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Abstract—This paper addresses the estimation of planar
camera motion using 1D homographies. As contributions, we
show analytically that, contrary to what occurs with the 2D
homography, there is a family of infinite solutions to the 1D
homography decomposition, and therefore infinite possible motion
reconstructions. In addition, we propose a new method to com-
pute the planar motion between two images from the information
provided by two different 1D homographies, employing their
associated homology transformations. Therefore, our approach
computes a general planar camera motion from only two 1D
views, when previous works needed three 1D views for this task.
The use of 1D information makes the method particularly suitable
for omnidirectional cameras, due to the wide field of view and
precise angular information provided by this kind of sensors. The
performance of our proposal is illustrated through simulations
and experiments on real images.

I. INTRODUCTION

Multiple view geometry [1] is a powerful tool suitable for a

number of robotic tasks involving the use of visual information.

In particular, the geometry of two views (known as epipolar

geometry) has been classically used to reconstruct scene struc-

ture and camera motion. When computing the motion, if the

scene is planar or the two camera centers are very close, the

epipolar geometry fails to give a correct solution [2] and then

a different model must be used. This alternative model may be

the homography induced by a plane, or planar homography. In

addition to being complementary to the epipolar geometry, the

planar homography can be estimated from a smaller number

of matched scene features, and is therefore faster to compute.

The motion between two views can be determined from the

homography matrix through its decomposition [3]. It is typical

in robotics to consider planar camera motion (for instance,

when a robot moves on the floor), a scenario which adds

constraints to the homography that can make the decompo-

sition simpler [4], [5]. This case can be further particularized

by considering vertical planes (which abound in man-made

environments), exploiting the additional constraints this poses

on the homography [6], [7].

The case of planar motion can be reduced to a representa-

tion in terms of 1D cameras observing a 2D scene [8]. 1D

cameras provide a convenient and simplified description in

this situation [9], and multi-view constraints can analogously
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be defined on them. The 1D trifocal tensor [8] is a three-

view constraint independent of scene structure that has been

used to extract planar motion information [10]–[12]. Similarly

to the 2D case, it is also possible to define a homography

mapping between two 1D views, this time induced by a line

in the 2D scene. The 1D homography has been employed

for motion estimation purposes as well, by assuming certain

simplifying approximations regarding the motion and the scene

[6] or considering a circular motion [13].

In this paper, we address the use of 1D homography to per-

form planar camera motion estimation. As a first contribution,

we prove analytically that the computation of camera motion

using a single 1D homography provides an infinite family of

valid solutions. We propose as further contribution a method

which gets around this issue by using the information of two

homographies through their associated homologies. Therefore,

our method computes a general planar camera motion from

only two 1D views, instead of the three 1D views required for

this task in previous approaches.

We show the performance of our proposal applied on

a robot equipped with an omnidirectional camera, moving

on a planar ground. The omnidirectional vision sensor is

particularly appropriate. The reasons are its wide field of view,

which facilitates the detection of multiple scene planes, and

the precise angular information it provides, which means it

fits very well into a 1D imaging formulation considering only

the angular coordinate. The advantages of our approach are

the simplicity of the reduced 1D image representation, and the

robustness and precision associated to the use of angular visual

information.

II. MOTION FROM THE 2D HOMOGRAPHY

This section is aimed at providing background on existing

methods to perform motion estimation using the 2D homog-

raphy.

A planar surface in a 3D scene induces a unique projective

transformation, called homography, that relates the projections

in two views of any given point belonging to the plane. As

a mapping between a pair of image points in homogeneous

coordinates, the planar homography is expressed by a 3 × 3
matrix. Since it is a general projective transformation defined

up to scale (due to the scale ambiguity inherent to perspec-

tive projection), the homography matrix has 8 degrees of

freedom. Expressing the homography mapping for one scene
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point provides two independent equations. Therefore, from a

minimum number of four matched points the homography

can be estimated linearly by solving the resulting system of

equations [1].

