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A Sliding Mode Control Law for Mobile Robots, based to a feature-based strategy [7] or homography-based control [15].

on Epipolar Visual Servoing from Three Views The singularity problems in epipolar-based control appear when the
interaction matrix between the robot velocities and the rate of change
H. M. Becerra, G. Lopez-Nicolas and C. Sagues of the epipoles becomes singular for some state of the robot. In

fact, unbounded velocities eventually appear because the singularity
. ) . ) . . is always reached when the robot moves directly toward the target.
Abstract—Driving mobile robots to precise locations is of recognized The approach in [7] takes into account the nonholonomic nature of a
interest, and using vision sensors in this context supplies many advan- pp < . . - .
tages. We propose a novel control law based on sliding mode theory Wheeled robot by driving one dimension of the epipoles to zero in a
in order to drive mobile robots to a target location, which is specified smooth way. However, in order to avoid the singularity, the motion
by a reference image previously acquired. The control scheme exploits strategy steers the robot away from the target while the lateral error
the piecewise epipolar geometry of three views on the basis of image-iq o rrected, and after that, the robot moves backward to the target
based visual servoing, in such a way that no 3D scene information is . ’ R ’ ) h
required. The contribution of the paper is a new control law that achieves POSition. A more intuitive way to drive the rOpOt d're.Ctlyl toward the
convergence to the target with no auxiliary images and without changing target has been addressed in [16] but the singularity is not treated.
to any approach other than epipolar-based control. Additionally, the use = An approach that exploits the decomposition of the epipolar geometry
of sliding mode control deals with singularities allowing the robot to move for visual path following with mobile robots is presented in [17]

directly toward the target and also avoiding the need of a precise camera . L | . h is th .
calibration. The effectiveness of our approach is tested with simulations /AN Important concern in visual servoing schemes is the uncertainty

and real-world experiments. in calibration parameters. Some works have tackled the uncalibrated
Index Terms—Visual servoing, sliding mode control (SMC), epipolar- V|sual_ servoing problem for roboF manipulators, for _|nstance the
based control, mobile robots. Jacobian-based approach [18], which keeps the potential problems of

such schemes. The proposal in [19] avoids the dependence on depth
information but requires the robot dynamics and additional feedback
I. INTRODUCTION of position and velocity.

There is an increasing interest of the robotics research communityThis paper focuses on the development of a sliding mode control
on topics related to service robots, which usually are wheelé8MC) law that exploits the epipolar geometries among three views.
platforms. This paper presents a control scheme to drive a wheeldiis is an extension of [20], which introduces a robust two-view-
mobile robot to a desired location that is specified by a target imaggsed control law that is able to correct orientation and lateral error
previously acquired, i.e. the teach-by-showing strategy. The feasibillyt not depth. In the work herein, we extend the epipolar geometry
of visual control in robotic applications has been well studietb three images taken in pairs to correct also depth only from the
previously [1]. Particularly, vision is a useful tool for enhancing thepipolar constraint. The trifocal tensor has been recently used for
navigation capability of mobile robots [2]. An intuitive application ofvisual servoing emphasizing the benefits of three-view based schemes
the proposed approach is robot navigation using a visual memory[8. The epipolar geometry is an approach for general scenes that
follow a sequence of target images. This may be meaningful in theovides a filtering of the visual measurements. Our scheme ensures
framework of inspection robots, which are required to look at sonstability of the closed loop by working with a squared control
specific views, or in autonomous personal transportation vehiclessystem and does not need any geometric decomposition or additional

The proposed control scheme is classified as an image-bapatiameter estimation to achieve pose regulation. The use of a third
scheme. In this type of approach the image data is used directly in the@ge allows us to unify the control scheme in only one type of
control loop, unlike the position-based schemes, where an estimé@ge-based controller for the whole task.
of pose parameters is needed. Different image-based approachds summary, the main contributions of this paper with respect to
have been used for control of mobile robots, from the classicpitevious epipolar-based approaches are that the proposed control law
Jacobian-based schemes that are based on a non-exact inversigtprsects position and orientation by keeping full control during the
a rectangular interaction matrix [3], [4], to schemes that exploit whole task using only epipolar feedback. The control law copes with
geometric constraint that relates image features [5], [6], [7], [8]. Isingularities induced by the epipolar geometry also improving the
general, classical Jacobian-based schemes are sensitive to image mols# behavior by performing a direct motion toward the target. Be-
and depend on the estimation of the structure of the scene (degtigles, the use of the SMC technique allows robust global stabilization
[9]. Additionally, they exhibit potential problems of stability [10] andof the task function (including image noise) when dealing with the
only local stability can be theoretically demonstrated. Although linegeak calibration problem (i.e., with no specific calibration).
have been proposed to achieve robustness to image noise [11], the uSde paper is organized as follows. Section Il specifies the mathe-
of geometric constraints is a good alternative to improve robustnesatical modeling that is used for the visual sensor, the mobile robot
against image noise and to ensure correct correspondences betvegehthe epipolar geometry. Section Il details the design procedure
image features [12]. for the SMC law. The stability and robustness analysis is presented in

