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Abstract— In this paper, we present a novel formation control
method to stabilize the positions of a multiagent team moving
in a two-dimensional environment to a specified rigid pattern.
Agent interactions are typically range-constrained in this kind
of system, which makes it critical to maintain the connectivity
of the underlying network formed by the mobile agents to
enable completion of the desired task. To address this issue,
we study the problem of connectivity preservation coupled
with the formation control objective. Our contribution is a
globally stable formation stabilization approach that maintains
connectivity and is designed for unicycle kinematics. Each
agent computes its motion using the relative positions of
the other agents, expressed in its local arbitrarily oriented
coordinate frame. To preserve connectivity, our method relies on
a procedure where the desired formation is adaptively scaled
to ensure maintenance of the links in the Minimum-distance
Spanning Tree of the communications graph. This way, instead
of requiring additional control components for connectivity
management which may interfere with the formation control
objective, we integrate the two goals in the same, bounded,
control input. We show formally that the controller provides
global stability and ensures connectivity maintenance, and we
illustrate its performance in simulation.

I. INTRODUCTION

Multiagent systems can perform complex tasks efficiently

and reliably, due to which their application in real-world

scenarios is continuously growing. The control of formations

[1], [2] is a relevant topic in this field. We address here the

problem of formation stabilization, where a team of mobile

agents is tasked with achieving a rigid geometric pattern.

It is clearly interesting to solve this problem with each

agent using measurements from its independent onboard

sensors (e.g., vision). This way, one avoids relying on GPS or

other external sensing sources that are not always available

(e.g., indoors) or convenient to use. However, the absence

of global reference frames in this scenario makes formation

control challenging. It induces nonlinear system dynamics,

which implies that global stability guarantees are consider-

ably more difficult to obtain than, e.g., with linear consensus-

based approaches using common coordinate references [3].

Rigid-formation control methods without global coordinate

references typically achieve only local convergence [2], [4]

even if the agents use global information. Global stability has

been obtained via the use of leader agents [5], [6], dynamic

coordinate agreement between the agents [7]–[9], or added

time-parameterized control perturbations [10]. A globally
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stable rigid-formation stabilization method for single inte-

grators using relative position measurements expressed in the

agents’ independent local frames was proposed in [11], and

is at the basis of the work we present. Here, we incorporate

connectivity guarantees and we assume unicycle agents, two

aspects not considered in that previous controller.

The type of control system we consider is based on

message-passing via range-constrained wireless communica-

tions. Thus, maintaining the connectivity of the underlying

network formed by the agents is critical for successful

completion of the desired task. For this reason, connectivity

maintenance in multiagent teams has been an abundantly re-

searched problem [12]. Potential field-based methods, which

have been often used for the purpose, prevent loss of inter-

agent links by introducing additional control terms. These

may interfere with the desired control task and can result in

unbounded inputs. The latter problem is sorted out by several

works that address distributed connectivity-preserving agent

consensus [13], [14] and formation stabilization [15]. Some

authors have focused on the challenging issue of minimizing

the impact of connectivity maintenance on the completion of

collective tasks, e.g., deployment [16] or formation control

[17]. The methods in [18]–[20] address connectivity manage-

ment with unicycle agents. We note that, unlike the method

we propose, all the works cited in the paragraph require the

existence of common coordinate references.

Our contribution is a rigid-formation stabilization ap-

proach that uses no global coordinate references, is globally

stable, preserves connectivity from any initially connected

team configuration, and is designed for unicycle agents. To

the best of our knowledge, no existing method has this

set of properties. Our key idea is to adaptively scale the

desired formation, in a way that incorporates the connectivity

maintenance objective without interfering with the formation

control objective: the agents’ motions, generated by bounded

inputs, are always driven by the pursuit of the formation. We

maintain connectivity by keeping the links of a spanning tree

of the communications graph. Spanning trees are an attractive

choice for this purpose, due to their great importance in

multiagent networked systems [16]. In particular, we exploit

the method presented in [21] where the Minimum-distance

Spanning Tree, computed on an event-triggered basis to

alleviate communication demands, is used. This specific

graph has the interesting property of allowing the agents

more leeway to move, as they attain the desired formation,

than other possible spanning trees.

