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Abstract— This paper presents a new method for visual
homing to be used on a robot moving on the ground plane.
A relevant issue in vision-based navigation is the field-of-view
constraints of conventional cameras. We overcome this problem
by means of omnidirectional vision and we propose a vision-
based homing control scheme that relies on the 1D trifocal
tensor. The technique employs a reference set of images of
the environment previously acquired at different locations and
the images taken by the robot during its motion. In order to
take advantage of the qualities of omnidirectional vision, we
define a purely angle-based approach, without requiring any
distance information. This approach, taking the planar motion
constraint into account, motivates the use of the 1D trifocal
tensor. In particular, the additional geometric constraints en-
forced by the tensor improve the robustness of the method in
the presence of mismatches. The interest of our proposal is that
the designed control scheme computes the robot velocities only
from angular information, being this very precise information;
in addition, we present a procedure that computes the angular
relations between all the views even if they are not directly
related by feature matches. The feasibility of the proposed
approach is supported by the stability analysis and the results
from simulations and experiments with real images.

I. INTRODUCTION

Vision sensors have been widely used for robot naviga-

tional tasks [1] due to the high amount of information that

can be extracted from them. In particular, visual homing is

often inspired by the mechanisms that certain animal species,

such as insects [2], [3], utilize to return to their known

home location. Due to the advantages provided by their wide

field of view, omnidirectional cameras are being increasingly

employed in robot navigation. In contrast to what occurs

with their radial information, which is strongly affected by

distortion, the angular information provided by these cameras

is rich and precise.

Angle-based homing methods using omnidirectional vi-

sion have been proposed, being [4] an early work and [5],

[6] more recent contributions. These are purely feature-based

approaches where the angles of landmarks in the images

are used to generate a homing vector. An alternative is to

employ the geometric models that relate the views of a

scene. Visual control methods have been presented using the

epipolar geometry, which expresses the relations between

two views [7], and the trifocal tensor, which encapsulates

the three-view geometric constraints [8]. In particular, robot

navigation on the ground plane lends itself to the use of the

1D trifocal tensor, the unique matching constraint between
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Fig. 1. Nomenclature and conventions used throughout the paper. eAB

is the epipole (i.e. the projection of the optical center) of view B in view
A. αAB is the angle or direction of that epipole, i.e. its angular polar
coordinate in view A. The reference axis for the measurement of the angles
is the robot’s axis of orientation (the vertical axis of the images). The angles
are measured counterclockwise and are defined between −π and π.

1D views of a 2D scene [9]. The 1D trifocal tensor can

be computed linearly from point correspondences, and em-

ployed to perform 2D projective reconstruction. In robotics,

it has been used for 2D localization tasks [10], [11].

We propose a homing method that makes use of the

angular information between omnidirectional views extracted

by means of the 1D trifocal tensor. The three-view geometric

constraints enforced by this tensor on the point correspon-

dences make the calculations more robust to outliers when

compared to feature-based methods. Our approach employs

only the visual information provided by omnidirectional

images to obtain the angles between the current position

and a set of previously acquired reference images taken at

different locations, any of which can be selected as the home

(or goal) position. A control law based on the estimated

angles is used to guide the robot to the target.

The contents of the paper are organized as follows: In

section II we discuss the calculation of the angles between

views from the estimation of the 1D trifocal tensor. We also

propose a method for the resolution of the ambiguities in the

estimation of the angles. Section III presents the procedure

for the computation of all the angular information needed

for the homing task. In section IV the designed control

strategy is described. Section V provides an account of the

results of the simulations and experiments conducted with

real images. Finally, in section VI the conclusion is given.

Some nomenclature and conventions used throughout the

paper are illustrated in Fig. 1.