Particularly, the epipolar geometry has been applied for control 8ection V. Section V shows the performance of the control scheme
robot manipulators [13], [14]. The drawbacks of this geometry are thgth simulations and real-world experiments.
ill-conditioning for planar scenes, the degeneracy with short baseline
and singularity problems for system control. In related works about II. MATHEMATICAL MODELING
visual servoing of mobile robots, the first issue has been solved by ) ) )
using a generic scene and the second has been tackled by commdtingisual Sensing and Robot Kinematics

Consider the geometry of a finite projective camera to be modeled
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wherea, = fm, anday = fm, are the focal length of the camera
in terms of pixel dimensions in the and y directions respectively,
with m, and m, the number of pixels per unit distance, afiche
focal length in distance units is the skew parameter ardo, o)
are the coordinates of the principal point in pixels. We assuhat
the principal point is in the center of the image, = 0, yo = 0)
and there is no skews = 0). An image is denoted by (K, C),
where C represents the extrinsic parameters.

(b)

Robotic system. (a) Frame definitions witly,, zy the axis of

Fig. 1.
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(b)

Fig. 2. Pairwise epipolar geometry of three views. (a) Gdate locations
defining the epipoles among three views. (c) Polar coordmat

T1 oS @1 + 21 sin P1

the world frame andZr, Zr the corresponding for the robot frame. (b) el3 = - - , ?3)
Experimental platform. 21€08 ¢1 — 1 sin P1
€31 = azﬂv
21
The system to be controlled is a differential-drive robohoae T2 COS P2 + 22 sin P2 4
kingmatip mpdel can be expressed in accordance with theefram e = ? 22 COS 3 — T2 Sin P )
defined in Fig. 1(a) as follows T2
€32 = OQz—,
)
x1 — x2)cos d1 + (21 — 22) sin
i —sing 0 ez = Tz T)eostrt (o m)s oL ®)
; v (21 — 22) cos p1 — (x1 — @2) sin P1
z | = cos¢ 0 2 .
- w (1 — z2) cos P2 + (21 — 22) sin P2
¢ 0 1 €21 = (67% - .
(21 — 22) cos p2 — (x1 — x2) sin P2

wherex = (z,z, ¢)" represents the state of the robot, beir(@)
andz(t) the robot position in the plane agdt) the robot orientation.
Additionally, v(t) and w(t) are the translational and rotational
input velocities. This model represents the kinematic amobf the
experimental platform of Fig. 1(b). Notice that the camerplaced
in such a way that the robot and camera frames are alignechaird t
origins coincide with the vertical axis of rotation.

B. Pairwise Epipolar Geometry of Three Views

The epipolar geometry describes the intrinsic geometryvéen
two views and only depends on the relative location betweenetas
and their internal parameters. The fundamental mairig R**? is
the algebraic representation of this geometry and can beumu
by solving a linear system of equations using the 8-poinoritigm
[12]. The epipoles can be estimated as the null vectols ahdFT.

According to Fig. 2(a) and using the general case for a pair

The Cartesian coordinates for the camera locaon can be
expressed as a function of the polar coordinates and ¢» (Fig.
2(b)) using

(6)

with 2 = —arctan(esz/az), ¢d2 — 2 arctan(eas/az) and
d%; = 2% + 22. Similarly, the relative Cartesian coordinates between
C; andC: can be expressed from the polar coordinatesand:

as follows

To = —d23 sin ’([)27 zZ2 = dzg COSs 1/127

@)

with ¢12 = ¢2 — arctan (e21/a.) = ¢1 — arctan (e12/a,) and
d%Q = (:131 — :232)2 =+ (211 — 22)2.