In our approach, the agents use global information. Let us

note that globally stable stabilization of rigid formations in
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the absence of common frames is a challenging problem even

with global information, and that methods for connectivity

preservation frequently use global information (e.g., the

Laplacian matrix of the current communications graph) [12].

Furthermore, we require no central unit, as each agent can

compute independently its control law.

II. PROBLEM FORMULATION

We consider a group of N > 2 mobile agents in R
2, define

N as the set of their indexes and denote, in an arbitrary

global reference frame, the position of agent i ∈ N as qi =
[qxi , q

y
i ]

T ∈ R
2 and its orientation as φi ∈ R. We assume the

motion of each agent i is governed by a unicycle kinematic

model (see Fig. 1), as follows:

q̇xi = −vi sinφi, q̇
y
i = vi cosφi, φ̇i = ωi, (1)

where vi is its linear velocity and ωi is its angular velocity.

We define a desired configuration, or formation shape, by

a certain, fixed, reference layout of the positions of the N
agents in their configuration space. The way in which we

encode the desired configuration is through a set of interagent

relative position vectors. Let us define qji = qj − qi, and

denote as cji ∈ R
2, ∀ i 6= j ∈ N the vector from i to j

in the reference layout of the agents that defines the desired

configuration. The agents are not interchangeable, i.e., each

of them has a fixed place in the target formation. We then

consider that the agents are in the desired configuration if

the reference layout has been achieved, up to an arbitrary

rotation and translation, i.e., if it holds that:

qji = Rpcji, ∀i, j ∈ N , (2)

where Rp ∈ SO(2) is a rotation matrix.

Our formation control methodology requires every agent

i ∈ N to obtain an estimation of the relative position vector

to all other agents. For this, i is equipped with communica-

tion resources to bidirectionally exchange messages with all

agents in a disk of radius Rc centered on qi. Then, i can

obtain the global information through the communications

network formed by the group. We define a dynamic undi-

rected communications graph, Gc(t) = (N , Ec(t)), for this

network, such that every node is associated with an agent,

and an edge {i, j} exists in Ec if ||qji|| < Rc. Clearly, if

Gc is connected, exchange of global information is possible

through multi-hop transmission. A disconnected Gc, on the

other hand, implies that at least one agent has lost the ability

to send and receive the information needed for the control

task. Then, achieving the desired formation depends critically

on Gc remaining connected during control execution.

Agents must typically be able to also sense the environ-

ment or their neighbors. Similarly to Gc, a sensing graph can

be defined to establish which pairs of agents are sensorily

connected on the basis of their proximity, using a disk model

with radius Rs. In a general case, the two graphs may need

to stay connected, which can be achieved by ensuring the

connectivity of the more restrictive graph. Hence, we use

a generic interaction radius, Rint = min(Rs, Rc) and its

associated graph, Gint(t) = (N , Eint(t)). Similarly, we can

Fig. 1. Left: localization variables and unicycle kinematic model of a
given agent i. Desired motion vector di and misalignment angle βi of the
proposed controller (Section III-C). Right: a desired configuration, showing
a vector cji and the interaction disk, with radius Rint .

define Gd
int = (N , Ed

int) as the static graph of interactions

when the agents are in the desired configuration. We assume

Gd
int is connected, i.e., ∀i ∈ N there exists at least one

j 6= i ∈ N such that ||cji|| < Rint (Fig. 1). We assume,

as well, that a safety factor 0 < fs < 1 exists which

upper-bounds the distances between neighbors of the desired

formation, i.e., ||cji|| < fs·Rint, ∀{i, j} ∈ Ed
int. The problem

we address is the following:

Problem 1. Given an initial configuration where the agents

are in arbitrary positions such that Gint is connected, define

a decentralized control strategy that, using the relative

position estimates expressed in the agents’ local coordinate

frames, achieves the two following objectives:

• Maintains the connectivity of Gint, allowing every agent

to acquire the relative positions of all other agents.

• Stabilizes the agents in a set of final positions such that

the group is in the desired configuration.

