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Abstract—The projection surface of a 3D line in a non-central
camera is a ruled surface, containing the complete information of
the 3D line. The resulting line-image is a curve which contains the
4 degrees of freedom of the 3D line. In this paper we investigate
the properties of the line-image in conical catadioptric systems.
This curve is a particular quartic that can be described by only
six homogeneous parameters. We present the relation between
the line-image description and the geometry of the mirror. This
result reveals the coupling between the depth of the line and
the distance from the camera to the mirror. If this distance is
unknown the 3D information of a projected line can be recovered
up to scale. Knowing this distance allows obtaining the 3D
metric reconstruction. The proposed parametrization also allows
to simultaneously reconstruct the 3D line and computing the
aperture angle of the mirror from five projected points on the
line-image. We analytically solve the metric distance from a point
to a line-image and we evaluate the proposal with real images.

I. INTRODUCTION

In central systems the projection of a 3D line is a plane
passing through the 3D line and the viewpoint of the camera
which helps the line-image extraction [1]. In this class of
projection some of the information of the 3D line is lost
because any line lying on this plane is projected on the same
line-image. In other words, a 3D line occludes any other line
located behind because the projection surface is a plane.

By contrast, in non-central systems the projecting rays do
not intersect a common viewpoint. The locus of the viewpoint
is in general tangent to a caustic [2] which is an envelope
surface of the projecting rays. When the system is axial each
projecting ray is defined by a 3D point and the intersection of
the ray with an axis which is the axis of symmetry if the system
has revolution symmetry. The projecting rays coming from a
3D line are skew 3D lines forming a ruled surface which lies
on the axis of symmetry. In [3] it is proven that four generic
lines 1 induce two incident lines. Therefore, when we have a
surface defined by at least four skew (and non cohyperbolic)
rays only two lines intersecting all the rays lie on this surface.
In this case, is it possible to occlude a 3D line with other line?
The previous result implies that the projection surface contains
the axis of revolution, the given line and any line intersecting
both the axis and the line. No additional line can belong to this
surface, hence lines do not occlude other lines in non-central
projections.

As a consequence, the complete geometry of a 3D line is
mapped on a single non-central image and it can be completely

1Four lines are generic if no two of them are coplanar, no three of them
are coconical or cocylindrical, and the four are not cohyperbolic, i.e. do not
lie on the same ruled quadric surface.

Fig. 1. An image taken with a conical catadioptric system.

recovered from at least 4 line-image points or projecting
rays [4], [5], [6]. On the contrary, points do not provide 3D
information since points always occlude other points.

A simple non-central system can be built using a cone
mirror (conical catadioptric mirrors). In general, these systems
are non-central and they can be axial if the camera is located
at the axis of revolution or off-axis when the camera is out of
this axis. Figure 1 shows a conical catadioptric mirror and an
image taken with this system.

Some previous approaches have tried to extract 3D lines
from a single image in non-central catadioptric systems. In
[6], [4] 3D lines are defined from 4 rays comparing different
computation approaches. One of them is based on the inter-
section between a ray and the line which is encoded using
the side operator between Plücker coordinates of lines. The
other approach is based on the intersections of surfaces defined
by two sets of 3 rays. Some simplifications have been used
to improve the reconstructions by reducing the DOFs of the
problem considering only horizontal lines [7] [8] or exploiting
cross-ratio properties [9].

Line projections have been also used to estimate the
calibration of non-central systems in a generalization of the
plum line approach. In [10] non-central calibration using lines
is studied. They exploit the fact that there exist less ambiguity
when the system is off-axis with impressive results. However,
this work does not exploit the particular geometric description
of the line-images. In [11] they exploit particular geometric
properties of spherical mirrors for computing extrinsic cali-
bration parameters but they do not use lines.

In this paper, we present a new compact description of
the line-image (projection of a straight line) in conical cata-
dioptric images. This description allows to fit the projection of
straight lines linearly without knowing the extrinsic calibration
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Fig. 2. Euclidean interpretation of Plücker coordinates.

parameters of the system (the aperture angle of the mirror and
the distance to the mirror). We also solve in close form the
metric distance from point to line-image in conical catadioptric
images and we propose it to fit and extract these projections.

In Section II we introduce the necessary background to
understand the proposal. In Section III we present the proposed
description of the line-image for conical catadioptric systems.
In Section IV we analytically solve the metric distance from
a point to the line-image. In Section V we evaluate the
method with real images. Finally in Section VI we present
the conclusions.