The planar homography mapping can be defined between

image points expressed in pixels. Then, we obtain an uncali-

brated homographyH2D

u
. If the calibration matrix K is known,

a calibrated homography (i.e. a homography relating points in

calibrated coordinates) can be computed as follows:

H
2D

c = K
−1

H
2D

u K. (1)

This calibrated homography matrix encapsulates the recon-

struction of the relative location of the views (i.e. the camera

motion) and the unit normal of the plane in the following way:

H
2D

c = λ(R + tn
T ), (2)

where R ∈ R
3×3 is the rotation matrix, t ∈ R

3 is the transla-

tion vector (scaled by the distance to the plane), and n ∈ R
3 is

the unit normal of the plane. This homography, which relates

homogeneous coordinates of points in two camera frames,

is defined up to a scalar factor λ. In order to extract the

camera motion from the homography matrix, it is necessary

to decompose it. This is addressed in the following section.

A. Decomposition of the 2D Homography

The objective of the planar 2D homography decomposition

is to obtain the camera motion. The Euclidean homography

matrix directly expresses the reconstruction of the relative

motion between the views and the normal of the plane. As

such, it is a unique matrix (up to sign), not defined up to a

scalar factor [2]:

H
2D

e
= R+ tn

T . (3)

However, when computing the homography from image feature

correspondences in homogeneous calibrated coordinates, what

we obtain is the Euclidean homography multiplied by a factor

(2). As shown in [2], if a matrix has the form of a real

3×3 Euclidean homography matrix (3), then its second largest

singular value is equal to one. Conversely, any matrix having

its second largest singular value not equal to one is not a valid

Euclidean homography. Taking into account that multiplying

a matrix by a scale factor causes its singular values to be

multiplied by the same factor, it can be concluded that for

a given computed calibrated homography, we can obtain a

unique Euclidean homography matrix (up to sign), by dividing

the computed homography matrix by its second largest singular

value. The sign ambiguity can be solved by employing the

positive depth constraint.

When computing the camera motion (R and t) from the

Euclidean homography, four possible solutions are obtained.

Two of them can be rejected by imposing the positive depth

constraint in conventional cameras, leaving two physically

valid solutions for the relative camera motion [2]. A complete

procedure for the computation of the motion from a calibrated

2D homography is outlined in algorithm 1 [2], [14].

Algorithm 1 Computation of motion from 2D homography

1) Compute H
2D

c
= K

−1
H

2D

u
K

2) Compute the SV D of H2D
c such that

H
2D

c
∼ H

2D

e
= U diag(λ1, λ2, λ3)V

T with λ2 = 1

3) Let α =
√

λ2

3
−λ2

2

λ2

3
−λ2

1

, β =
√

λ2

2
−λ2

1

λ2

3
−λ2

1

4) Writing V = [v1, v2, v3], compute vv = αv1 ± β v3

5) Compute R = [H2D
e vv, H

2D
e v2, H

2D
e vv ×

H
2D

e
v2][vv,v2,vv × v2]

T

6) Compute t = H
2D

e
n−Rn, with n = vv × v2

B. Decomposition of the 2D homography with planar motion

When the camera motion is planar, there are additional

constraints on the Euclidean 2D homography matrix that can

be exploited to obtain its decomposition in a simpler way [4],

[5]. This is an important case in practice, since it applies for

example to the situation of a camera being carried by a vehicle

moving on the ground plane. The planar camera motion is then

given by a single angle φ expressing the rotation around the

vertical axis, and a translation vector (scaled by the distance to

the plane) lying in the plane of the cameras: t = (t1, t2, 0)
T .

Considering a unitary plane normal in an arbitrary direction,

i.e. n = (n1, n2, n3)
T , the Euclidean homography matrix in

this case turns out to be of the following form:

H
2D

e
=





cosφ+ t1n1 − sinφ+ t1n2 t1n3

sinφ+ t2n1 cosφ+ t2n2 t2n3

0 0 1



 . (4)

If we consider the further constraint that the plane inducing

the homography is vertical (which is a reasonable hypothesis,

as vertical planes abound in man-made scenarios), then n3 = 0
and H

2D

e
is as follows:

H
2D

e =





cosφ+ t1n1 − sinφ+ t1n2 0
sinφ+ t2n1 cosφ+ t2n2 0

0 0 1



 . (5)

The computation of camera motion from the 2D homog-

raphy in this latter case has been addressed in several works

[7], [15]. In all cases, it is required as first step to compute a

calibrated 2D homography H
2D
c , employing a set of feature

correspondences and the knowledge of the internal camera

calibration. When the motion is planar, this homography is

normalized in a straightforward manner, dividing by entry

H
2D

c
(3, 3). This way, one obtains a Euclidean homography

matrix of the form of (4), which can be directly decomposed

to find the camera motion parameters. We provide in algorithm

2 a procedure based on the work [7] to compute the camera

displacement in the case of planar motion.