III. FORMATION STABILIZATION SCHEME

Our strategy to stabilize the formation is based on mini-

mizing the following cost function:

γ =
1

2N

∑

i∈N

||
∑

j∈N

qij −Rcij||
2, (3)

where R ∈ SO(2) is a rotation matrix defined in the

following section. To show that this function encapsulates the

formation control objective, assume γ = 0 and then consider

in (3) the addends associated with two given agents i = i1
and i = i2, which are:

∑

j∈N

qi1j −Rci1j = 0,
∑

j∈N

qi2j −Rci2j = 0. (4)

Subtracting the two equations, we have that qi1i2 = Rci1i2 ,

which holds for every pair i1, i2 ∈ N . Hence, the group is

in the desired configuration.

A. Rotation matrix

In accordance with the control objective of driving γ to

zero, the rotation matrix in (3) is chosen so as to minimize

the function, as shown next. We note that the analysis that

follows is analogous to solving the orthogonal Procrustes

problem [22]. We define R as a rotation by an angle α, i.e.:

R =

[

cosα − sinα
sinα cosα

]

. (5)



We can express γ (3) in terms of α and the components of the

relative position vectors, qij = [qxij , q
y
ij ]

T , cij = [cxij , c
y
ij ]

T :

γ =
1

2N

∑

i∈N

[

(
∑

j∈N

qxij − cxij cosα+ cyij sinα)
2 (6)

+(
∑

j∈N

qyij − cxij sinα− cyij cosα)
2

]

.

Let us define: Sqi = [Sx
qi, S

y
qi]

T =
∑

j∈N qij and Sci =

[Sx
ci, S

y
ci]

T =
∑

j∈N
cij. To minimize γ with respect to α,

we solve ∂γ
∂α

= 0. After some manipulation, we have:

∂γ

∂α
=

1

N

[

sinα
∑

i∈N

(Sx
qiS

x
ci + Sy

qiS
y
ci)

− cosα
∑

i∈N

(−Sx
qiS

y
ci + Sy

qiS
x
ci)

]

. (7)

Then, the condition ∂γ
∂α

= 0 is expressed as:

sinα
∑

i∈N

ST
qiSci − cosα

∑

i∈N

ST
qiS

⊥
ci = 0, (8)

where the superscript ⊥ denotes a rotation of a vector by π/2
radians, as follows: S⊥

ci = [(0, 1)T , (−1, 0)T ]Sci. Solving (8)

with respect to the rotation angle α gives:

α = arctan

∑

i∈N ST
qiS

⊥
ci

∑

i∈N
ST
qiSci

. (9)

Thus, two solutions are possible for α, separated by π
radians. To select the correct solution, we compute the

second order derivative from (7):

∂2γ

∂α2
=

1

N

[

cosα
∑

i∈N

ST
qiSci + sinα

∑

i∈N

ST
qiS

⊥
ci

]

. (10)

From (8) and (10), we can readily see that one of the

solutions for (9) minimizes γ, while the other maximizes

the function. The solution that is a minimum satisfies the

condition ∂2γ
∂α2 > 0. By isolating the term cosα in (8) and

then substituting it in (10), we find that this condition holds

when sinα/
∑

i∈N
ST
qiS

⊥
ci > 0, i.e., sinα must have the

same sign as the numerator of the arctan function in (9).

Hence, among the two possible values of α, the one that

minimizes γ, which we will use in our controller, is:

α = atan2(
∑

i∈N

ST
qiS

⊥
ci,

∑

i∈N

ST
qiSci), (11)

where the atan2 function returns the solution of (9) for

which α is in the appropriate quadrant. The case atan2(0, 0),
in which α is not defined, is theoretically possible in (11) for

degenerate configurations of the agents’ positions where γ is

constant for all α, see (8). We disregard in our analysis these

configurations, which are not attractors within the control

strategy we propose, and have measure zero.

We can see now that if the agents are in the desired

formation –i.e., if qji = Rpcji, ∀i, j ∈ N for a certain

Rp (2)–, then, clearly, this is the rotation that minimizes γ,

and thus R = Rp in (3), and γ = 0. Thus, γ = 0 if and

only if the agents are in the desired configuration, i.e., this

condition captures the desired equilibrium of the system.