II. ANGLES FROM THE 1D TRIFOCAL TENSOR

The trifocal tensor is the mathematical entity that en-

capsulates all the geometric relations between three views

that are independent of scene structure. In particular, the 1D

trifocal tensor relates three 1D views on a plane, and presents
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some interesting properties; namely, it is the only matching

constraint between 1D views, it can be estimated linearly

from a minimum of seven three-view point matches (or five,

if the calibration of the cameras is known [12]), and 2D

projective reconstruction can be obtained from it.

A. 1D trifocal tensor computation and epipole extraction

The projections of a given point in three 1D views (which

we will refer to as A, B and C) on a plane are related by

the following trilinear constraint [9]:

2
∑

i=1

2
∑

j=1

2
∑

k=1

TijkuA
i uB

j uC
k = 0, (1)

where Tijk are the elements of the 2 × 2 × 2 1D trifocal

tensor, T, between the views, and u
A, u

B and u
C are the

homogeneous coordinates of the projections of the point in

each view. T is defined up to a scale factor and therefore

can be calculated, in the uncalibrated case, from a minimum

set of seven point correspondences across the views.

The process we follow to estimate T starts by detecting

relevant features in three omnidirectional images, e.g. by

means of the SIFT keypoint extractor [13], and finding

matches between them. The angles (α) of the matched

image points, measured counterclockwise from the verti-

cal axis, are converted to a 1D projective formulation,

with the corresponding homogeneous 1D coordinates being

(sin α, cosα)T . In this mapping, the distinction between

angles differing by π is lost.
Each of the point matches in 1D projective coordinates

gives rise to an equation of the form of (1). If more than

seven correspondences are available, we find a least squares

solution to the resulting system of linear equations through

SVD. In this process, a robust estimation method (RANSAC)

is employed in order to reject wrong matches.
After T has been estimated, the epipoles are extracted

from it using a procedure presented in [14] that we briefly

describe next. A 1D homography is a mapping between

projected points in two lines (two of the 1D views, in our

case) induced by another line. From the coefficients of the

trifocal tensor, we can directly extract what are known as

the intrinsic homographies; for example, the two intrinsic

homographies from A to B, KAB and LAB, are obtained

by substituting the lines defined by u
C = (1, 0)T and

u
C = (0, 1)T in (1), yielding

KAB =

[

−T211 − T221

T111 T121

]

, LAB =

[

−T212 − T222

T112 T122

]

.

(2)

Now, HA=KABL
−1

AB
is a homography from A to itself;

by definition, the epipoles are the only points that are mapped

to themselves by such a homography, i.e.: eAB = HAeAB

and eAC = HAeAC. Therefore we can calculate them as the

eigenvectors of matrix HA; it is important to note, though,

that with this method we do not know which of the other

two views (B or C) each of the two recovered epipoles

corresponds to. By mapping this pair of epipoles to the other

views through the intrinsic homographies, we finally obtain

the six epipoles of the set of three 1D views.

B. Ambiguity resolution

There are three ambiguities that need to be resolved in

order to determine the correct values of the angles of the 2D

epipoles from the values of the epipoles extracted using the

1D trifocal tensor.

Firstly, as mentioned in section II-A, an epipole in a

given view recovered from the 1D trifocal tensor may be

assigned to any of the two other views. This results in

two possible solutions in the assignment of the set of six

epipoles between the three views. As shown in [9], [12],

both solutions give completely self-consistent 2D projective

reconstructions, regardless of the number of point matches

between the views. This fundamental ambiguity in the 2D

reconstruction from three 1D views can only be resolved

through the use of a fourth view, as noted in [10]. The method

we employ to resolve the ambiguity operates in the following

way: having a group of four views (which we can call A, B,

C and D), we calculate two different trifocal tensors between

them; for instance, the tensor relating A, B and C, and the

tensor between B, C, and D. Since the epipoles between B

and C must be identical in the two estimations, by detecting

the common (or, in a real situation, the closest) epipoles in

these two views we can disambiguate the assignment of the

complete set of epipoles.