When the motion between two views is planar, the de-

scription can be reduced to 1D cameras imaging a 2D space

[8], [9]. This representation appears natural and may provide

some advantages due to its simplicity. The computation of the

camera motion can then be addressed using 1D cameras and

1D homographies. This is discussed in the next section.



Algorithm 2 Computation of planar motion from 2D homog-

raphy

1) Compute a calibrated homography H
2D
c = K

−1
H

2D
u K

2) Normalize H
2D

c
to obtain the Euclidean homography

H
2D

e
= [(h11, h21, 0)

T , (h12, h22, 0)
T , (h13, h23, 1)

T ]
3) Compute R(φ), with φ = atan2(h12 − h21,−h11 −

h22)± arccos h12h21−h11h22−1√
(h12−h21)2+(h11+h22)2

4) For each of the two solutions for φ, compute the

angle of translation in the motion plane, ψ =
arctan(t2/t1), using either ψ = arctan h21−sinφ

h11−cosφ or

ψ = arctan h22−cosφ
h12+sinφ

. ψ + π is also a solution

5) Four solutions for (φ, ψ) result. The correct one can

be chosen using a priori and/or additional information.

This may include imposing the positive depth constraint,

using a second plane and finding the compatible solution,

or considering the properties of optical flow

III. MOTION FROM THE 1D HOMOGRAPHY

In the same way a 2D camera projects points in the 3D

projective space to points in the 2D one, a 1D camera can be

defined by considering the projection from a 2D to a 1D space

[9]. A 1D camera is useful to model the situation where the

camera moves on a planar surface [8]. In this case, the 2D

retina can be reduced to a 1D retina observing the 2D scene

generated by the orthogonal projection of the 3D scene on

the motion plane of the cameras. For conventional cameras,

considering an axis in the 2D image that is parallel to the

motion plane, the 1D representation of a 2D image point is

given by its coordinate in that axis: (x, 1)T . In the case of

an omnidirectional camera, assuming that the optical axis is

perpendicular to the motion plane, the 1D coordinates of a

given 2D image point are obtained from the angle to that

point (α) measured from the center of the image. The point

is then represented as (sin(α), cos(α))T in 1D homogeneous

coordinates. Note that this generates an ambiguity, since 2D

image points whose angles differ by π are mapped to the same

1D point.

It is possible to define in 1D a transformation analogous

to the planar homography of 2D. This transformation, which

we call 1D homography, defines a mapping between points in

two 1D images induced by a line in the 2D scene. Thus, it is

a general projective transformation between 1D spaces, and is

therefore expressed by a 2× 2 matrix H with three degrees of

freedom:

x2 = Hx1, (6)

where x2 and x1 are the homogeneous 1D coordinates of the

projections in two views of a point in the line that induces the

homography. Since every two-view point correspondence in 1D

provides one equation, the 1D homography can be estimated

linearly from a minimum of three point matches.

In a situation where the camera motion occurs on a hori-

zontal surface, vertical planes surrounding the sensor become

lines in the 2D scene defined by the horizontal plane passing

through the camera centers. Then, each of these planes, which

may be real or virtual, induces a 1D homography between two

views.

As is the case with the planar 2D homography, the 1D

homography induced by a line encapsulates the camera motion

information. It is therefore a tool that can be employed for

planar motion estimation purposes. We note that the method

proposed here to estimate the camera displacement can be used

indistinctly for conventional cameras and for omnidirectional

ones. However, when using only 1D information, omnidirec-

tional cameras are better suited due to their unconstrained field

of view and the precise angular information they provide.