B. Formation scaling for connectivity preservation

Our formation controller is based on each agent i fol-

lowing the negative gradient of the cost function γ with

respect to its position qi. However, it is easy to see that

this strategy can disconnect Gint. To maintain connectivity,

we propose a method that relies on preserving the links of

the Minimum-distance Spanning Tree (MST) of Gint. The

MST is the spanning tree for which the sum of distances

between nodes (agents) is minimum. The use of this tree

for managing connectivity in multiagent motion control is

interesting because it allows the agents more freedom to

move –in order to complete the task (coverage, formation

control, flocking...) at hand– than other spanning trees do.

We will keep, in a general case, the links of GT
m =

(N , ET
m), a fixed spanning tree of Gint(tm) defined for a

time interval t ∈ [tm, tm+1) (m ∈ N will be used as index

for variables defined in this interval). Denote as {imh , j
m
h }

the edge in ET
m for which the distance between the two

agents in the desired formation is maximum. There may be

multiple such edges; this is not problematic, since what is

relevant to us is simply the value of the maximum distance,

as discussed next. The formation controller will drive the

pair {imh , j
m
h } towards reaching this distance; our goal is to

make it reachable without breaking the edge. For this, we use

a scaling factor: 0 < Sm ≤ 1, determined at tm, as follows:

• If ||cim
h
jm
h
|| ≤ Rint (the two agents can reach their

desired distance) or Gint ⊇ Gd
int (all agents already

have all their desired neighbors) we choose Sm = 1. In

these cases, the values of the distances between agents

in the desired formation essentially will not put the

maintenance of connectivity at risk.

• If ||cim
h
jm
h
|| > Rint, since the desired distance between

the two agents is not reachable, we define:

Sm = fs · Rint/||cim
h
jm
h
||. (12)

We use Sm to redefine, for t ∈ [tm, tm+1), the desired

formation as a possibly down-scaled version of the original

one, encoded by the vectors:

cmij = Sm · cij, ∀i, j ∈ N . (13)

The safety margin created by fs avoids placing the link

{imh , j
m
h } on the verge of breaking (notice that |||cmim

h
jm
h

|| =

fs ·Rint). Clearly, with the proposed scaling, no link in GT
m

will have to be broken to reach the formation. This strategy

allows to keep connectivity without additional control terms

that may interfere with the formation control goal.

Notice that we can define a cost function in each interval

by considering these scaled desired relative position vectors,

i.e., γm(cmij ), analogous to the function with the desired scale

Sm = 1, γ(cij). Clearly, R is not affected by this scaling:

from (11), we see that Rm(cmij ) = R(cij) and αm = α.

C. Motion control strategy

The control law we define relies on the gradient of the

cost function valid at each time instant, which is as follows:

∇qi
γm =

∂γm

∂αm

∂αm

∂qi

+
∂γm

∂qi

=
∂γm

∂qi

, (14)



where we have used that, since the rotation matrix minimizes

the cost function (Section III-A), ∂γm

∂αm is null. We want

agent i to descend along the gradient (14). After some

manipulation, we find the expression for what we call the

desired motion vector, dm
i , for agent i:

dm
i = −∇qi

γm =
∑

j∈N

qji −Rmcmji . (15)

Hence, to stabilize the formation, each unicycle agent i
will follow (within the limits associated with its kinematic

constraints) the direction of dm
i . Still, even having assured,

through the formation down-scaling procedure, that all de-

sired distances between agents forming links in GT
m are below

Rint, this does not, in itself, ensure that its longest (i.e., of

maximum distance) edge will not exceed Rint while our

gradient-based control is running. This occurrence must be

actively prevented in our method. We define Nw = {iw, jw}
as the set of two agents forming the current longest edge

in GT
m, and Nnw = N − Nw. We assume there cannot

be multiple longest links at any time. The control law we

propose for every agent i ∈ Nnw is:

{

vi = −kv sign(cosβi) ||d
m
i ||

ωi = kω (βdi − βi)
. (16)

All angular quantities we use are expressed in (−π, π]. The

angle βi expresses the misalignment of the agent’s heading

with respect to its desired motion direction (see Fig. 1), while

kv > 0 and kω > 0 are control gains, and ∀i ∈ N :

βdi =

{

0 if |βi| ≤
π
2

π if |βi| >
π
2

.

