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Abstract— We present a new method for visual control of a
set of robots moving on the ground plane. As contributions, we
first propose a purely image-based control strategy that drives
the set to a desired configuration while minimizing at all times
the sum of the squared distances the robots have to travel. This
homography-based method, which has low computational cost
and generates smooth trajectories for the robots, is then used
in a multirobot control framework featuring multiple cameras,
each of them observing a subset of the robot team. In particular,
we present a novel control approach that makes the complete
robot set reach its global target configuration when there exists
partial overlap between the subsets of robots observed by the
different cameras. Each camera is associated to a control unit
which sends the control commands to its observed subset of
robots, but no other communication is required between the
robots or control units. Our method, which overcomes the
field-of-view limitations of single-camera methods and increases
their scalability, exploits the advantages of both centralized
and distributed multirobot control strategies. Simulations are
provided to illustrate the performance of the proposal.

I. INTRODUCTION

Multirobot systems have been a very popular research

topic in recent years, as they allow to perform a number

of tasks with higher efficiency than a single robot. This

work addresses in particular the control of a group of ground

mobile robots, a field where a variety of setups and objective

tasks have been considered (leader-follower behavior [1], [2],

formation control [3], [4], rendezvous [5]). Regarding the

type of sensing employed, the rich information provided by

vision has led to its use in a number of approaches within

the topic of multirobot motion control [6]–[10]. In general,

control strategies such as the cited ones can be classified into

two main types: centralized or distributed, each of the two

categories having well-known pros and cons.

In the field of visual control [11], multiple view geometric

models have proven to be a valuable tool that allows to

enhance the robustness of performance. However, the use

of these models for multirobot control tasks has rarely been

explored. In this paper, we propose a method that uses the

homography model (which has been widely employed for the

control of a single mobile robot [12]–[14]) in a multirobot

scenario. In particular, the homography computed between

the current and target images of the group of robots is used to
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obtain their motion control commands. We tackle the task of

bringing a set of mobile robots from arbitrary initial positions

to a desired geometric configuration.

The approach presented in this article originates from a

method introduced in [15], which was extended in [16]. In

this previous work, we proposed a visual control framework

based on homography to drive a group of robots to a

desired configuration. Taking advantage of the geometry of

the framework (i.e. planar motion of the robots and the flying

camera system), the control relied on the definition of a

desired homography, computed from the projections of the

robots in a reference image and in the current image, and

satisfying a particular parametrization. Some advantages of

the preceding approaches [15], [16] which are maintained in

the present work, are that the camera can move arbitrarily

without affecting the control performance, and the behavior

of the complete robot set is handled by one single homog-

raphy, computed efficiently by solving a linear system.

However, in this work we approach the control problem

from a different perspective. Motivated by the objective of

improving the motion of the robots, we propose a method

that minimizes the sum of squared distances between the

robots’ current and desired positions on the plane to reach

the desired configuration. Notably, we achieve this goal with

a purely image-based method, not requiring any explicit pose

computation. Like the previous works did, we employ a de-

sired homography to define the control objective in the image

plane. However, the procedure we propose to determine this

objective is different, and it requires a homography defined

with fewer parameters. The advantages of the new proposal

are that the trajectories are shorter than in the preceding ones,

and the load of the control task is shared more equitably

among the robots. In addition, the computational cost is

lower, thanks to the reduced homography parametrization.

Furthermore, and contrary to our earlier works, the ap-

proach we present in this paper is designed to be used

in a multi-camera scenario. Indeed, we propose a partially

distributed scheme where the robots are controlled coopera-

tively through multiple cameras, each of which observing

a subset of the robot team. Each camera is fixed to a

control unit (a mobile robot), which applies the proposed

control technique to the subset of robots within the camera’s

field of view. We show that if a minimum overlap of two

robots exists among the subsets, the controllers have implicit

coordination and perform the desired task (i.e. reach the

target configuration) for the full set of robots cooperatively.

