
Line extraction in uncalibrated central
images with revolution symmetry
Jesus Bermudez-Cameo
bermudez@unizar.es

Gonzalo Lopez-Nicolas
gonlopez@unizar.es

Jose J. Guerrero
josechu.guerrero@unizar.es

Instituto de Investigación en Ingeniería
de Aragón (I3A)
Departamento de Informática e
Ingeniería de Sistemas
Universidad de Zaragoza, Spain

Abstract

In omnidirectional cameras, straight lines in the scene are projected onto curves
called line-images. The shape of these curves is strongly dependent of the particular cam-
era configuration. The great diversity of omnidirectional camera systems makes harder
the line-image extraction in a general way. Therefore, it is difficult to design uncalibrated
general approaches, and existing methods to extract lines in omnidirectional images re-
quire the camera calibration. In this paper, we present a novel method to extract line-
images in uncalibrated images which is valid for radially symmetric central systems. In
our proposal, the distortion function is analytically solved for different types of camera
systems, dioptric or catadioptric. We present the unified line-image constraints to extract
the projection plane of each line and main calibration parameter of the camera from a
single line-image. The use of gradient-based information allows computing both from
a minimum of two image points. This scheme is used in a line-image extraction algo-
rithm to obtain lines from uncalibrated omnidirectional images without any assumption
about the scene. The algorithm is evaluated with synthetic and real images showing good
performance.

1 Introduction
Lines and their projections have been widely used as feature for 3D reconstruction and vision
recognition. The projection of a straight line on the image is in general a curve called line-
image. In conventional perspective cameras 3D straight lines are projected onto 2D straight
lines so each line on the image can be recovered directly from 2 points of the line. When
the projection model is not linear line-images are curves whose curvature depends on the
acquisition system. Therefore the calibration of the system is needed to define this curve
from 2 points. However the constraint of lying on a line holds even if camera calibration is
unknown [8] and the line-image can be extracted without calibration.

In most approaches to extract lines from central omnidirectional images [4, 15] camera
calibration is used to back project the image points to normalized rays lying on a unitary
sphere rounding the viewpoint. In this space the relationship of the line projection becomes
linear and classical approaches can be used. In the particular case of catadioptric systems
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the curve defining a line-image is a conic. Other approaches extract these conics directly on
the images. In [6] conics are extracted on the image using the calibration of the camera. In
[3] conics are computed using classical conic fitting approaches and after that calibration of
the camera is estimated.

In general, the curve for a line-image can be extracted adding more constraints because
the distortion in the line-image is induced by the non linear projection [1, 7, 8]. The location
of more edge points lying on the curve can be used as additional constraints. The gradient
orientation of these edge points could also be used if appropriate formulation is developed.
As calibration of the camera is involved in the shape of the curves, both calibration parame-
ters and line-images can be extracted simultaneously. That means that when line-images are
automatically extracted from uncalibrated omnidirectional images self-calibration is also es-
timated. In [14] a line based self-calibration approach using a radially symmetric distortion
model is presented. They encode the distortion function using a polynomial and a discrete
representation. However, in our proposal the distortion function is analytically solved for
each projection model reducing the number of parameters to encode it. Besides that, instead
of calibration, our work is focused in line and segments extraction and since we encode the
calibration in a single parameter we reduce considerably the iterations needed in a robust
extraction.

In this paper we present a method for line extraction in uncalibrated images which is valid
for central dioptric and catadioptric cameras with symmetry of revolution. This extraction
allows us to segment the collection of edges corresponding to line-images automatically. For
this, we exploit two classes of line-image constraints: point’s location and point’s gradient
constraint. From the extracted line-image we also obtain the corresponding projecting planes
defining the line-constraint on the 3D space, since main calibration information is implicitly
computed. In our method we do not assume any restriction in the orientation of 3D lines.
The input is a single image in which the existence of line-images is assumed and the result
of our proposal is a set of points groups lying on different line-images, the corresponding
projection planes and the main calibration parameter of the system.

