$2

k

)
+ 2$2

j$
2
k −

(
$4
j +$4

k

))
(50)

β4,ijk = −$4
i + 2$2

j$
2
k (51)

This equation has 4 solutions (because the negative values
for f have not sense).

C Coefficients for the Equisolid-Fisheye
Plumb-Line Equation

In this Appendix we present the coefficient of the 16th degree
polynomial to solve the equisolid plumb-line equation (19).

8∑
m=0

ωmr̂
2m
vl = 0 (52)

where ωm = ωm,123 + ωm,213 + ωm,312 and

ω0,ijk = −l4i r̂8i r̂4j r̂4k + 2r̂4i l
2
j l

2
kr̂

6
j r̂
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4
j r̂

4
k

)
(54)
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Alvarez L, Gómez L, Sendra J (2009) An algebraic approach
to lens distortion by line rectification. Journal of Mathe-
matical Imaging and Vision 35(1):36–50

Baker S, Nayar SK (1999) A theory of single-viewpoint cata-
dioptric image formation. International Journal of Com-
puter Vision 35(2):175–196

Barreto JP, Araujo H (2005) Geometric properties of central
catadioptric line images and their application in calibra-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence 27(8):1327–1333

Barreto JP, Araujo H (2006) Fitting conics to paracatadiop-
tric projections of lines. Computer Vision and Image Un-
derstanding 101(3):151–165

Bazin JC, Demonceaux C, Vasseur P, Kweon I (2010) Motion
estimation by decoupling rotation and translation in cata-
dioptric vision. Computer Vision and Image Understanding
114(2):254–273

Bermudez-Cameo J, Lopez-Nicolas G, Guerrero JJ (2012a) A
unified framework for line extraction in dioptric and cata-
dioptric cameras. In: 11th Asian Conference on Computer
Vision, (ACCV), vol 7727

Bermudez-Cameo J, Puig L, Guerrero JJ (2012b) Hypercata-
dioptric line images for 3D orientation and image rectifica-
tion. Robotics and Autonomous Systems 60(6):755–768

Bermudez-Cameo J, Lopez-Nicolas G, Guerrero JJ (2013)
Line extraction in uncalibrated central images with revolu-
tion symmetry. In: 24th British Machine Vision Conference
(BMVC)

Brown D (1971) Close-range camera calibration. Photogram-
metric engineering 37(8):855–866

Bukhari F, Dailey MN (2013) Automatic radial distortion
estimation from a single image. Journal of Mathematical
Imaging and Vision 45(1):31–45

Courbon J, Mezouar Y, Eck L, Martinet P (2007) A
generic fisheye camera model for robotic applications. In:
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp 1683–1688

Cucchiara R, Grana C, Prati A, Vezzani R (2003) A hough
transform-based method for radial lens distortion correc-
tion. In: 12th International Conference on Image Analysis
and Processing (ICIAP), pp 182–187

Devernay F, Faugeras O (2001) Straight lines have to be
straight. Machine Vision and Applications 13(1):14–24

Fischler MA, Bolles RC (1981) Random sample consensus:
a paradigm for model fitting with applications to image
analysis and automated cartography. Communications of
the ACM 24(6):381–395

Fitzgibbon AW (2001) Simultaneous linear estimation of mul-
tiple view geometry and lens distortion. In: IEEE Com-
puter Society Conference on Computer Vision and Pattern
Recognition (CVPR), vol 1, pp I–125

Gasparini S, Caglioti V (2011) Line localization from single
catadioptric images. International journal of computer vi-
sion 94(3):361–374

Gasparini S, Sturm P, Barreto JP (2009) Plane-based calibra-
tion of central catadioptric cameras. In: IEEE 12th Inter-
national Conference on Computer Vision (ICCV), IEEE,
pp 1195–1202

Geyer C, Daniilidis K (2000) A unifying theory for central
panoramic systems and practical applications. In: 6th Eu-
ropean Conference on Computer Vision, (ECCV), vol 2,
pp 445–461

Geyer C, Daniilidis K (2001) Catadioptric projective geom-
etry. International Journal of Computer Vision 45(3):223–
243

Kannala J, Brandt S (2006) A generic camera model and cal-
ibration method for conventional, wide-angle, and fish-eye
lenses. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 28(8):1335–1340



22 J. Bermudez-Cameo et al.

Kannala J, Brandt SS, Heikkilä J (2008a) Self-calibration of
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