The origin of the two other ambiguities lies in the fact

that in the mapping of 2D image points to 1D projective

coordinates, the distinction between bearings differing by π
is lost. The angle of a recovered 1D epipole (e1, e2)

T is

obtained as arctan(e1/e2) in 2D. As a consequence, from

the 1D epipole we can extract two different angles in a

2D view, separated by π radians. There are, therefore, four

possible solutions for the values of the epipoles between two

given views A and B, which may be interpreted as emerging

from two combined reconstruction ambiguities; namely, an

ambiguity in the direction of the translation vector from view

A to view B, which accounts for the difference between

solutions (a) and (c) in Fig. 2, and an ambiguity of π radians

in the orientation of view B, illustrated, for example, by

solutions (a) and (b) in the same figure.

This double ambiguity for a set of two views might be

resolved through point reconstruction, but instead we use a

simple method employing only the angles of matched image

points. We first choose one of the two possible values for

each angle. We name these selected angles αs
AB and αs

BA.

Although these two choices are arbitrary, let us suppose, for

simplicity, that we have picked the angles so that both of

them are between 0 and π radians. Our procedure is based

on the alignment of the two views, which is achieved through

the rotation of the image points by the selected angles. This

is done simply by subtracting the selected angle from the

angular coordinate of every matched image point. Once the

images have been aligned, if the two cameras are pointing in

the same direction, the two projections of any given point in

them will lie on the same side with respect to the camera’s

axis of orientation, whereas if the cameras are pointing in

opposite directions, the projections will lie on opposite sides
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Fig. 2. Four possible 2D reconstructions from the epipoles between two
views extracted from the 1D trifocal tensor (top). The relations between
the angles of the projections of matched points, such as P1 and P2, in two
aligned views are used to resolve the 2D reconstruction ambiguities (below).

TABLE I

DISAMBIGUATION OF THE ANGLES OF THE EPIPOLES IN TWO VIEWS

B in front of A B reversed (∗) αAB αBA Case in Fig. 2

1 1 αs

AB
αs

BA
(a)

1 0 αs

AB
αs

BA
+ π (b)

0 1 αs

AB
+ π αs

BA
+ π (c)

0 0 αs

AB
+ π αs

BA
(d)

(∗)After alignment of the images using the selected angles, αs

AB
and αs

BA
.

of the axis (Fig. 2). We use a voting procedure integrating

the individual results of this test for all the matched points

to determine whether aligning the two cameras using the

selected angles leaves them pointing in the same direction

or reversed with respect to one another.

Next, we want to obtain the sign of the scale of the

translation from view A to view B, i.e. establish if B is

in front of or behind A. Having the two images aligned

and pointing in the same direction (rotating view B by an

additional π radians if required) we use the fact that the

projections of points in the camera that is in front will give

larger angles, in absolute value, than the projected points in

the camera that is situated behind. This is again illustrated

in Fig. 2. For every matched point, we subtract the absolute

values of the angles of its projections in views A and B. We

square these results (keeping their sign), in order to give the

more discriminant points a greater weight, and then add them

up. If the sum is positive, A is estimated as being behind B;

otherwise, A is in front of B. This result directly gives us the

angle of the epipole in view A, and its combination with the

outcome of the orientation test determines the value of the

angle in view B, as shown in Table I. Additionally, for every

group of three views the joint consistency of the three results

of this two-view disambiguation procedure is checked.

III. REFERENCE-SET ANGLES COMPUTATION

The initial stage of our method involves the calculation of

the angular relations between the images on the reference set.

This processing can be done off-line and therefore its time

consumption is not a critical issue. The aim is to build and

store a matrix containing the angles of the epipoles between

every pair of reference views, for their use during homing.

We will name that matrix M, with M(i, j) = αij being

the angle of the epipole of view j in view i. All the diagonal

elements of M are defined as zero and the size of the matrix

is (n × n), where n is the number of reference views.