(1 — z2) = —dizsinti2, (21 — 22) = d12 cos P2,

I1l. CONTROL LAW DESIGN

We propose to correct the robot pose by exploiting the epipol
geometries among three views. This is done on the basis ofarex

views [16], we can find the six epipoles among three views. L&Pntrol system, where global stability can be ensured irntreshto

C1 = (z1,71,¢1) and Cz = (z2, 22, ¢2) be two camera locations
with respect to a global reference @s; = (0,0, 0), associated to
the location of the target image. In our camera-robot condigpn

rectangular Jacobian-based approaches [9]. Hencefeti; Ibe the
initial camera locationC. the current andC; the target location.
The proposed control strategy is performed in two steps kes:

the z-coordinate of the epipoles can be expressed in terms of thes First step. Alignment with the target: orientation and faterror

camera locations and the parameter. The double subscript refers
to the related images, for instanags is the epipole in image one
as computed with respect to image three.

are corrected. This is achieved by zeroing the epipolesimgla
the current imagd» (K, C2(¢)) and the target onés (K, 0). It
can be seen as a two-view approach because only requires the
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epipolesess andesz. Initially, we have two images (Fig. 3(a))
and at the end of this step, the robot is as in Fig. 3(b).

where e4; and ed, are suitable time-varying references. From the
time-derivatives of these errors and using the polar coatds (6),

« Second step. Depth correction: pure translation along thkee obtain the following error system
z—axis. Provided that the orientation and the lateral errer ar

maintained in zero by the control loop, the objective of gtep
is to achievee1s = e13 0Or ea1 = es1. This step requires the
three images to compute the constant epipeles es: from
I (K, C1), I3(K,0) and the varying epipolesi2, e21 from
L(K, C1), I:(K, Ca(t)).

N

€13 =/€y3
€1,,€;5)
C,=¢
CY (b) (©
Fig. 3. Control strategy from the epipoles of three views). Igtial

configuration. (b) Intermediate configuration. (c) Finahfiguration.

Finally, after the first step has corrected lateral errag, ¢pipolar
geometry in the three-view configuration dés; = eis, e21 = es1,
which impliesI>(K, C2) = I3(K, 0), and consequentl; = Cs
as desired (Fig. 3(c)).

We assume that the robot is initially in a general configorgtnot
aligned with the target pose. Otherwise, this particularfigoiration
can be trivially detected from the epipoles and, in that cas#mple
initial motion controlling the epipoles can drive the robota general
configuration.

A. First Step.- Alignment with the Target

Two drawbacks of the epipolar geometry appear when a carsera i

being aligned to a target using two views: uncertainty irapaeters
and singularity problems [15]. This section describes tythesis
of a control law from two images that copes with these issUéss.
propose to perform a smooth direct motion toward the targsitipn
applying adequate velocities during the whole task usirgy shme
robust control scheme even in singular situations.

Let us define the outputs of the system usingiheoordinates of
the epipoles for the current and target images

8)

In addition to the singularity problems from two views, dept
correction cannot be reached with only such informatione Bh-

y=h(x)= [ €23, €32 ]T

— o sin(dy—tb)

. Qg -d
l: ‘S.C } = [ dag CO§2§$2*$2)) cosZ(p2—2) :| l: v } — l: 633 :| .
—ovg sin(gpo —1o ;
3 da3 cos?(2) 0 w €a2
(10)

The system (10) has the fori = M-u — &% where M
corresponds to the decoupling matrix, whose inverse is

1 1 0 _ dos cos®(¥9)
M = ) Si"(%z*’kl)z) , (11)
Oz | cos” (p2 —1p2)  —cos” (¢2)

and é? represents a feedforward control term. In order to invest th
system (10), it is important to notice thi¥ loses rank ifps — 12 =
nz with n € Z, which makes the element of the first row of (11) to
grow unbounded, and consequently also the translatiotatitie As
can be seen in the analytical expression of the inverse xntti),
the computation of input velocities is bounded for any oigration.
From the definition of the angles below (6), it can be seen timat
singular condition corresponds ¢a; = 0. This is a problem because
it is indeed a control objective.

We faced the tracking problem as the stabilization of thererr
system (10), which has unknown parametersand d2s, i.e. focal
length and distance between cameras. These parametesgiarated
as the constantsy,, and ds3,, and introduced to the estimated
decoupling matriXM. (¢2,1¥2).

We propose a robust control law based on SMC [22]. This
control technique is chosen to tackle two isstigghe sensitivity to
uncertainty in parameters of a control system based on -yttt
linearization, which degenerates the performance of @eking, see
for example [16].ii) The need to maintain control during the entire
navigation even when the singularity occurs.