We define the predicate: Pr(i) = (||qiwjw || ≤ fcRint) ∨
[ (

θi <
π
2
∧ ψi <

π
2

)

∨
(

(π
2
< θi < π) ∧ (π

2
< ψi < π)

) ]

. θi
is the smallest non-negative angle between i′s heading direc-

tion and its desired motion vector, while ψi is the smallest

non-negative angle between the heading direction and the

vector from i to the other agent in Nw (see Fig. 2). fc is

a factor that satisfies 0 < fs < fc < 1 and specifies how

close to the limit Rint the link preservation procedure starts

operating. The control law we propose for i ∈ Nw is:







vi =

{

−kv sign(cosβi) ||d
m
i ||, if Pr(i)

0, otherwise

ωi = kω (βdi − βi)
. (17)

Observe that our agents will travel forwards or backwards,

depending on their heading relative to the desired motion

vector. In particular, note that an agent’s displacement direc-

tion is always in the same half-plane as its desired vector.

When the longest link in GT
m is at risk of breaking (i.e., when

||qiwjw || > fcRint), an agent in that link can rotate like any

other agent, but is only allowed to translate (i.e., Pr(i) = 1)

if the instantaneous displacement generated by the control

law would bring it closer to its neighbor in the longest edge.

This behavior is captured by the condition in (17) dependent

on θi and ψi. Figure 2 illustrates these aspects.

D. Event-based triggering of MST computation

We select the very interesting option, discussed in Sec-

tion III-B, of choosing GT
m as equal to the MST of Gint.

However, instead of a continuous update, we use a method

presented in [21] to trigger the computation of GT
m only

when certain events occur. In that work, a new MST was

re-calculated only when maintenance of interagent links

interfered, by restricting the agents’ possible motions, with

the execution of the distributed coverage task addressed.

Such event-based computation (which is triggered locally by

the affected agents) has the important property of reducing

network communication demands. In our case, we note

an additional interesting characteristic: the event-triggered

approach increases the time (tm+1 − tm) between switches

of the scale of the desired formation, which contributes to a

smoother behavior of our control inputs, with fewer jumps.

Additionally, here we also choose to definitively stop

updating GT
m and Sm when the event Sm = 1 first arises,

since the agents can then reach the desired configuration

without breaking any of the links of the spanning tree used

at that instant. This further reduces communication expenses.

Also, we assume the event Gint ⊇ Gd
int can always be

detected by the agents, independently from the triggering

strategy. Following this event, which makes Sm = 1 (Section

III-B), we choose as GT
m the fixed, preservable MST of Gd

int.

E. Reference frames and information requirements

We show in this section that our controller can be com-

puted by each agent in its own arbitrarily oriented coordinate

frame, which is a key property, and describe the information

it requires the agents to possess. Observe first that the control

law for i only requires to know dm
i (15), which can be ob-

tained from the desired vectors cji and the measurements qji.

Note that the rotation angle α (11) can be computed by each

agent from these measurements. Even though we expressed

all these variables in a global reference frame (to facilitate

the analysis of the controller), i can compute its control

law using the vectors expressed in its own, independently

oriented local reference frame: qLi

ji . The intuition behind this

fact is that the agents move to achieve a formation pattern

whose position is centered on the group’s centroid, and

whose rotation minimizes the sum of squared distances in

γ [22], both of which are variables independent of reference

frames. We refer to [11] for a formal explanation of these

aspects with a cost function analogous to the one used here.

It is easy to see that agent i can integrate in its own

reference frame the relative position measurements received

from other agents via communications, as long as they

share a time reference. Also, i needs to know the other

agents’ identities, the GT
m graph in use and its current longest

edge, and the value of the formation scaling factor Sm. We

assume that all these data can be obtained by each agent via

the spread of global information over the communications

network, or through distributed network algorithms.

IV. STABILITY ANALYSIS

Let us first present our result on connectivity maintenance.



Proposition 1. Under the control strategy proposed and the

feedback laws (16) and (17), if Gint is connected at the start

of the execution, it will remain connected for all time.