Relevant features are extracted and matched between every

pair of images on the reference set, and the resulting point

correspondences are stored. We then start an estimation

procedure that operates as follows:

• A set of four images (which we can call A, B, C

and D) taken in two groups of three (e.g. A-B-C and B-

C-D) are processed in each step. For each trio of images

we obtain three-view point correspondences by taking the

common two-view matches between them. From a minimum

number of seven point matches between the three views in

each group, we can calculate two trifocal tensors, and we

can finally obtain the angles of the epipoles in each of the

views of the four-image set (section II).

• We run through the complete set of reference images

calculating trifocal tensors and estimating the angles between

the views. Whenever there is more than one estimation of

a certain angle available, we choose the result that was

obtained from the largest set of point matches. In addition,

since in real experiments we have found that small sets of

correspondences between views tend to produce unreliable

results, a minimum threshold can be set for the number of

correspondences, below which the calculation of the trifocal

tensor for a trio of views is not attempted.

• After the preceding stage is finished, we usually end

up with an incomplete M matrix, due to the impossibility to

find sets of three-view point matches linking all the positions

on the reference set. There may not be correspondences

between images that are far apart; still, groups of adjacent or

close images are likely to provide good sets of matches, and

from the angles estimated between them we can calculate all

the missing angles in matrix M. Specifically, if the angles

between two given views i and j are unknown (i.e. M(i, j)
and M(j, i) could not be obtained in the preceding stage of

the algorithm), we look for a pair of views that are linked

with both i and j, and employ the procedure described

in section III-A to calculate those two angles. By using

this method iteratively, all the elements in matrix M can

eventually be worked out.

The geometric consistency of the triangles obtained in

every step of the process is checked, in order to increase

the robustness of the results.

A. Complete solution of four-view sets

In practice, it is usually not possible to find matches across

all the images. Next, we propose a method to compute all

the angular information using the matches between sets of

adjacent or close images. A geometric setting of the type

shown in Fig. 3, where two triangles are known between the

locations of four views, comes up in our method every time
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Fig. 3. Geometric setting with four views and two known triangles.

we estimate two trifocal tensors from a four-view set. This

section describes the method employed to calculate the two

unknown angles in this configuration.

We use the notation ÂBC to refer to the angular size

(> 0) of the angles in a triangle. Without loss of generality,

we can formulate the problem in the following terms: all the

angles from every view to the others in the set are known

except the angles of the epipoles between views A and D.

Therefore all the angles in the four triangles formed by the

set of four views are known, except the ones including both

vertices A and D (represented with dashed lines in Fig. 3).

Our objective is to calculate the angles αAD and αDA of

the epipoles eAD and eDA, which can be directly obtained

from the knowledge of the angles of the triangles at those

vertices. We start by applying the law of sines on the set of

four triangles (ABC, ABD, ACD and BCD), which finally

yields the following expression

sin ÂBD

sin ÂCD
= KA, (3)

where KA is a known value given by

KA =
sin ĈBD · sin B̂AD

sin B̂CD · sin ĈAD
. (4)

Using the intrinsic relationship between the three angles

at vertex A and applying trigonometric identities, we can

calculate the individual values of the angles in (3). We must,

however, take into account the fact that the location of A with

respect to the other three vertices changes the geometry of

the set and, consequently, the relation between the angles at

the aforementioned vertex. Therefore, we need to divide the

plane into seven regions, as shown in Fig. 4, to account for

these differences. It turns out that the expression that gives

the angle ÂBD has the same form in all cases (i.e. for all

regions), but the signs of two of its terms, denoted as sign1

and sign2, are dependent on the region where A lies

ÂBD = arctan
sign1 · KA sin(ÂBC)

1 + sign2 · KA cos(ÂBC)
. (5)

D

B C

1
Ω

2
Ω

3
Ω

4
Ω

5
Ω

6
Ω 7

Ω

Fig. 4. Seven regions where point A can be located.