2 Unified Description for Line Projection in Central
Systems with Revolution Symmetry

In this section we introduce the line-image description for central systems with revolution
symmetry presented by Bermudez-Cameo et al. in [5]. Assuming revolution symmetry
exists, the spherical coordinates of a ray x = (sinφ cosϕ,sinφ sinϕ,cosφ)T are related with
the polar coordinates of the image points

(
r̂, θ̂
)
. Assuming that principal point is known,

the image point coordinates x̂ = (x̂, ŷ)T are referred to the principal point. The azimuth
angle ϕ is directly mapped to the coordinate θ̂ = ±ϕ (the sign depends on the device: ’-’
for catadioptric and ’+’ for dioptric) and the relation between the radius of the image r̂ and
angle φ depends on the projection model. In Table 1 2nd column we show the expression
of the radius r̂ in the symmetric distortion model based on the sphere model for catadioptric
systems [2, 10] and particular projection models for dioptric systems [11, 12, 13] where f ,
p, and χ are calibration parameters in each corresponding projection model.

Let Π= (nx,ny,nz,0)
T be a plane defined by a 3D line and the viewpoint of the system O.

The projected line associated to the 3D line can be represented by n = (nx,ny,nz)
T. Points X

lying in the 3D line are projected on points x which represent the direction of the projecting
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Table 1: Parameters for different central projection systems with revolution symmetry.

rays. The location of these vectors satisfies nTx = 0 and then, the constraint for image points
lying on a line projection is

d (x̂) = nxx̂±nyŷ−nzα̂ (r̂) = 0 , (1)

where α̂ is a different expression for each camera system depending on the radius and the
model parameters (see Table 1 3th column). Notice that d (x̂) is in general an algebraic
distance which is zero when a point lies on the line. The normal direction to the line-image
is described by the gradient of the homogeneous expression (1) which is expressed by

∂d
∂ x̂

= nx−nz
∂ α̂

∂ r̂
x̂
r̂

∂d
∂ ŷ

=±ny−nz
∂ α̂

∂ r̂
ŷ
r̂
. (2)

The term ∂ α̂

∂ r̂
1
r̂ depends also on the camera model (see Table 1 4th column).

Finally, notice that in central systems with symmetry of revolution any 3D line lying
on the horizontal plane passing through the viewpoint (n = (0,0,1)T) is projected on the
vanishing line. This line is always mapped in a circle centred on the principal point and with
radius r̂vl (see Table 1 5th column). This radius depends only on the system geometry and
can be used to calibrate the camera system. In this case, equation (1) simplifies to α̂ (r̂) = 0.

3 The straight-line constraint on the image space
As introduced in section 2, in central systems the projection of a 3D line is the plane Π

which is described on the image by constraint (1). This constraint is a curve which is in
general non-linear. However the projecting plane is completely defined by two points and
the viewpoint. That implies that the calibration of the system is embedded in the geometry of
this curve. Therefore if the calibration of the system is known, the projecting plane normal n
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Table 2: Three points line-image constraint for different central projection systems with
revolution symmetry.

can be recovered from two image points. However, when constraint (1) is satisfied the line-
image can be recovered even if camera calibration is unknown. In this section we present a
method for computing the projecting plane normal n and the main calibration parameter from
a minimum of 3 image points lying on this line-image. Our proposal relies on r̂vl as main
calibration parameter which is common to any central system with revolution symmetry and
depends only on the system geometry.