II. BACKGROUND

A. Plücker coordinates

The Plücker coordinates of a 3D line is an homogeneous
representation of a line l ∈ P

5 defined by the null space of two
P
3 points of the line. When correctly arranged, this represen-

tation can be decomposed in two R
3 vectors l = (v,n)

T
with

geometrical meaning in Euclidean geometry. v ∈ R
3 is called

the direction vector and represents the direction of the line.
n ∈ R

3 is called the moment vector and represents the normal
to a plane passing through the 3D line and the reference system
O. Not all elements of P

5 correspond to 3D lines. Any point
of P

5 corresponding to a line in P
5 must satisfy vTn = 0

which is known as Plücker identity.

The Euclidean interpretation is the orthogonality between
the direction and the projection plane n (see Figure 2). When
the homogeneous vector l is normalized with respect to the
norm of v,‖n‖ = dl where dl is the minimum distance from
the origin O to the 3D line. We call this description direct
normalized representation of a Plücker line. On the contrary,
when it is normalized respect to the norm of n, ‖v‖ = ρl
where ρl is the inverse to this distance. We call this description
inverse normalized representation of a Plücker line.

B. Conical Mirror Systems

In conical catadioptric systems with the camera located in
the axis of revolution of the mirror, the locus of viewpoint
is a circle of radius Rc centred in the vertical axis at height
Zc [12], [13]. The locus of this circle, which depends on the
distance Zm between the camera and the vertex of the mirror
and the aperture angle τ of the mirror, is

Rc = Zm sin 2τ , Zc = Zm (1− cos 2τ) . (1)

Fig. 3. Conical catadioptric projection of a point X.

a) The forward projection model: As the viewpoint
locus is a circle and there exist a revolution symmetry the
forward projection is unambiguous and direct. Given a 3D

point X = (X1, X2, X3, X4)
T ∈ P

3 in the camera reference,
the non-central projection ray is contained in a plane con-
taining the axis of revolution of the mirror. The intersection
of this plane with the circle is a single point C, therefore
the projection ray is completely defined by X and C. The
intersection of this line with the mirror gives the point xI

which is projected in point x ∈ P
2 on the normalized plane.

x =

(
sin 2τ

(X3 − ZmX4)√
X2

1 +X2
2

− cos 2τ

)
X1 (2)

y =

(
sin 2τ

(X3 − ZmX4)√
X2

1 +X2
2

− cos 2τ

)
X2 (3)

z = ZmX4 + (X3 − ZmX4) cos 2τ +
√

X2
1 +X2

2 sin 2τ (4)

This projection is related to the image plane with a per-
spective camera model involving a linear transformation and
a distortion model.

We use the matrix Kc to transform the coordinates of the
normalized plane (x, y, z) ∈ P

2 to the image coordinates
(u, v) ∈ R

2. The principal point (u0, v0) corresponds to the
vertex cone projection.

(
u
v
1

)
∼
(

fx sskew u0

0 ±fy v0
0 0 1

)
︸ ︷︷ ︸

Kc

(
x
y
z

)
(5)



b) The back projection model: In a general non-central
system each ray is defined by two points [14], e.g. the 3D
point and a point in which the ray is tangent to a surface called
caustic. When the system has symmetry of revolution any ray
can be expressed in terms of three parameters: elevation angle
φ, azimuth angle θ and distance to the intersection between the
ray and the vertical axis Zr (see Figure 3). The representation
of this ray in Plücker coordinates is

lray =

(
vray

nray

)
=

⎛
⎜⎜⎜⎜⎜⎝

sinφ cos θ
sinφ sin θ
cosφ

Zr sinφ sin θ
−Zr sinφ cos θ

0

⎞
⎟⎟⎟⎟⎟⎠ . (6)

Notice that, when taking polar coordinates (r =

√
x2+y2

z
and θ = atan2 (y, x)) in this reference, θ corresponds to the
azimuth angle shown in the ray description. The elevation
angle φ and Zr depend on image radius r and the system
calibration.

In particular, for the case of a conical catadioptric system
Zr depends on cotφ

Zr = Zc +Rc cotφ (7)

which is related with r by

cotφ =
1 + r tan 2τ

tan 2τ − r
. (8)

C. Lines in non-central systems

Given a 3D line expressed in Plücker coordinates l =
(vl,nl)

T
= (vx, vy, vz, nx, ny, nz)

T
, a projecting ray lray

intersects the line when

side (l, lray) = nray
Tvl + nl

Tvray = 0 (9)

where the side operator is the intersecting constraint for
Plücker lines.