TABLE II

VALUES OF SIGNS FOR THE DIFFERENT REGIONS IN WHICH A MAY LIE

Region of vertex A Relation between angles at vertex A sign1 sign2

Ω1 ÂCD = 2π − ÂBD − ÂBC -1 1

Ω2, Ω5 ÂCD = ÂBD + ÂBC 1 -1

Ω3, Ω6 ÂCD = ÂBC − ÂBD 1 1

Ω4, Ω7 ÂCD = ÂBD − ÂBC -1 -1

We can easily determine the region in which A is located

using the known angles of the epipoles in views B and C,

and choose the appropriate values of sign1 and sign2 as

shown in table II.

The angle of the epipole of view D in view A is finally

obtained as follows

αAD =

{

αAB + ÂBD, if 0 ≤ αBA − αBD < π

αAB − ÂBD, if 0 > αBA − αBD ≥ −π
.

(6)

The angle of the epipole in view D of view A (αDA) can be

calculated through a completely analogous process, simply

interchanging the roles of vertices A and D. The results are

validated using geometric consistency checks. By employing

the procedure we have just presented, we can calculate the

two unknown angles and thus obtain the complete set of

angles between the four views. In addition, this method is

useful for two other purposes within our homing technique:

• In the initial stage, detailed in section III, this method

allows to fill in the missing elements in the matrix of epipole

angles, corresponding to pairs of views that could not be

linked directly due to the impossibility to find a sufficiently

large set of three-view matches between them.

• During homing, it enables us to obtain all the angles

needed to generate the motion commands employing a

minimum number of three views; we only need to compute

the trifocal tensor between the current image taken by the

robot and two of the reference images, which reduces the

cost of the algorithm.

IV. HOMING STRATEGY

In this section we describe the strategy designed in order

for the mobile robot to perform homing. We assume the

robot moves on the ground plane and has nonholonomic

motion constraints. The homing method is based solely on

the computation of the angles between the locations in which

a series of omnidirectional images of the environment were

obtained. This group of snapshots consists of the image taken



by the robot from its current position and a set of previously

acquired reference images, which includes an image obtained

at the desired target location. The angles between the views

on the reference set have been previously computed and

stored, as described in section III. Therefore only the angles

between the robot and the reference views must be worked

out during homing.

In every step of the robot’s motion, the camera takes an

omnidirectional image, from which key points are extracted.

When sufficient point matches are found between the current

and two of the reference images, the 1D trifocal tensor is

calculated as detailed in section II-A. From the tensor, aided

by the knowledge of the angles on the reference set, we

can extract the angles between the current and the two other

views. Finally, with the method explained in section III-A all

the angles of the epipoles in all the views can be computed.

A. Control law

For every reference view Ri(xi, zi, ϕi) (where xi, zi and

ϕi define its position and orientation in the ground plane),

the difference between the angles of its epipoles with respect

to the current and goal locations defines an angular sector

of size Si = |αiC − αiG|, as illustrated in Fig. 5. We use

the average value of the angular sizes of these sectors to set

the linear velocity at which the robot will move toward the

target position

v = kv sign(cosαCG) ·
1

n

n
∑

i=1

Si, (7)

where kv > 0 is a control gain. When the target is behind the

robot, sign(cosαCG) will be negative, therefore generating

backward motion. As the robot moves closer to the goal, the

mean size of the angular sectors seen from the reference po-

sitions will become smaller; thus, the robot’s linear velocity

will gradually decrease and eventually become zero when

the target is reached.

The direction in which the robot travels is determined by

the angle at which the goal position is seen from the current

location, i.e. the angle αCG of the epipole eCG. The angular

velocity of the control law is given by

ω = kω(αCG − αd
CG), (8)

αd
CG =

{

0 if |αCG| ≤
π
2

π if |αCG| > π
2

, (9)

where kω > 0 is a control gain. From a minimum number

of four reference views, one of which would be the view

from the target location, the robot will navigate to the home

position. Note that the orientation in which the robot reaches

the target position is not controlled, since, by definition, the

purpose of the homing task is getting to the goal location.