Thus, this approach has the advantage of not requiring any

communication between the control units. The fact that

the control units can move arbitrarily is another important
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Fig. 1. Overview of the proposed system for multirobot control. Multiple
(three, in this example) control units are used. Each of them has an associ-
ated camera from which the unit obtains, using the proposed homography-
based approach, the motion commands for all the robots within the camera’s
field of view (represented by an ellipse). These velocities are transmitted
to the controlled robots, each of which selects from all the commands it
receives the one having minimum absolute linear velocity. The control units
can move arbitrarily, and no communication occurs between them.

advantage, since this means their motion can be selected in

order to optimize the visibility of the robots, guarantee the

required overlaps between subsets, etc.

The application scenario we consider for the multi-camera

technique proposed is one where the control task is handled

by a number of control units, each of them consisting of a

ground robot carrying a calibrated omnidirectional camera.

The proposed setup, illustrated in Fig. 1, allows to bring the

robots to a desired rendezvous configuration, which can be

useful for exploration, surveillance or rescue tasks.

II. HOMOGRAPHY-BASED FRAMEWORK

This section describes the characteristics of our framework

and how the desired homography is computed. The next sec-

tion will discuss how this homography is used by the control

units to drive a set of robots to a desired configuration.

Let us define the elements of the technique that is imple-

mented by each of the control units depicted in Fig. 1. We

consider a number of unicycle robots lying on the ground

plane, being observed by a camera with its image plane

parallel to the ground at constant height. The control unit

associated to the camera has the information of the desired
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Fig. 2. Overview of the homography-based framework implemented
by each of the control units using its associated camera. The desired
configuration is given either as an image (perspective or omnidirectional) or
as a set of geometric constraints. The image plane is parallel to the robot’s
motion plane. The computed desired image positions p

d for the robots are
such that the sum of their squared distances to the current positions p is
minimum, as explained in the text. The image-based control scheme we
propose is based on driving p to p

d.

configuration of its viewed robots, either as an image of

the robots in that configuration or as a set of geometrical

constraints between the locations of the robots. Throughout

the definition of our homography-based method, we use

two images of the robot set (the image of the desired

configuration and the current image) and we consider them to

be perspective. Note, however, that omnidirectional images

can equivalently be used with our approach, since they can be

converted to perspective images if the calibration is known.

In addition, if the desired configuration is given in the form

of geometrical constraints, these can also be expressed in the

image plane (and can therefore be used in our proposal) with

the knowledge of the calibration and height of the camera. A

graphical depiction of this process and of the homography-

based framework described throughout this section is pro-

vided in Fig. 2.

We assume the robots can be detected and identified in

the images. Each robot is associated with an image point,

given by the geometrical center of its projection in the

camera image. We define p′ = {p′

1, ...,p
′

n} as the set

of points in the image of the desired configuration and

p(t) = {p1(t), ...,pn(t)} as the set of points in the current

image. That is, robot i (i = 1, ..., n) is projected in point p′

i

in the image of the desired configuration and in point pi(t)
in the current one.

A. Desired image points to minimize the sum of squared

distances

When attempting to improve the characteristics of the

motion of a set of robots, there are different metrics that may

be considered. In particular, our method minimizes the sum

of squared distances between the robots’ current and desired

positions on the plane to reach the desired configuration.



We start by looking at the relationship between the two

sets of points p′ and p defined in the previous section. This

relationship depends on the robot and camera motions. In

our framework, the image plane is parallel to the plane of

the robots, and its height is constant. Thus, the distances

between robot projections in the image plane are equivalent

to the actual distances between the robots, up to a constant

scale factor. In addition, when the robots are in the desired

configuration in the current image, the distances between

their projections in the current image plane will be the same

as in the reference image. This means that it is possible to

express the relationship between p′ and p as a projective

transformation (or homography) of 2D that preserves the

Euclidean distances, i.e. a Euclidean transformation.