The resulting linear system obtained from this constraint
with at least four rays is used in [3] and [6] to compute the
Plücker representation of the 3D line. As Plücker coordinates
are over-parametrized the null space of the solution has one
dimension. However, not all six-elements vector corresponds
to a Plücker line. By imposing the Plücker line constraint
(vTn = 0) two solutions are obtained. One is the axis
of symmetry and the other is the sought line. Notice that
there exist some degenerated central cases in which projecting
surfaces are planes (called Planar Viewing Surfaces (PVS) in
[6]) and the geometry of the 3D line cannot be recovered.
These degenerated cases are: the Axial-PVS case when the
line is coplanar with the axis of symmetry and the Horizontal-
PVS case when all the projecting rays lie in an horizontal
plane (φ = π

2 ).

III. LINE-IMAGES IN CONICAL MIRROR SYSTEMS

A line-image is a curve on a two dimensional projected
space which defines the collection of rays intersecting a 3D
line. This curve is obtained by placing the back-projection
model in equation (9). Generalizing the framework used in
[15] to non central systems, the general expression for a line-
image in non-central systems is

Zr (vxy − vyx) + (nxx+ nyy) + nzzr cotφ = 0 . (10)

With at least 4 points of the line-image we can compute
the 3D line in a direct way by solving the linear system

( Zriyi −Zrixi xi yi ziri cotφi ) l̃ = 0 (11)

where l̃ = (vx, vy, nx, ny, nz)
T

for i = 1, ..., 4.

Notice that in this case vz has disappeared from the
equation and we are obtaining an element of P4, therefore the
null space is a single solution instead of the one dimension
space obtained when solving with (9) in [3]. Actually, the
Plücker identity used to reduce this space in [3] is used here
to compute vz due to the redundancy of Plücker coordinates
representation.

When particularizing these expressions to the conical
catadioptric system, this line image can be developed to a
polynomial expression of degree 4 (a quartic described by
15 monomials in general). However, when the equation is
expressed in polar coordinates this expression can be written
in a compact form with 6 parameters encapsulating the Plücker
coordinates of the line and the mirror parameters of the system.
The line-image is then written as

( r cos θ r sin θ r cos θ sin θ 1 )ω = 0 (12)

where

ω =

⎛
⎜⎜⎜⎜⎜⎝

ω1

ω2

ω3

ω4

ω5

ω6

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

− 1−cos 2τ
cos 2τ Zmvy − nx

1−cos 2τ
cos 2τ Zmvx − ny

nz tan 2τ
tan 2τ (nx − Zmvy)
tan 2τ (ny + Zmvx)

nz

⎞
⎟⎟⎟⎟⎟⎠ . (13)

This expression allows us to linearly compute the line-
image from five points without knowing neither the aperture
angle of the mirror τ nor the distance to the mirror Zm, by
solving

(
rixi riyi zir

2
i xi yi ziri

)
ω = 0 (14)

for i = 1, ..., 5.

Once the line-image ω ∈ P
5 is estimated τ is easily

computed from tan 2τ = w3/w6. However, notice that the



Fig. 4. Detail of two line projections A and B in a non-central catadioptric
image with conical mirror. Line A (in red) pass through the singularity at the
principal point (dotted points correspond to negative radius).

distance to the mirror Zm is coupled with direction vector vl

so it is not possible to separate them. Remember that when
using the inverse normalizing description ‖vl‖ is the inverse
of the minimal distance from the origin to the line. As vl

and Zm are coupled, it is possible to compute the inverse of
the distance scaled by Zm (The norm of the obtained vector
‖vw‖ = ρlZm).

Because of this, we conclude that in conical catadioptric
mirrors, if the distance of a conical mirror is unknown, it is
not possible to reconstruct the scale of a scene only from line-
images in a single image.