B. Stability Analysis

In the following, the stability of the control scheme is

analyzed by means of the Lyapunov’s Direct Method [15].

We define the candidate Lyapunov function as

V (x, t) =
ρ2

2
+

(αCG − αd
CG)2

2
(10)

1G
e

2G
e

2C
e

2
R

3
R

3G
e

3C
e

1
R

1C
e

G

C

1
S

3
S

2
S

CG
α

CG
e

x

z

Fig. 5. Elements involved and angles employed in the homing strategy.
C is the robot’s current localization, at the coordinate origin (0, 0, 0). G
is the goal location. Ri are reference views. Three of the n views on the
reference set are depicted as example.

where ρ is the distance between the current and goal posi-

tions, and x is the state of the system, determined by ρ and

αCG.

Next, we show that the candidate function (10) is a

Lyapunov function when using the proposed control law.

We need to prove that V is positive definite, V̇ is negative

definite and V is radially unbounded. The function V is

positive definite, given that V > 0 for all x 6= 0 and V (0) =
0. It is straightforward that V (x) is radially unbounded, given

that V (x) → ∞ as ‖x‖ → ∞. Next, we prove that the

derivative V̇ (x) is negative definite. The Lyapunov candidate

function derivative is

V̇ = ρ ρ̇ + (αCG − αd
CG) α̇CG . (11)

The dynamics of the system as a function of the input

velocities are given, using the derivatives in polar coordinates

with the origin at the goal, by ρ̇ = −v cos(αCG) and

α̇CG = −ω + v sin(αCG)/ρ. Using the control velocities

(7), (8) we obtain

V̇ = −kv ρ sign(cosαCG) cos(αCG)
1

n

n
∑

i=1

Si

−kw(αCG − αd
CG)2 − (αCG − αd

CG)

· sin(αCG)
kv

ρ
sign(cosαCG) ·

1

n

n
∑

i=1

Si . (12)

By definition ρ ≥ 0 and Si ≥ 0. It is straightforward

that the first two terms of (12) are negative definite, but

the last term can be positive. The interpretation is that the

convergence speed provided by the angular velocity has to

be higher than the linear velocity. Otherwise, the angular

error is not corrected fast enough and the robot will move

following spirals around the goal. However, the stability can

be guaranteed if the control gains are selected properly. It is
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Fig. 6. Robot path (left), linear velocity (center) and angular velocity (right) of three sample simulated homing trajectories.

guaranteed that V̇ < 0 if the next inequality holds

|kw · (αCG − αd
CG)| > | sin(αCG)

kv

ρ
·
1

n

n
∑

i=1

Si| . (13)

The terms of the right expression are bounded except

1/ρ. However, note that
∑n

i=1
Si/(nρ) is bounded in-

deed. We can express Si as a nonlinear function of ρ:

sin(Si) = f(ρ, RiG, αRiG); when ρ → 0 we can ap-

proximate sin(Si) ≈ Si and then Si = ρ f(RiG, αRiG).
Therefore, the right part in (13) is bounded. Then, taking

into account the initial value αCG(0), we can always define

kω in such a way that V̇ < 0 and the system under the

proposed control is globally asymptotically stable.

V. EXPERIMENTAL RESULTS

The performance of the proposed method has been tested

both in simulation and with real images.

A. Simulations

For the simulations shown below, the reference views were

positioned forming a square grid, although any arbitrary

distribution guaranteeing sufficient geometric diversity on the

plane could be chosen. A randomly distributed cloud of 200

points in 3D was generated and projected in each camera.

Three sample homing trajectories with a 16-view reference

set and the evolutions of their corresponding motion com-

mands are displayed in Fig. 6. A maximum threshold was set

in order to limit the variation of the sizes of the individual

sectors Si between two consecutive steps; this avoids abrupt

changes in the linear velocity that may occur when the robot

moves right across one of the reference positions.