Given at least two points lying on a line-image described by (1) we can obtain the normal
n by solving the homogeneous linear system(

x̂i ±ŷi −α̂i
)

n = 0 for i = 1, ...,n with n≥ 2. (3)

Notice that two points of the image back-projected to the sphere and the viewpoint are
enough to define the plane Π. When the number of equations defining (3) is greater than two
we obtain a redundant system. Therefore when having three points lying on a line-image the
rank of the homogeneous matrix must be two. Imposing this condition we find a constraint
using three points of a line-image. The line-image constraint can be written as

l1α̂1 + l2α̂2 + l3α̂3 = 0, (4)

where l1 = x̂2ŷ3− x̂3ŷ2, l2 = x̂3ŷ1− x̂1ŷ3 and l3 = x̂1ŷ2− x̂2ŷ1.
With three points lying on the line-image and equation (4) it is possible to obtain the

main calibration parameter. In Table 2 we show the different expressions depending on the
system. In perspective systems is not possible to extract any additional information. For
paracatadioptric and stereographic-fisheye systems the radius r̂vl is computed directly. For
other dioptric systems the line-image constraint is solved by minimization.

In hypercatadiopric systems the focal distance of the camera is needed to compute the
main calibration parameter rvl . This is because two calibration parameters are involved and
they cannot be coupled. However, in practice it is possible to complete the extraction of the
line-image with a rough approximation of f .
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4 Gradient-based constraints
In this section we present the line-image gradients for central systems with revolution sym-
metry, which gives additional constraints for line-image fitting. They allow to reduce the
minimum number of defining points from three to two. Given an intensity image I (x,y), its
gradient ∇I (x,y) = (∇Ix,∇Iy) of each edge lying on a line-image is aligned with the gra-
dient of the line-image (2). The dot product between the analytical gradient and the vector
∇I⊥ = (−∇Iy,∇Ix)

T describes the alignment between both gradients. This expression can
be written as

−∇Iynx±∇Ixny +nz
∂ α̂

∂ r̂
1
r̂
(x̂∇Iy− ŷ∇Ix) = 0, (5)

and gives an additional constraint when solving a line-image. In particular, if knowing the
system calibration and given the image gradient and a point lying on a line-image the normal
n is solved by the linear system(

x̂ ±ŷ −α̂

−∇Iy ±∇Ix
∂ α̂

∂ r̂
1
r̂ (x̂∇Iy− ŷ∇Ix)

)
n =

(
0
0

)
(6)

whose solution is

n =

(
∇Ixα̂ +

∂ α̂

∂ r̂
ŷ
r̂
(x̂∇Iy− ŷ∇Ix) , ∇Iyα̂− ∂ α̂

∂ r̂
x̂
r̂
(x̂∇Iy− ŷ∇Ix) , ŷ∇Iy + x̂∇Ix

)T

. (7)

Then, using constraint (5) with a pair of points, the normal n can be computed. With the
proposed approach, when using (1) or (5) for fitting line-images we need to know the class of
the central system to compute the corresponding value of α̂ . An alternative is considering a
linear approximation for α̂ (r̂) but generic for any system. Thus, we propose to approximate
α̂ (r̂) by a linear function referenced to the radius of the vanishing line. Notice that in this
case (r̂ = r̂vl) implies α̂ = 0 (see Section 2), and simplifying the expression it becomes

α̂ (r̂) =
∂ α̂ (r̂vl)

∂ r̂
(r̂− r̂vl) . (8)

Using this approximation the system (6) can be expressed by(
x̂ ±ŷ −r̂ 1
−∇Iy ±∇Ix

x̂∇Iy−ŷ∇Ix
r̂ 0

)
m =

(
0
0

)
(9)

which can be solved from the coordinates and the gradient of two image points obtaining

the vector m = λ

(
nx,ny,nz

∂ α̂(r̂vl)
∂ r̂ ,nz

∂ α̂(r̂vl)
∂ r̂ r̂vl

)T
. Notice that in this vector nz and ∂ α̂(r̂vl)

∂ r̂ are
coupled, however the main calibration parameter r̂vl can be computed. With r̂vl , the value α̂i
is defined (Table 1) and n can be recovered from (3).