Proof. The only link in GT
m in danger of breaking at any

given time t is its longest link: {iw, jw}. Clearly, due to

(17), the distances between agents are upper bounded; this

implies the control inputs are bounded, and thus the agent

positions, and the interagent distances, vary continuously.

Then, with the formation down-scaling strategy (Section III-

B), if the distance between the two agents forming this link

becomes close to Rint, they will satisfy ||qiwjw || ≥ fcRint

at some instant. By the control law (17), in that situation

none of the two agents can perform any displacement that

separates it from the other. Therefore, the connectivity of GT
m

is preserved, and Gint always stays connected.

The above proposition ensures that our strategy can be

implemented: since Gint is connected, every agent can obtain

at all times, via multi-hop message-passing, the relative

positions of all other agents to compute its control law. Let

us now study the stabilization of the system to the desired

formation. We start by making the following assumption,

which will be used in our subsequent analysis:

Assumption 1. The length of every interval m, i.e.,

(tm+1 − tm), is sufficiently large to ensure that, with the

control scheme proposed, if ||qij(tm)|| > ||cmij ||, then

||qij(tm+1)|| < ||qij(tm)|| ∀i, j ∈ N .

Let us explain this Assumption. From (15), it is direct

to see that for any two agents i, j ∈ N it holds that

(qi+dm
i /N)−(qj+dm

j /N) = Rcmij . Thus, since ||Rcmij || =
||cmij ||, if any two agents are currently more distant than

they are in the desired configuration, the joint effect of the

controller’s desired vectors d is to always push them closer.

This is illustrated in Fig. 2. It is now clear that Assumption

1 simply implies that, within the limits due to its unicycle

kinematics, agent i will be able to follow its dm
i closely

enough. Note that two agents that are being pushed closer

by the desired motion vectors may temporarily separate,

due to their unicycle kinematics. Therefore, it is relevant

for us to make this assumption. Let us next support its

validity. First, it is clear that if we considered agents with

single-integrator kinematics, the statement of Assumption 1

would be automatically satisfied for any arbitrarily short time

interval. The unicycles we actually consider have the time

span (tm+1 − tm) to approximate this behavior, and our

control law facilitates this: observe that our unicycles can

move forwards and backwards (16), (17), which increases

their ability to displace, at any instant, in a direction suf-

ficiently close to that of their desired vector dm
i , when

compared with agents that can only move forwards. Also,

our angular velocity control is specifically designed to align

each agent with the direction of its desired motion vector dm
i .

Qualitatively, the variation of the vectors dm
i depends on the

variation of the agent positions qi, which is proportional to

the control gain kv . Then, for a given angular gain kω , there

will clearly be a small enough kv such that the resulting

variations of the directions of dm
i will be slow enough for

the agents’ headings to follow sufficiently closely. We have

observed in simulation that Assumption 1 is comfortably

satisfied for usual values of kv, kω.

Proposition 2. If Assumption 1 holds, the multiagent system

with the control strategy proposed and the feedback laws (16)

and (17) converges globally to the desired configuration.

Proof. We will use a Lyapunov-based analysis structured in

a number of points that will lead to the stated result:

P1) Evolution outside of the scale-switching instants. In

every interval t ∈ (tm, tm+1), we can study the system’s

behavior by considering a cost function V m(t) = γm(t).
The dynamics of the function is:

V̇m =
∑

i∈N

(∇qi
V m)T q̇i. (18)

Due to the unicycle kinematics, the variations of the agents

positions, q̇i, occur always in the direction of their current

headings. In addition, the magnitude of the displacement is

proportional to the desired motion vector, see (16), (17).

Notice that the angle βdi−βi expresses the misalignment

between the actual translation vector, q̇i, and the direction of

the desired motion vector dm
i . Observe, from (15), that (18)

captures the dot product of these two vectors. In addition,

note that we need to consider separately the terms for the

agents forming the longest link in GT
m. We can thus write:

V̇ m = −kv
(

∑

i∈Nnw

||dm
i ||2 cos(βdi − βi) +

∑

i∈Nw

Pr(i)||dm
i ||2 cos(βdi − βi)

)

. (19)

Given that |βdi − βi| ≤ π/2, it is clear that V̇ m ≤ 0.