A. Decomposition of the 1D homography

From a minimum number of three point matches between

two 1D images corresponding to scene points in a line, we can

estimate the homography induced by that line. If the image

points are expressed in calibrated projective coordinates, the

computed homography can be expressed as:

Hc = λ(R + tn
T ), (7)

where λ is a scale factor, R ∈ R
2×2 is the rotation matrix,

t ∈ R
2 is the translation vector (scaled by the distance to the

line), and n ∈ R
2 is the unit normal of the line:

R =

[

cosφ − sinφ
sinφ cosφ

]

, t =

(

t1
t2

)

, n =

(

n1

n2

)

.

(8)

We can define the Euclidean 1D homography in the same

manner as in 2D, i.e. as a homography that expresses directly

the camera motion parameters (which can be obtained through

the decomposition of the matrix):

He = R+ tn
T . (9)

We will show next that, contrarily to what occurs with the

2D homography, there is in general a family of infinite valid

Euclidean 1D homographies induced by a line between two

1D images, which means that there is a family of infinite valid

motion reconstructions.

Proposition 1: Let He ∈ R
2×2 be a Euclidean 1D homog-

raphy matrix:

He =

[

cosφ+ t1n1 − sinφ+ t1n2

sinφ+ t2n1 cosφ+ t2n2

]

, (10)

with φ, t1, t2, n1 and n2 ∈ R. Then, the singular values d1 and

d2, (d1 ≥ d2 ≥ 0), of He are such that d1 ≥ 1 and d2 ≤ 1.

Proof: Given a real 2×2 matrix He that can be expressed

as a Euclidean homography, i.e:

He =

[

h11 h12
h21 h22

]

=

[

cosφ+ t1n1 − sinφ+ t1n2

sinφ+ t2n1 cosφ+ t2n2

]

(11)

with φ, t1, t2, n1, n2 being real values, it can be readily shown

that the following inequality holds:



(h12 −h21)
2 +(h11+h22)

2 ≥ (h12h21−h11h22 − 1)2. (12)

This expression is equivalent to:

tr(HT

e He)− det(HT

e He)− 1 ≥ 0. (13)

Now, we take into account that tr(HT

e
He) = λ1 + λ2 and

det(HT
e He) = λ1 · λ2, where λ1 and λ2 are the eigenvalues

of HT

e
He. Then, using the fact that the singular values d1 and

d2 of He are equal to the square roots of the eigenvalues of

H
T

e He, the inequality above becomes:

d21 + d22 − d21 · d22 − 1 ≥ 0. (14)

It is straightforward to see that if d1 ≥ d2 ≥ 0, this

inequality is verified when d1 ≥ 1 and d2 ≤ 1 .

Remark 1: Let us analyze the implications of the above

proposition. Recall from section II-A that the Euclidean 2D

homography (3) had its intermediate singular value equal to

one. This meant that it was a unique matrix (up to sign)

and could be obtained by multiplying any calibrated 2D

homography (2) by the appropriate scale factor. In contrast,

proposition 1 does not define any of the singular values of

a Euclidean 1D homography as fixed. Rather, it states that

in the 1D case, a valid Euclidean homography has its two

singular values lying in certain ranges. This implies that when

we compute a calibrated 1D homography (7), we cannot obtain

from it a unique Euclidean 1D homography (9). Indeed, by

multiplying the calibrated homography by any factor that puts

its singular values in the defined ranges, one gets a valid

Euclidean 1D homography. In particular, for a calibrated 1D

homography Hc having singular values d1c ≥ d2c ≥ 0, from

proposition 1 we can obtain the range of values for λ in (7)

that give a valid Euclidean homography as follows:

d2c ≤ ±λ ≤ d1c. (15)

That is, for all these values of λ, (1/λ)·Hc is a valid Euclidean

homography. When this infinite family of homographies are

decomposed, they result in an infinite family of valid recon-

structions of the camera motion. It is therefore not possible in

general to compute the real planar motion from the information

given by one single 1D homography. We address this issue by

using at least two homographies, associated to two different

scene lines.