5 Uncalibrated Line-Image Extraction
In this section we propose the algorithm for line-image extraction from uncalibrated omni-
directional cameras. The algorithm relies on the constraints presented in Section 3 (based on
a minimal set of 3 points). Alternatively, the algorithm is also developed for using gradient
constraints, based on a minimal set of 2 points. The proposed algorithm is described next.
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(a) Paracatadioptric (b) Hypercatadioptric (c) Equiangular-Fisheye

(d) Stereographic-Fisheye (e) Orthogonal-Fisheye (f) Equisolid-Fisheye

Figure 1: Extraction example on simulated images.

The input of the method are the edges and their gradients obtained from Canny detector.
These edges are stored in connected components called boundaries and the gradient orien-
tation is low-pass filtered to reduce noise. Then, a first splitting of the boundaries is done
based on the orientation angle. The threshold has been chosen to minimize the number of
splits and therefore a sub-boundary can contain more than one segment. A subset of these
sub-boundaries is selected following a heuristic criterion to avoid line-images which do not
contain self-calibration information (e.g. vertical lines). Sub-boundaries are sorted by the
descriptor κ = ssize ·∆θ which is greater when the sub-boundary is best conditioned to extract
calibration from it. ssize is the size of the sub-boundary and ∆θ is the angle covered by the
sub-boundary rounding the principal point. Once the sub-boundaries are sorted a sub-set of
them are selected. In particular, the sub-boundaries which cover the 50% of an accumulated
histogram of κ are chosen.

Once we have selected boundaries containing line-images well conditioned for self-
calibration we use a RANSAC-based approach [9]. Points of a boundary are selected ran-
domly to generate candidate line-images which are voted by the other points of the boundary.
Two approaches are presented depending on the constraint considered:

3-points r̂vl estimation: From the location coordinates of a minimum of three points
of the boundary and the line-image constraints r̂vl is estimated. Depending on the camera
system the corresponding expression is used (Table 2).

2-points r̂vl estimation: From the location coordinates of a minimum of two points and
theirs gradients we can compute the vector m using (9). No assumption about the nature of
the camera system is needed. Then, r̂vl is computed from m by dividing its fourth component
between the third.

From any of the both used approaches, the normal vector n is computed from the defining
points and r̂vl using the expression (3). The distance to determine if a point is lying on the
line-image is the algebraic distance (1). The threshold for the distance d (x̂) is computed for
each candidate. The gradient of the points used defines the normal direction to the curve. A
fixed threshold in pixels is used to compute points located at certain metric distance to the
curve. From these points a dynamic threshold is computed using the algebraic distance (1).
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(a) (b)
Figure 2: Estimation of r̂vl from uncalibrated line extraction. (a) 2-points approach, (b) 3-
points approach. In both, the horizontal axis corresponds to the actual r̂vl and the vertical
axis to the estimated one.
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Figure 3: Angle deviation between obtained normals and ground-truth. (a) 2-points ap-
proach, (b) 3-points approach

Each point of the boundary whose distance is minor than the dynamic threshold gives a vote
for the candidate. The most voted candidate is selected as best fit.

From the previous procedure we obtain for each line-image, the points lying on it, the
corresponding normal vector, and a estimation of the calibration via the r̂vl value. Finally,
main calibration parameter and normals are refined in a Levenberg-Marquardt optimization
process for the whole image.

6 Experiments

We present different experiments to validate the proposal and to compare the two approaches
presented in section 5. The accuracy in line extraction and calibration is measured using
synthetic images with known ground-truth. Finally, to show the behaviour of the method
with real images two experiments are also presented.