1) Decoupling-based Control LawFirstly, let us define the fol-

lowing sliding surfaces
e]-[omi]-e

S:{ } £

Thus, the tracking problem is solved if there exist switched
feedback gains according to an stability analysis that ntakestate
to evolve ons = 0. The following SMC law, consisting of a so-
called equivalent control (feedforward term) and a two-gsional
vector of switched feedback gains, ensures global stakiiz of the

system (10)
Usm :Mgl(¢277/12) ( ) 9’
being k. > 0 and x; > 0 control gains. The action of switched

feedback gains in the error dynamics is to keep the statectay
on the sliding surfac€l2). These gains add or subtract accordingly,

d
€23 — €23
d
€32 — €32

Sec
St

(12)

éds — Kkesign (se)

el — Kesign(st)

(13)

called zero dynamicsis achieved in the robot system when thén order to force the state trajectory to head always towaedstirface

epipoles defined as outputs reach to zero. Zero dynamicsdsided
by a subset of the state space which makes the output to bicelgn
zero [21]. In the particular case of the robot system (2) wititput
vector (8), this set, denoted ¥, is the following

*:{XlengO, 63250}:{[07Z2,0]T,Z2€R}. (9)

[22]. Although (13) can achieve global stabilization of (10), it may
need high gains that could cause a non-smooth behavior irobo
state, which is not valid in real situations. So, we add a ptadeement
term in the control law to alleviate this problem

I

Sc
N (14)

upp = M. (62,2) [ 0 a

The zero dynamics in this control system means that, when the,

epipolesezs and es, are zero, the lateral error and the orientatio
of the robot are corrected, but depth may be different to.zA
mentioned previously, this is corrected in a second stepus eefine
tracking error functions ag. = ea3 — ed; and &

d
= €32 — €39,

eing Ac > 0 and A; > 0 control gains. Finally, the complete SMC
W (u = ugp) that achieves robust global stabilization of the system
(10) is as follows

Ugp = Usm + Upp- (15)
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Fig. 4. Initial configurations requiring different motiorirategy through
adequate desired trajectories of the epipoles.s{gh (e23) # sign (e32) -
direct motion toward the target. (Bfgn (e23) = sign (es2) - rotation to
reach the same condition as in (a).

2) Bounded Control LawThe control law (15) utilizes the decou-
pling matrix that presents a singularity problem when theea axis
of the robot is aligned with the baseline, which generatdmunded
translational velocity. In order to pass through the siagty, the

control law commutes to a direct sliding mode controller whe

|¢p2 — 12| is below a threshold’,. This kind of controller has been
studied for output tracking through singularities [23]. Yepose the
following direct sliding mode controller

w = { } _ { —kysign (st b(¢2,102))

—kusign(sec)
wherek, andk. are suitable gains anfd(¢-, v2) is a function that
describes the change in sign of the translational velocitgrwthe
state trajectory crosses the singularity. This function ba deduced
from the first row ofM~! (11) to be

Up

o (16)

b(¢2,12) = —sin(¢2 — P2).

The control law (16) withd (¢2,%2) (17) locally stabilizes the
system (10) and is always bounded.

3) Desired Trajectories for the EpipolesAs main requirement,
the desired trajectories must provide a smooth zeroingeoéfipoles
from their initial values. Fig. 4(a) shows two configurasoof robot
locations for cases in whickign (e23) # sign (es2). From these
conditions, the epipoles are naturally reduced to zero asrabot
moves directly toward the target. In order to carry out thisdk
of motion, the locations startingign (e23) = sign (es2) need to
be controlled to the situation ofign (e23) # sign (es2). In such
case, the control law forces the robot to rotate initiallyréach an
adequate orientation (Fig. 4(b)). The following traje@erprovide
the described behavior

an

d €23 (O) ™
g = = <t<
eas (1) o= (1—1—(:05,<Tt)>7 0<t<T (18)
eg;; (t)y = o, T<t<oo
d €32 (0) ™
: = — — <t<
ess (1) 2 <1+cos<Tt>>, 0<t<T
e (t) = 0, T<t<oo
where o = —sign (e23(0)es2(0)) and T is the time to perform
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Both previous controllers (15) and (16) can be seen as a céaamu
control law and their stability is shown later. The contraivl is
able to track the previous references using bounded vilscitnd
its termination condition is set with the ting.

B. Second Step.- Depth Correction with Drift Compensation

The commuted controller of the first step is only able to adrre
orientation and lateral error due to the zero dynamics (9.have
described that a third image allows to define an appropriateral
goal to correct the remaining depth. This third image is thigai
one and it does not introduce an expensive computationd| aen
that the corresponding image points are already known ahdtbe
8-point algorithm has to be run. This second step is treated a
regulation problem with integral action to give steadyestabustness
to the control loop [21], since we have constant desiredeslg s,
631)-

Let us define error function§ s = e12 — e13 andéar = e21 — es1.