Observe two important properties of our controller. First,

from (3) and (15), dm
i = 0, ∀i ∈ N ⇔ γm = V m = 0,

i.e., these two equivalent conditions mark the achievement

of the scaled version of the desired formation defined in the

interval m. Second, from (19), and considering the linear

velocities in (16) and (17), any displacement of any agent

always reduces V m. Thus, if V̇ m = 0, no agent is displacing.

We use these properties in the analysis that follows.

P2) Stable undesired equilibria are not feasible. Notice

from (19) that it may be possible to have an equilibrium

outside of V m = 0 in a situation where V̇ m = 0 while,

at least for one agent, dm
i 6= 0 and cos(βdi − βi) =

0. Let us show next that these equilibria, if they occur,

are only temporary (i.e., not stable). If the stated situation

holds for any agent in Nnw, it will immediately rotate in

place, thanks to the angular velocity control (16), and start

displacing, thereby lowering Vm. A more careful analysis is

needed if the situation holds for an agent in Nw. The two

agents in this set behave like any other agent except when

||qiwjw || > fcRint. Assume this situation is satisfied at some

instant. Observe that it implies ||qiwjw || > ||cmiwjw
||, since

the maximum desired distance between agents in any edge of

GT
m is fsRint. Recalling the reasoning presented right after

the statement of Assumption 1, it is then trivial that for at



least one of the agents in Nw, the desired motion vector

points in a direction that would bring it closer to the other

agent. Clearly, in the event of an undesired equilibrium (in

which all agent positions are static, as explained above, and

thus all dm
i (15) are fixed too) this agent will, thanks to the

angular control (17), rotate in place to align its heading with

its dm
i . This rotation will always lead to the agent eventually

reaching a heading at which it can displace, thereby breaking

the equilibrium. As an illustration, see agent jw in Fig. 2.

Thus, all agents can displace to escape an undesired

equilibrium with the possible exception of one of the two

agents in Nw. Let us assume that the existence of this non-

displacing agent (denote it as ind) can create an undesired

stable equilibrium, where no agent is moving while V m > 0.

Since the equilibrium is stable, i.e., it lasts for an arbitrarily

long time, this implies that dm
i = 0 for all agents except

ind (otherwise, if dm
i 6= 0, any of these agents can rotate

in place and then translate, as shown above). Consider two

given agents i and j different from ind. If we substitute in

(15), and then subtract, the two equations dm
i = dm

j = 0, we

get qji−Rmcmji = 0. An analogous expression holds for all

i, j except ind. Then, substituting these expressions for agent

i′s desired vector, dm
i = 0 (15), we get qindi−Rmcmindi

= 0.

This implies i and ind are in the desired configuration with

respect to one another. As this reasoning applies to any

agent (except ind) taking the role of i, we have that ind
is in the desired configuration with respect to all agents, i.e.,

dm
ind

= 0, and V m = 0. We conclude that the only possible

stable equilibrium in any given interval m is V m = 0.

P3) Behavior at the scale-switching instants. At time tm,

there is a discrete change in the desired formation, as the

vectors cmij change discontinuously (13). Thus, the desired

vectors dm
i (15) change discretely, too. Then, the velocity

inputs (16), (17) experience a discontinuous jump. In any

case, as the dm
i are clearly finite if the agent positions are

finite, the values to which the velocity inputs jump are also

finite. Hence, the state of the system, in terms of the positions

of the agents, does not jump discontinuously.

P4) Sm converges to unity. Assume Sm < 1 at t =
0. All possible temporary desired formations are down-

scaled versions of the actual desired one (i.e., ||cmij || ≤
||cij|| ∀i, j ∈ N , ∀m). We apply Assumption 1 next. Observe

that, regardless of the initial interagent separations and the

particular values of Sm, all interagent distances ||qij|| above

||cmij || will approach this value as time progresses. Clearly,

as long as Sm stays below one, and given that the agent

positions evolve continuously (P1, P3) and the system cannot

get stuck in undesired equilibria (P2), all pairs of agents are

eventually going to satisfy ||qij|| ≤ ||cij||, which implies

Gint ⊇ Gd
int, at a certain instant tmf

. As explained in

Sections III-B, III-D, this provokes an automatic definitive

re-scaling, by virtue of which Smf
= 1 and that value is

maintained afterwards. Sm may, alternatively, become equal

to one earlier, if ||cim
h
jm
h
|| ≤ Rint, and it will maintain this

value subsequently. We stress that, in any possible case, the

existence of a final scale switch at a time tmf
is guaranteed.