8 BERMUDEZ-CAMEO et al.: LINE EXTRACTION IN UNCALIBRATED IMAGES

6.1 Experiments with Synthetic Data

We have generated images for hypercatadioptric, equiangular-fisheye, stereographic-fisheye,
orthogonal-fisheye and equisolid-fisheye systems with a resolution of 1024×768 pixels. The
images are from a synthetic scenario composed by segments in a corridor. A measure of the
accuracy of the proposal is the error in the estimation of the radius of the vanishing line r̂vl .
Notice that, as this radius depends only on the calibration and it is a magnitude common to
any central system, it is useful for comparing calibration estimations between central systems
with different characteristics. In Fig. 2 we show the deviation of the estimation of the radius
of the vanishing line r̂vl , which has been normalized to make it independent from the image
size. r̂vl = 1 corresponds to the radius of a corner of the image (e.g. with a resolution of
1024x768 values in pixels of r̂vl are divided by 640). When r̂vl < 1 the FOV of the system is
greater than 180 degrees. Otherwise the FOV is smaller than 180 degrees. Fig. 2 (a) depicts
the results using the 2-points-r̂vl estimation and Fig. 2 (b) the results using the 3-points-r̂vl
estimation. We also show the error in degrees between the ground-truth normals describing
each line projection and the estimated ones (Fig. 3).

We observe that, in general, accuracy in r̂vl estimation decreases when the radius is
greater than the image size (in figure values greater than one). That means that the smaller
the FOV the lesser the accuracy of the algorithm. The extreme case is the perspective camera
where r̂vl = ∞ and curvature of lines is independent from the focal distance. We also note
that the hypercatadioptric case is more difficult to solve than others as a result of the mul-
tiple parameters involved. The accuracy decreases considerably in systems with FOV less
than 180 degrees. However, the accuracy in the normal’s orientation does not increase when
r̂vl increases and even decreases. This is an effect of the set-up of the experiment in which
the scene is far away from the camera when r̂vl increases to assure the scene is seen by the
camera. In Fig. 1 we show some examples of simulated images for different catadioptric and
dioptric devices and the corresponding extracted line-images.

6.2 Experiments with Real Images

In order to show how the method works with real images some tests have been performed
with catadioptric and fisheye cameras. The principal point has been coarsely estimated from
the intersection of vertical lines (which are radial lines lying on the principal point) by setting
the axis of symmetry parallel to these vertical lines. In Fig. 4 (a-b) we show an hypercata-
dioptric image in which line-images have been extracted using our proposal. The image has
been acquired with a hypercatadioptric camera mounted on a helmet with a resolution of
1024× 768 pixels. In Fig. 4 (c-d) we apply the same algorithm but using a fisheye-camera
image. The image has been taken using an iPhone 4S camera (3264× 2498 pixels) with a
equiangular fisheye. Notice that line-images of parallel 3D lines intersect in the vanishing
points of the image because line-images have been well extracted.

In the second experiment we have applied the algorithm to an image sequence taken
with a camera in hand. The sequence has been acquired with a Nexus 4 camera using an
equiangular fisheye with a resolution of 1920×1080 pixels. The video of the sequence with
the extracted line-images has been attached as supplementary material. Line-images from
video (see Fig. 5(a)) intersect in the vanishing points of the image (notice that we do not have
imposed this constraint). Finally in Fig. 5(b) we show the estimation of the main calibration
parameter r̂vl along the sequence (notice that each frame is independently computed). The
mean estimation for r̂vl is 568.41 pixels and the standard deviation is 9 pixels.
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(a) (b)

(c) (d)
Figure 4: Line extraction on uncalibrated real omni-images. (a-b) Hypercatadioptric, (c-d)
Equiangular-Fisheye
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Figure 5: Line extraction on uncalibrated sequence: (a) Frame 182, (b) r̂vl estimation in blue,
r̂vl mean value in red.

7 Conclusion
We have presented a method to extract line-images from uncalibrated central images with
revolution symmetry. We consider a general framework which encodes projection models
for dioptric and catadioptric systems using a common main calibration parameter (the radius
of the vanishing line r̂vl). Due to the relation between projection models and curvature of
line-images an estimation of the main calibration parameter of the system is obtained simul-
taneously. We observed that line-images are correctly classified and the obtained normals are
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accurate enough to be used in 3D computations. Nevertheless, in hypercatadioptric systems
it is difficult to decouple calibration parameters. In this case the accuracy is acceptable when
the FOV of the system is greater than 180 degrees. Accuracy differences between the two
proposed approaches for computing r̂vl are not significant in spite of the 2-points approach
being computationally lighter.
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