We can see from (5) thati2 does not depend on the rotation and,
to avoid coupling problems between inputs, we have chosen it
dynamics to work out the translational velocity. Let us defin
augmented error system fg@i, whose dynamics is obtained using
)

ez — e13 = 12, (19)

Qg sin (¢2 — ¥12) v

d12 cos? (p1 — 12)

where the new statg), corresponds to the integral of the error. The

following sliding surface is proposed as the linear comtiamaof the
state

-0
€12

&12

s = ko&ly + €12 = 0, (20)

in such a way that whes = 0 we havet;s = —kotY,. By substitut-
ing this expression in (19), the reduced order sys§gm= —ko&Y,
is obtained. It is clear that for an, > 0 the reduced dynamig?,
is exponentially stable, and similarfii.. We makes = 0 to find the
equivalent control, and then, a switching feedback gaindided to
yield

e = di2, cos® (¢p1 — 12)
© ag,sin(¢2 — i2)
wherek; > 0 is a control gain. Notice thatin (¢2 — 112) is never
zero for the situation displayed in Fig. 3(b). This contalachieves
robust global stabilization of the system (19) and its teation
condition can be given by verifying thats — e13 = 0.

Although only a straight motion is needed during this second
step, orientation control is maintained in order to compéngor the
noise or drift that is always present in real situations. \Weppse
to keep the bounded rotational velocity (16) during the sdcstep.
However, this velocity depends amns, which has the problem of
short baseline when the target is reached. In order to atkethis
issue, we use a similar approach to the one presented in At6].
intermediate image is used instead of the target one wheeypipelar
geometry degenerates. In our case, the last current imagbeof
first step is stored, which corresponds to an image acquied f
a location aligned to the target. This intermediate imagdeisoted
by I>,.. (K, Ca,, ), where the subscriptr stands for “aligned robot”.
So, the computation of the rotational velocity as the comglet of
the translational velocity,. (21) during the second step is carried

(—ko&12 — kisign (s)) (21)

the first step of the control strategy. In our approach, asniy agyt from the adequate images as follows

image-based scheme, the desired trajectories in the inpage play
an important role in the resulting Cartesian path. By chagmghe
reference trajectory of the target epipole (related to thadlational
velocity) is possible to run our approach for car-like rabot

I(K, C2), I3(K,0)
b, (K, Cs,,), I2(K,C2)

=  wp = —kusign(ezs), (22)
=  wp = —kusign(ea,, ).
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The second equation is applied when the robot is reaching th& - M. '. Thus, Vi and V» are negative definite if and only if the
target avoiding the problem of short baseline. The conditioswitch ~following inequalities are guaranteed for all # 0, s; # 0
from the first to the second equation is given by thresholtliegvalue

Qg

of the epipoleess. Ko+ Aclse| > oy 4], (25)
Keeping the control strategy in the same epipolar contest ha Q. d23

the advantage of providing full control of the position anden- Kot Aelse| > Qudas | B

tation during the whole task. In previous epipolar appreacha
depth correction stage is carried out by commuting to a featu = ! -
based correlation approach with null rotational veloci#y, [or by fulfilled. On onelhand,. itis clear that for "’,"?a' 9°“d'“°f‘§e = das,
commuting to homography-based control [15]. So, two differ “ze = Qe the .rlght side of both inequalities is zero and therefore,
approaches are used to solve the visual servoing task irefaged 2Ny control gainssc > 0, r¢ > 0, Ae > 0, A > 0, accomplish
works. In comparison to pure homography-based approachies fhe inequalities. O_n the other hand, when the est!mate(_icdtmt
[6], which depend on the observed plane, our approach is tabb_parame_tgrs are different to_the re{iCIl onefsd, the rlght_ sidehef t
correct longitudinal error without an explicit position tiesation. nequalities become proportional 3], _1632’- By using slow
Additionally, our control scheme solves the singularitplgem by references and increasing slightly the gains, global ogeree to
using bounded input velocities while a direct motion to theget the sliding surfaces can be achieved regardless of uncgrtai

is carried out. This problem has been tackled in [7] by avmjdio Parameters. o

reach the singularity using a particular motion stratedye $trategy Now, let us show the stabilization of system (10) by reactitreg
prevents the singularity occurrence but has the drawbaak ttre Surfaces (12) using the controller (16). The same candidatpunov

robot goes away of the target and then, it performs a backwdtd1ction (23) is used, and for each term of (24) we obtain

Therefore,Vé,.t1 < 0 if and only if both inequalities (25) are

motion in a second step without orientation control. In [16he v o< b Qg .d c
of the control inputs is not computed when crossing the sargy. b= T M2 (p2 — ) ’623’ —1C1 ) Isel,
These aspects show the benefits of the proposed control eotnasm . o |b (h2,102)]| 4
previous related approaches. Vo < - ( oy ‘6320 |st] .
IV. STABILITY ANALYSIS where C' = ko 7220220 < sign(s,) and b (g2, 1) is given in