B. Planar motion from 1D homology

From two 1D homographies H1 and H2 between a pair

of views, it is possible to compute a projective transformation

that maps one of the images (for instance, image 1) to itself,

called homology. We can then define two 1D homologies G1

and G2 as follows:

G1 = H
−1

2
H1 ⇒ x1 ∼ G1x1, (16)

G2 = H2H
−1

1
⇒ x2 ∼ G2x2, (17)

where x1 is a point of image 1 and x2 is a point of image

2, both in homogeneous coordinates. Let us now consider G1

(the following discussion would be equivalent for G2). If the

two lines inducing H1 and H2 are different, then one of the

eigenvectors of the homology G1 is equal to the epipole of

camera 2 in camera 1. This property (which is also true for

a 2D homology) has been used in several works [10], [12],

[14]. In the case of 1D images, the other eigenvector of the

2 × 2 homology matrix is equal to the projection in image 1
of the intersection of the two lines that induce H1 and H2.

A degenerate situation occurs when the two homographies

are induced by the same line. Then, the homology equals

the identity and it is not possible to obtain the epipole. This

situation can be detected in practice by imposing a lower

threshold to the condition number of the homology matrix.

Thus, from two lines in a 2D scene, it is possible to

obtain the epipoles in two 1D views by calculating the two

homologies G1 and G2 and computing their eigenvectors. If

the angle of the epipole in camera 1 is α12 and the angle

of the epipole in camera 2 is α21, then we can compute the

camera motion (i.e. the rotation angle, φ, and the angle of the

translation vector, ψ), considering the frame of camera 1 as

the reference, as follows:

φ = α12 − α21 + π (18)

ψ = arctan(t2/t1) = α12. (19)

Notice that this method produces four possible reconstruc-

tions of the camera motion, which emerge from the combina-

tions of the two eigenvectors of each of the two homologies. It

is usually possible to reject some of these solutions directly, by

imposing their coherence with the homography decomposition

described in section III-A for H1 and H2. The range of values

of the homography scale factor λ defined in (15) for the

decomposition restricts the valid values for the camera rotation

and translation.

The number of coherent camera motions we finally obtain

depends on the locations of the cameras and the lines inducing

the homographies. In general, there are at least two admissible

solutions. Similarly to the 2D case, additional information must

be used in order to determine the correct one. When working

with omnidirectional images, applying the properties of optical

flow to the matched image points can be helpful in order to

choose the correct camera motion, and also allows to resolve

the π ambiguity inherent to the computation of angles from

1D image data discussed in section III [12].

A particular case occurs when the two camera centers

coincide (and the camera motion is therefore a pure rotation).

Then, since the translation is null, it can be readily seen

in (7) that the calibrated homography matrix is equal to a

rotation matrix multiplied by a scale factor. In this situation,

any line in the scene induces the same homography (up to

scale), which means that we cannot use the method based on

the epipoles extracted from the homologies to compute the

camera motion. This is also in agreement with the well known

fact that the epipoles cannot be computed reliably when the
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Fig. 1. Simulation results. Left: Errors in the estimated rotation and translation
angles with respect to the added Gaussian noise. Right: Errors with respect to
the percentage of outliers in the set of putative matches.
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Fig. 2. Simulation results. Left: Errors in the estimated rotation and
translation angles with respect to the angle between the lines inducing the
two homographies. Right: Errors with respect to the distance between the
lines inducing the two homographies.

baseline is short. However, the angle of rotation between the

two cameras can be readily obtained in this case. We can

detect the pure rotation case by checking how similar the

homography matrices are to a scaled rotation matrix. If we

divide them by their norm, we obtain rotation matrices. When

two homographies induced by two different lines are available,

the only degenerate case for our method appears when one

of the camera centers belongs to one of these lines. In this

situation, the camera motion cannot be estimated with our

proposal, but this case is not feasible in practice.

IV. EXPERIMENTS

In this section, we present results from simulations and

experiments with real images in order to illustrate the per-

formance of the proposed method.

A. Simulations

For the simulations, a virtual set of points was generated and

projected in two 1D cameras. From the set of point matches,

we computed two homographies and used them to obtain the

camera motion, following the approach described in section

III-B. The homographies were calculated linearly using the

DLT approach [1], and the RANSAC estimation method was

employed in order to compute them robustly. The effect of

adding Gaussian noise to the coordinates of the matched points

is illustrated in Fig. 1. As expected, the error in the calculations

of the angles grows with the level of noise. It can also be

observed that the computation of the rotation angle is less

sensitive to noise than the computation of the translation angle.