P5) Asymptotic stability. In summary, our control strategy

Fig. 2. Motion constraints given by the control strategy when the longest
link in GT

m is such that ||qiwjw || > fcRint. We omit superindexes, for
clarity. These two agents can displace (forwards or backwards) only if their
headings lie in the shaded regions, see (17). djw is in the shaded region,
whereas diw is not. In our control law, every agent rotates to align its
heading with its desired motion vector. Therefore, in a scenario where the
two are not displacing, and have arbitrary initial headings, jw’s heading will
always end up in the shaded region, but iw’s will not (P2 in Proposition 2).

results in a discontinuous, switched system [23] that we can

analyze as follows:

• The agents’ positions, which define the state of the

system, are always ensured to be finite and change

continuously. In addition, the control inputs, (16), (17),

stay bounded at all times (P1, P3).

• In t ∈ [0, tmf
], within every interval m the system

monotonically descends along a cost function whose

single stable equilibrium encapsulates a down-scaled

desired formation (P1, P2).

• For t > tmf
, Sm equals one and there are no more scale

switches. In this time interval, we can define V = γ as

a candidate Lyapunov function. This smooth function

is clearly radially unbounded, and positive definite,

with respect to the desired configuration (Section III-

A). Its evolution is such that V̇ ≤ 0 (P1), and the

only possible equilibrium is at V = 0 (P2). From

these dynamic properties, V is clearly a Lyapunov

function for the system, common across the possible

discontinuities in the control laws (16), (17), in the sense

of [23]. Therefore, we conclude that the system will

converge asymptotically to the desired formation.

Our method is based on information acquisition via multi-

hop message-passing. Although we do not consider them

here, time-delays are an important practical aspect for this

type of controller. Formal stability analysis under time-delays

of nonlinear interconnected systems such as the one we

propose is a challenging issue [24]. In our case, the results

in [11] for simpler, single-integrator kinematics can be taken

as a reference point to address the study of this problem.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the pro-

posed multiagent control method in simulation. We present

results from an example where a team of 12 agents was

tasked with achieving a rectangular grid-shaped formation.

Initially, we placed the unicycle agents in positions such that

Gint was a path graph. In addition, we chose as initial neigh-

bors in this graph pairs of agents that were to be most distant
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Fig. 3. Simulation results. From left to right: agents’ paths (final positions are joined by dashed lines), and evolutions of their linear and angular velocities,
the scale factor Sm, the algebraic connectivity, the rotation matrix angle (in a common reference frame), and the piecewise cost functions γm.

in the desired configuration, which provides an example of

a scenario where connectivity preservation is particularly

challenging. The parameters used in the simulation were

Rint = 10 m., fs = 0.85, fc = 0.9, while the minimum

interagent separation in the desired formation was 6 m.
Figure 3 illustrates the results. As can be seen, the agents

achieve the specified pattern, with the correct scale. The

scale changes of the desired formation as it adapts to the

connectivity constraints are depicted. The network remains

connected throughout the execution, as shown by the alge-

braic connectivity (i.e., the second smallest eigenvalue of the

Laplacian matrix of Gint), which stays above zero –including

the very small positive initial value–. The agents move

closer in space initially, making connectivity grow. They

eventually separate to reach the desired formation and the

final connectivity status. The transitions in this process are

seamless, as the agents are always pursuing the formation.

VI. CONCLUSION

We have presented a method to stabilize a team of

unicycle-type agents in a desired rigid configuration. The

approach achieves this goal while preserving connectivity,

treating these two objectives in an integrated manner via

adaptive scaling of the desired formation. The methodology

can be implementable on teams of hundreds of agents with

state-of-the-art technology in mobile computing and wireless

communications. Future directions of research can include

addressing the issue of collision avoidance, which was not

considered in this paper and is challenging to study formally,

or extending the method to 3D formations or to a partial

information-based formation control scenario.
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