First, it is worth noting that the servoing task must be aquished (17)- We verify thatVy and V> are negative definite if and only if
by carrying out the two described steps. In the following, stebility the following inequalities are assured for all # 0, s¢ # 0

of the tracking control law is analyzed in each step sepgrdtetice cos? (¢2 — 1h2) .d

that both steps are independent in the sense that they aliedapp ko > az <|C| + ’e%D ’ (26)
sequentially. In this analysis, we consider that enough bamof daz cos? (12) |.q

image features of the target scene are visible in the caméedd few @z |0 (62, 12)] ‘632‘ ‘

of view during the navigation and that the robot starts in aegal . ) ) ) o

location. Therefore, Vs, < 0 if and only if both inequalities (26) are

Proposition 1. The control law that combines the decoupling-baselyfilled. Once again, these inequalities are accomplishgdising
control (15) by commuting to the bounded control (16) whemnev SIoW deswgd trajeqorles for the epipoles with approprgins. Note
|2 — 1| < nr + Th, whereT}, is a suitable threshold and € z, ~ thatthese inequalities do not depend on the controllempetiersas, ,
achieves global stabilization of the system (10). Moreogiobal 923 because the bounded controller does not need this infamati

stabilization is achieved even with uncertainty in pararset and thus, its robustness is implicit. ) o
Proof: First, stabilization of system (10) by using controller (15 Notice that conventional cameras have a constrained fieldeof

and consequently, the commuted control law is able to dett wi

is proved by showing that the sliding surfaces (12) can behedhin <™ * R ;
situations wherggs — 12| < /2. Under such visibility constraint,

a finite time. Let us consider the natural candidate Lyapu#ooetion

for a sliding mode controller, the fractional terms in any of the preyiously presented esgions
are bounded during the whole navigation task.
Vi, =Vi+ Vo, Vi= %83 Vy = 5837 (23) The bognded .controller (1§) is able to locally stabilize slyetgm
_ _ (10) and its region of attraction grows as long as the corgedhs
which accomplished/s;, (sc =0, s = O). =0 andVs, >0 forall k, and k. are higher. Given that the control strategy commutes
sc #0, s¢ # 0, and whose time-derivative is between two switching controllers according to a rule defibg the
Vstl — V1 4 Vo = $ue + 5151, (24) thresholdT}, (so that each one acts inside of its region of attraction),

the commutation between them does not affect the stabifitthe
We analyze each term of (24) for the decoupling-based cib#tro overall control system.
(15). Using (10) for the time-derivatives of the sliding fswes and  Once sliding surfaces are reached for any case of SMC law,
the estimated parametets., and d23. in the controller, we have the system’s behavior is independent of matched unceeairnd

after some simplifications disturbances. Uncertainties in the system (10) fulfill thatching
) o condition [21]; they belong to the range space of the inputore
i < - (a (Ke + e lse]) — |A|> Isel, and as a result, robustness of the control law is accomplishem
e Proposition 2. The translational velocity,. (21) achieves global
Ve < — (%236 (ke + At |se]) — |B|> |s¢] stabilization of the system (19) even with uncertainty ofgpaeters,
Oz, d23

while the rotational velocity (22) achieves lateral driftngpensation
WhereA — @ (dgge _ 1) el e ion(s)) — As cos? (1h2) + assuming that Proposition 1 is accomplished.

e d23 ( 12 , wsign( Z) 0st) cos*($2=¥2) Proof: We prove the stabilization of system (19) by using the
(a’“ - 1) éy and B = <Q:C—Z3; - 1) é3; are obtained from controller (21) and showing that the sliding surface (20p dee

Qg




reached in a finite time. Simultaneously, given the contmioa
(22), the epipoleg2s and respectivelys,,,. are maintained in zero
with finite time convergence, keeping the alignment with tieget.
Let us define the following candidate Lyapunov function

1 1
Vi, = 582 + 3 (63* + 632)

where x refers to the targefs(K, C3) or the intermediate image
I>,,. (K, C2,,.). The time-derivative of this function is

Visty = 85 4 e24€24 + €x2€42.