A. Parametric Description and Singularity

Expression (12) allows expressing r in terms of θ

r =
− (ω4 cos θ + ω5 sin θ + ω6)

ω1 cos θ + ω2 sin θ + ω3
(15)

therefore, the parametric expression of the line-image curve
becomes

x (θ) = − (ω4 cos θ + ω5 sin θ + ω6) cos θ (16)

y (θ) = − (ω4 cos θ + ω5 sin θ + ω6) sin θ (17)

z (θ) = ω1 cos θ + ω2 sin θ + ω3 . (18)

In conical catadioptric systems the vertex cone projection
(x = 0, y = 0) is a singularity of line-images passing through
it. If the line-image lies on this singularity, equation (15)
returns negative values of r for some values of θ. At the
singularity, the curve is continuous but not derivable. Con-
sidering the points with negative radius the curve is derivable
on the singularity. Actually, these points are not depicted on
the catadioptric image (dotted points in Figure 4 ).

From equation (15) we can determine the range of values
of θ in which the radius is negative. The values of θ limiting
this range are computed from

ω4 cos θ + ω5 sin θ + ω6 = 0 (19)

and solving for tan θ yields:

tan θ =
−ω4ω5 ± ω6

√
ω2
4 + ω2

5 − ω2
6

ω2
5 − ω2

6

. (20)

Notice that it does not exist real solution if the value inside
the square root is negative. In other words, all θ values (15)
gives r > 0 therefore the line-image does not belong to the
singularity. So, we can state that a line-image pass through the
discontinuity if and only if ω2

4 + ω2
5 > ω2

6 .

IV. ALGEBRAIC AND METRIC DISTANCES

When evaluating if a point belongs to a line-image or
for fitting the curve is necessary a function measuring the
distance from a point to the line-image. Depending on this
distance the quality in precision of the extracted line-image is
improved. In this paper we present a qualitative comparison
among distances, some of them used in previous works, and
we propose a metric distance on the normalized image plane
as the natural space where data is acquired. In this section, we

assume that coordinates on the normalized plane are (x, y, 1)
T

instead the projective general case (x, y, z)
T

.

Using (10) the algebraic distance

dalg = Zr (vxy − vyx) + (nxx+ nyy) + nzr cotφ (21)

is measured in pixels when the Plücker lines are normalized
with ‖nl‖ = 1. However this expression does not guarantee the
metric conditions. As alternative we propose the point-to-point

euclidean distance dm (x1,x2) =

√
(x1 − x2)

T
(x1 − x2)

which satisfies the three metric conditions (no negativity,
symmetry and triangle inequality).

Given a metric space (X, dm) and L ⊂ X a subset of
points lying on a line-image, the metric distance from a point
x to the line-image is:

dm (x, L) = inf {dm (x,xl) : xl ∈ L} (22)

Notice that in practice the point of the curve closer to the
given point is the same using the Euclidean distance or the
square Euclidean distance. By using the method of Lagrange

multipliers it is possible to find the point x̃ = (x̃, ỹ)
T

which
minimizes the distance function

fd (x̃) = (x̃− x)
2
+ (ỹ − y)

2
(23)

subject to the constraint gl (x̃) = 0.

Only a Lagrange parameter has to be computed and elimi-
nating this parameter we finally obtain the equation system

h (x̃) = (x̃− x) ∂gl
∂ỹ − (ỹ − y) ∂gl

∂x̃ = 0

gl (x̃) = 0 .
(24)

In other words, the point x̃ must satisfy lying on the line-
image and the perpendicular straight line passing by this point
must intersect x.

To reach a close solution first we expand the compact line-
image description (12) to get a polynomial expression, in this
case a quartic.



gl (x̃) = r2 (w6 + w1x+ w2y)
2− (w4x+ w5y + w3r

2
)2

= 0
(25)

where r2 = x2 + y2.

The resulting polynomial h obtained from this expression
is the quartic

(
x̃3, x̃2ỹ, x̃2, x̃ỹ2, x̃ỹ, x̃, ỹ3, ỹ2, ỹ

)
W

(
ỹ − y
x− x̃

)
= 0 (26)

where

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2w1
2 − 2w3

2 w1 w2

3w1 w2 w1
2 + w2

2 − 2w3
2

3w1 w6 − 3w3 w4 w2 w6 − w3 w5

w1
2 + w2

2 − 2w3
2 3w1 w2

2w2 w6 − 2w3 w5 2w1 w6 − 2w3 w4

w6
2 − w4

2 −w4 w5

w1 w2 2w2
2 − 2w3

2

w1 w6 − w3 w4 3w2 w6 − 3w3 w5

−w4 w5 w6
2 − w5

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(27)

Computing the resultant between both equations from the
variable ỹ we obtain a single polynomial equation depending
on x̃ with degree 12.