We also added Gaussian noise to the angles of the pro-

jected points to evaluate the performance of the homing

method. Figure 7 displays the final position error obtained

after adding variable noise in simulations with sets of 4 (the

minimum number for our method) and 16 reference images.

Increasing the number of reference views makes the system

more robust to noise, since the control operates averaging

the contributions of the individual views.

B. Experiments with real images

The setup for the real experiments consisted of an Ac-

tivMedia Pioneer nonholonomic unicycle robot base with a
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Fig. 7. Final position error vs Gaussian noise.

Fig. 8. Example image (left), omnidirectional camera (center) and complete
setup (right) used for the experiments.

catadioptric vision system, made up of a Point Grey FL2-

08S2C camera and a Neovision HS3 hyperbolic mirror,

mounted on top. The resolution of the employed images

was 800 × 600 pixels. The imaging system is used without

specific calibration other than the assumption that the camera

and mirror axis are vertically aligned. The images were

obtained in an indoor, laboratory setting. The experimental

setup is illustrated in Fig. 8.

To generate the reference set of views, 20 images were

acquired from locations forming a 5 × 4 rectangular grid

with a spacing of 1.2 m., thus covering a total area of 4.8 ×
3.6 m2. Features in the images were extracted and matched,

and a RANSAC robust estimation was used to calculate

the 1D trifocal tensors between the views. The number of

three-view correspondences employed to obtain the trifocal
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Fig. 9. Displacement vectors (arrows) and directions of the epipoles (line
segments) with respect to the goal estimated at every reference position for
two different goal locations (marked with a cross) in real setting.

tensor estimations lied in the range of 30 (the threshold

below which the results started to become unreliable) to 70.

Although images taken on opposite sides of the room could

not be matched, the connections between adjacent or close

sets of views were sufficient to recover the relative angles of

the complete reference set. Vector field representations for

two different goal locations within the grid are displayed in

Fig. 9. The arrows at each location represent the displace-

ment vectors associated with the motion that a vertically

oriented robot with nonholonomic constraints would perform

from that spot, according to the proposed control law. They

all have been scaled by an equal factor. As can be seen, the

magnitude of the vectors becomes larger as the distance to

the target increases. The line segments show the estimated

directions of the epipoles of the goal position in each of the

reference locations. The results show good accuracy despite

the presence of outliers in the putative matches.

A sequence of 170 images was captured by the robot

while moving at constant speed along a straight-line, 5 m.

long diagonal path crossing the grid from one of its outer

sides to reach a goal position near the opposite side. The

linear velocity commands that the homing method would

generate at every step in the sequence and the estimated

angle from the current to the goal position (to which the

angular velocity of the control law would be proportional)

are displayed in Fig. 10. The results of these preliminary

experiments show that the homing method can be successful

in an environment with sufficiently large sets of feature

matches. Further illustration of the experimental results can

be seen in the video attachment.

VI. CONCLUSION

We have presented a method for omnidirectional visual

homing to be used on a robot moving on the ground plane.

The visual information is provided by a set of omnidirec-

tional reference images, and the 1D trifocal tensor is the

tool used to estimate the angular information, being this

information very precise. We have presented a method to

compute all the angular relations between the views even
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Fig. 10. Linear velocity (left) and angle to the goal (right) estimated in
real image sequence.

if there is no direct matching information between them.

The designed control law employs these angular relations

to guide the robot to the target location. The stability of

this control law has been analyzed and the experimental

evaluation shows the feasibility of the proposed technique.

The computational cost of the proposed method is low, and

the speed of its implementation is mainly limited by the

time consumption of the feature extraction process. The

method can be directly applied in settings where stored

image databases are available. In addition, it can be robust

to changes in the environment, as long as sufficient features

between images can be matched.
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