The dynamics is obtained from (19) and.., é.2 are given as
follows

. —ag sin (g2 — P2) Az
T G cos? (p2 — 2) Ve T o2 (o —2) "
by = Qwsin(d2—tn) @7)

day cos? (12)

By the assumption that Proposition 1 is accomplished, thetro
starts the second step aligned with the target=€ 0, ¢> = 0), which

implies ¢2 — ¥2 ~ 0. Then, we use the small angle approximatiol

sin (¢2 — ¥2) & 0, cos (p2 — 1p2) ~ 1 to obtain

. azdioe
‘/Stg = _k’lW;j2 |8| + Ds — k’wOéw |62*|
whereD = (1 — g'Lclfl; ko&12. S0, Ve, is negative definite if and

only if the foIIowin§ inequalities are guaranteed for alk% 0 and
€24 ;é 0

. d

k> um (28)
azdize

ko > 0

For ideal conditions, the right side of the first inequalisyzero
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good performance. The robustness of the approach undeneaia
uncertainty and noise in the image is reported.

OfF 4
_2 - 4
_4 - 4
_6 - 4
_8 - — 4

'g (4,-8,40°)
~ -10f 1

3 —_
—12| (-5,-13,0° (3,-11,15.26°) |
_14 - 4
_16 - 4
-18} — = 4
(-7,-18,~10°)
_20 1 1 1 1 1 1 1
-8 -6 -4 -2 0 2 4 6 8
X (m)
Fig. 5. Simulation results: upper view of the robot motiontoe = — 2

plane for different initial locations.

We use virtual images of size 64@80 pixels to compute the

and any valué; > 0 is enough to reach the sliding surface in finitey;;55jes. Along the first simulations we keep fixed all theapzaters

time. On the contrary, when controller parameters are rdiffeto the

real ones, the gaik; should be increased. Once the sliding modg,, d12.). The simulation time is 20 ST

is reached, the stability of the reduced order system isagieed

of the control law. We sef. = 6 mm anddszs, = 10 m (the same
= 16 s corresponding to
the first step and the remaining for depth correction) @pd= 0.03

for ko > 0. Additionally, any disturbance caused by the small angle,y |t is enough to set small gains for the bounded contraite

approximation accomplishes the matching condition andait be
rejected by the SMC input. So, the system (27) is maintaimedral
e2« = 0, ex2 = 0 and the alignment to the targéb, = 0, 2 = 0)
is ensured correcting any possible deviation. Finally,jtiet action

of vg. (21) andwy, (22) steers the robot in straight motion toward th

target in the second step. The stop conditen—e13 = 0 guarantees
to reach the desired locatiqwz = 0, z2 = 0, ¢2 = 0).

Note that the parameterks andd;> are unknown, but according
to conditions (25) and (28), they appear as a factor of thmestagional
velocity that can be absorbed by the control gains. Howeveood
strategy to set the corresponding controller parametgrsanddio,
is to over-estimate them, being coherent with the scenario.

Although we are not dealing with a totally uncalibrated case
have shown that robust global stabilization of the errorcfiom can
be achieved by setting adequate control gains. Our apptwxheen
developed specifically for mobile robots on the basis of aasepl
control system unlike some uncalibrated approaches, fstammte
[18]. Additionally, our approach does not require any addl
feedback or initialization information, in contrast to [19

V. EXPERIMENTAL EVALUATION
A. Simulation Results
In this section, some simulations performed in Matlab shbat t

unitary gains for the rest of them.

1) Control through the Singularity:The resultant paths starting
from four different locations are shown in Fig. 5. The cases Jai
direct motion toward the target. The case 2 is a situationreviige

Ghitial pose is singular witle23 = 0. The line from the initial position

to the target shows that the camera axis is aligned with teeline.
At the beginning, the singularity is avoided by the boundewtioller,
and then, the robot is driven to the target. For the cases 3ahd
robot starts withsign (e23) = sign (es2) and eqs is controlled to
change its sign, which results in the initial rotation.

As an example, the behavior of the state of the robot is pteden
in Fig. 6(a) for the case 3, where the robot crosses the snguin
the first seconds. This is obtained using the input velaxitie Fig.
6(b). The control inputs are maintained bounded even whenahot
is aligned with the target around 15 s. The exponential dehaf
the translational velocity from 16 s to 20 s corrects the iiaing
depth error.

2) Robustness under Parametric Uncertainty and Noigéie
control law has shown robustness under error in the parasnéte
d12 with respect to the introduced in the controltés, , di2,. Up to
now, all the control law parameters have been maintaine@scyithed
before. Notice that for the four previous paths, the distafs in
meters) between cameras is different for each initial pasd, even

the goal of driving the robot to a desired pose is attainech wiso the target is reached.
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-2 . . . Fig. 7. Simulations with different values of focal lengtfi) (and principal
point (zo) showing robustness against parametric uncertainty.

camera. The images are acquired at size>G/8D pixels. In order
to facilitate the image processing, the scene observed éas fet
up with two planes consisting on squared patterns, from hvitie
corners of the squares are extracted and matched to estthmate
epipolar geometry. The acquired image data is processed tise
OpenCYV library. During the navigation, the system tracke ithage
Fig. 6. Simulation results: evolution of the state of theaiand velocities POINts using a Lucas-Kanade pyramidal algorithm. The spoading
for the case 3 in Fig. 5, where the singularity is crossed @nfifst seconds. points are the entries of the 8-point algorithm as implemenn
OpenCV.