In the same figure, we show how the errors behave for different

percentages of spurious matches. The estimated percentage of

outliers for RANSAC was in all cases set to 50 %. As can be

seen, the method can be successful even with large amounts

of outliers. This is an important property in practice, since

when computing a homography induced by a given plane, all

the matched scene features not belonging to that plane are

outliers.

We also study the influence in the method’s performance of

the relative geometry between the two scene lines inducing the

homographies. Low-level Gaussian noise was added in these

tests for better visualization of the behavior. It can be seen

in Fig. 2 that the error is independent of the angle between

the lines, which is depicted from 0◦ (parallel lines) to 90◦

(perpendicular lines). Therefore, the method works equally

well when the two lines are parallel. This case occurs, for

instance, when a robot travels along a corridor and sees only

its two walls. Predictably, the error becomes larger as the

distance between the two parallel lines decreases, as shown

also in Fig. 2. In the limit, the two homographies are induced

by one unique line, a case in which the camera motion

cannot be obtained from the decomposition of the homography

(Proposition 1).

B. Experiments on real images

We have used a publicly available dataset from the Uni-

versity of Amsterdam [16] to evaluate the performance of our

method for planar camera motion estimation on real images.

The omnidirectional images included in this set were acquired

by a mobile robot traveling around an indoor environment,

using a catadioptric vision sensor made up of a perspective

camera and a hyperbolic mirror. The images were provided

wrapped (i.e. as originally captured by the vision sensor) and

had a size of 1024 × 768 pixels. Since we work with 1D

coordinates (i.e. using only the angular coordinate of the image

points), we did not require specific calibration information of

the camera system other than the position of the projection

center in the image. It was assumed that the camera and mirror

axis were vertically aligned.

Our method was tested on three different sequences of

images extracted from the set. We computed for every image

the associated camera motion with respect to the first image

of its corresponding sequence. In order to do this, we first

extracted SIFT [17] keypoints for the two images and found

matches between them. Note that only the angular coordinate

of the points is used in our method. Then, the set of two-view

correspondences was used to compute 1D homographies be-

tween the two images using the DLT and RANSAC algorithms.

Usually, more than two homographies were found. From the

set of available homographies, we chose the two that were

obtained from larger sets of point matches while being at the

same time judged as different by a test on the condition number

of the homologies.

We selected from the image set three sequences with

different characteristics. Sequence 1 was obtained as the robot

moved along a corridor. Thus, there were two parallel dominant

vertical planes, and the motion was practically rectilinear. The
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Fig. 3. Results from the experiments with real images. Left column, rows
1 to 3: estimated rotation angle φ. Right column, rows 1 to 3: estimated
translation angle ψ. The results are for sequences 1 (first row), 2 (second
row) and 3 (third row). Fourth row: initial (reference) image for sequences 1

(left), 2 (center) and 3 (right). Bottom row: final image for sequences 1 (left),
2 (center) and 3 (right).

distance traveled by the robot was of around 4 m. Sequence

2 was collected in a spacious room. In this case, the robot

followed a curved path and its final position was 4.5 m away

from the initial one. As for sequence 3, it is set in a smaller

space near a staircase, and the motion performed by the robot

has the shape of a loop, with its most distant point being around

1.5 m away from the initial location. The results of the planar

camera motion estimations are displayed in Fig. 3 for the three

sequences, along with the first and last images of each of them.

As can be seen, the angle of rotation is computed with higher

accuracy than the angle of translation. The performance of the

motion estimation approach is good in the three cases.

V. CONCLUSION

We have shown that it is not possible to compute the

motion between two 1D views on a plane from a single

1D homography induced by a line. Taking this fact into

account, we have presented a method for planar camera motion

estimation based on the computation of two 1D homographies

between the two camera images. Our proposal uses the two

homologies associated to the homographies to extract the

epipoles and determine the motion parameters. The approach

is adequate for use on a robot moving on a planar ground. It

is particularly well suited to omnidirectional cameras, due to

their wide field of view and accurate angular information. Still,

the proposal can also be employed with conventional cameras,

as well as with any sensor providing two-dimensional angular

measurements. Some typical applications where our approach

may be useful are localization, visual servoing, navigation and

visual odometry.
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