(
x̃12, x̃11, x̃10, x̃9, x̃8, x̃7, x̃6, x̃5, x̃4, x̃3, x̃2, x̃, 1

)
Ωx̂ = 0

(28)

where Ω (ω) ∈ R
13x15 and x̂ =(

x4, x3y, x3, x2y2, x2y, x2, xy3, xy2, xy, x, y4, y3, y2, y, 1
)T

.

For a given point on the normalized plane (x, y)
T

, solving
(28) results in 12 solutions for x̃. The correct solution can
be found by checking gl and hl for each solution. From the
remaining results we choose the one with minimal distance.
Notice that Ω only has to be computed for each line-image ω
whereas (28) is solved for each point.

In Figure 5 we show the different regions defined by a
given threshold using three distances. First, we present Plücker
distance which is the metric distance in 3D between rays and
the given line. In this case the region defined by rays which
are closer to a given distance to the line has a thickness in
the image which is not constant. The algebraic distance given
by the line-image also has variations in the thickness of the
region when the line is close to the principal point. However
the proposed metric distance on the image defines a region
with an homogeneous thickness.

V. EXPERIMENTS AND EVALUATION

In this section we show some examples of manual extrac-
tion using five points and we present quantitative results in the
estimation of the mirror geometry from line-images.

We have used a conical mirror with a known τ = 55 deg
by fabrication and an USB perspective camera. The system

(a) (b) (c)

Fig. 5. Behaviour of the different metrics defined to decide if a point lies
on a line-image for conical catadioptric systems. (a) Plücker distance. (b)
algebraic distance in pixels. (c) metric distance. The thin lines are the actual
line-images. The coloured region around the lines denotes the points of the
region which have a distance minor than a threshold.

(a) (b)

Fig. 6. Influence of points selection. (a) Good extraction (b) Bad Extraction.
We can see the high influence of detected points in line extraction.

has been fixed manually to assure the alignment between the
camera and the mirror therefore the vertex of the cone is
projected in the center of the image. The perspective camera
is calibrated independently using a standard method taking
into account focal distance, principal point, skew and radial
distortion. Small errors in the projection of the vertex of the
cone are included in the principal point of the perspective
model identifying manually the singularity of line-images.
The distance Zm is unknown and it is not necessary in this
experiment.

Five points from conical catadioptric images (in red) are
selected manually to compute the line-image ω who is painted
on the image using the parametric description (18). From each
ω line image we extract the Plücker coordinates of the line and
the aperture angle of the mirror τ . As explained in Section III
the distance to the mirror Zm is coupled with the Plücker
coordinates therefore the metric in recovered 3D lines are
scaled to this distance.

In Figure 6 we show the high influence of error and point
selection. Depending on the selected points the extracted line-
image fits or not the projected points of the line. In spite of
both line-images are fitting the defining points and the rest of
the projected point of the segment, the error in the estimation
of the 4DOFs complicates the right extraction of the line. In
Figure 7 we show some examples of line projections correctly
extracted in different images and the obtained value for τ in
each one. We can see how this value is close to the ground
truth which is τref = 55 deg. Finally, in Figure 8 we show
more examples of incorrect extractions. The reason of these



(a) (b) (c) (d)

Fig. 7. Examples of correct extraction. (a) τ = 55.0 deg. (b) τ = 55.5 deg. (c) τ = 56.1 deg. (d) τ = 54.9 deg.

(a) (b) (c) (d)

Fig. 8. Examples of incorrect extraction. (a) τ = 50.9 deg. (b) τ = 51.1 deg. (c) τ = 49.7 deg. (d) τ = 48.4 deg.

errors is the sensitivity of line projection and the large number
of degrees of freedom of the curve in non-central systems.

VI. CONCLUSION

In this paper we investigate the geometry of line pro-
jections in conical catadioptric systems proposing a compact
description of 6 homogeneous parameters for the line-image.
This description explicitly shows the coupling between the
distance from the camera to the mirror and the depth of a
reconstructed line. Using the proposed parametrization the
mirror aperture angle τ can be computed from a single line-
image. The proposal is tested with a real system with known
geometry obtaining the projections of the line-images and an
estimation of the aperture angle. However, supervision is still
needed to select the defining points of a line. Future work will
be focused in the robust automation of the process in order to
provide a self-calibrating method.
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