The control law parameters have been sefl49 = di2, =5 m
and f. = 9 mm, and the image center as the principal point without
performing specific calibration. Figures 9(a)-(b) preséstevolution
of the state given by the robot odometry, from the initiadtion (-0.3

all the simulation runs, however, the obtained behavior@ument o, 1 3, ) for one of the experimental runs. The final position error
for any initial pose. Figure 7 presents the final pose and regaared s |ess than 5 cm and the orientation error is practicallyligise.

tracking error for a range of focal lengths. The robot alweaches The time T for the execution of the first step, alignment with the

the target with good preC|s_|on_and the tracklng_error is rlmmed N target, is set to 21 s. We can see in Fig. 9(c) how the bounde@ SM

a low value. The last plot in Fig. 7 shows the final pose foreéht |5,y is applied around 16 s due to the occurrence of the sirigula

values of thez-coordinate of the principal point. _ After 21 s the feedback for depth correction is provided frtma
Figure 8(a) shows the performance of the approach undereimag, o of,,. The behavior of those epipoles involved in the control

noise for the initial pose (-6,-16,-1) The simulation time is Set t0 |5,y js shown in Fig. 9(d). The termination condition of thekas

40 s and the noise added to the image points has a standaatiaievi given when the difference;» — e15 is below a threshold. Figure 10

of 0.5 pixels. Itis clear the presence of this noise in theiamodf  ghq\ys sequences of some images taken by the robot cameraand a
the image points in Fig. 8(b). In Fig. 8(c) we can see the ezptial o, tarnal video camera.

behavior of the depth afteF :.32 S, V\(hich reaches zero.by USING  The non-ideal behavior of the tracking faks is due to the
feedback frome;2. We can notice in Fig. 8(d) that the epipoles,  parqware constraints, given that the closed loop frequéntipnited
and e3> become unstable before the end. However, after 32 s the e ronots at our disposal. Nevertheless, simulatiorts -
controller useg:» to compute the translational velocity by regulating, |4 experiments show that a closed loop frequency aron#iz
e12 t0 a constant value as shown in Fig. 8(e). We can seedhat 5 gngugh to obtain system’s behavior with small chattegffgct.
is more sensitive because also depends on the rotatioraityelbut Chattering is a phenomenon presented in SMC systems thetajes

it is not used in the controller. The corresponding inputouitles o, ogeillation within a neighborhood of the switching saefesuch
obtained by the control algorithm are shown in Fig. 8(f). ietthat 4t s — ¢ is not satisfied as expected ideally [22]. In our results,

none of both velocities have the problem of short baselintbeaend given the frequency achieved and because of the low-passirfit

of the motion, since they are computed from stable measutBMeqttect of the robotic mechanical system, the state of thetrbas a

(e12 andexz,,., respectively). smooth behavior. The resultant navigation in this expenirieshown

in a video together with the view of the on-board camera. Shimwvs

B. Real-world Experiments the validity of our proposal and its satisfactory performamith the

The proposed control law has been tested in real conditisimgu hardware used. As long as the closed loop frequency couldgheth
the robot Pioneer P3-DX of Fig. 1(b) with a low cost conventib the results could be improved.

w (rad/s)

0 5 10 15 20
Time (s)
(b) Control inputs.

Regarding to camera parameters uncertainty, we analyzeffeet
of changing the focal lengthf{ in the computation of epipoles while
keepingf. constant in the controller. The initial pose is (2,-7,8fbr
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Fig. 8. Simulation results. (a) Robot trajectory. (b) Matiof the points in the image. (c) State variables of the rohoing the motion. (d) Epipolesas
andes2 used to compute decoupled velocities (15) until 26 s and tumded velocities (16) until 32 s. The same rotational vgldcom es3 is maintained
until 35.5 s. Asea3 turns out unstable, from 35.5 s to 4Gs,,,. (€) is used to compute the rotational velocity according2®).(The translational velocity
from 32 s to 40 s is computed fromys (e) using (21). In (f), the resulting velocities and w during the global trajectory are shown. Although; and
e2,,2 in (e) are not used, they are shown to illustrate their prajoervergence.
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