When the robots are not in the desired configuration,

the two sets of points are not related by a Euclidean

transformation. We propose in our method to use the points

in correspondence in p′ and p to compute a homography,

constrained to be Euclidean. Thus, the data is not compatible

with this form of homography. We can, however, solve the

system using SVD and obtain a least-squares solution. This

desired homography (Hd) defines a mapping (whose details

are given in the next section) of p′ to a new set of points

(pd(t) = {pd
1(t), ...,p

d
n(t)}) in the current image, having

this property:

pd(Hd,p′,p) ∋ S =

n
∑

i=1

||pi − pd
i ||

2 is minimum. (1)

Thus, if we use pd as the set of desired positions in the

image plane for each of the robots, and we define a control

strategy based on driving the projections of the robots in the

image plane from p to pd, we are effectively driving the

robot set to the desired configuration while making the sum

of squared distances from the robots’ current positions on

the ground plane to their target ones minimum.

B. Desired homography parametrization and computation

Consider first a general Euclidean homography in 2D, that

we call He, which performs a rotation (φe) and translation

(t = (txe, tye)
T ) of the points:

He =





cosφe sinφe txe
− sinφe cosφe tye

0 0 1



 . (2)

A homography is always defined up to a scale factor. Thus,

a homography with the form of He has three degrees of

freedom. It can be computed linearly from a minimum of

two corresponding points. If we compute He from p′ and

p and apply this rigid transformation to the set of points in

the image of the desired configuration, p′, we obtain a new

set of points pd
e :

pd
e = He · p

′. (3)

The centroid of a set of points is defined as the point that

minimizes the sum of squared Euclidean distances from the

points in the set to it. For a set of n image points p =
({p1, ...,pn}), the centroid can be easily computed as:

cp =
1

n

n
∑

i=1

pi. (4)

Now, note that among all the possible Euclidean homo-

grahies, we want to choose the one which verifies that the

sum of squared distances between the points in the sets p

and pd
e is minimum. It can be shown that, in order for this

to happen, the centroids of the two sets must coincide. As

a consequence, we do not need our desired homography to

encode any translation parameters. Instead, we translate the

coordinates of the sets of points p′ and p so that they are

centered on their respective centroids:

p′

c = p′ − cp′ , pc = p− cp . (5)

This way, the centroids of p′

c and pc are equal. Then

we compute, using p′

c and pc, a Euclidean homography

that expresses a pure rotation, with zero translation. Thus,

the centroid of the points resulting from this homography

mapping will be the same as the centroid of pc. This

simplified definition of the desired homography decreases the

cost of its computation by reducing the number of degrees

of freedom and, consequently, the size of the system to be

solved. A purely rotational Euclidean homography has the

following form:

Hr =





hr
11

hr
12

0
hr
21

hr
22

0
0 0 hr

33



 ∼





cosφr sinφr 0
− sinφr cosφr 0

0 0 1



 .

(6)

We need to constrain the homography to be computed, in

such a way that it has the form of Hr. Let us then formulate

the constraints that define this homography (assuming it has

been normalized by the entry hr
33

):

hr
11

= hr
22
, hr

12
= −hr

21
, hr

11

2 + hr
12

2 = 1 . (7)

Looking for a linear solution, we use the fact that the

first two constraints in (7) are linear. We can then define,

incorporating only these two constraints and not the third

(nonlinear) one, a parametrization of the homography having

the following form:

Hl =





hl
11

hl
12

0
−hl

12
hl
11

0
0 0 hl

33



 ∼





s cosφl s sinφl 0
−s sinφl s cosφl 0

0 0 1



 .

(8)

The homography Hl is nonrigid and has two degrees

of freedom: the angle of rotation φl and a scale factor s.
Since each point correspondence provides two independent

equations, Hl can be computed from only one point match,

like Hr. However, unlike Hr, Hl can be obtained linearly.



If we assume the homographies are computed in such a way

that they fit the data with least squares error, then solving

for (8) gives the same solution for the angle of rotation as

solving for (6), as shown next.

Proposition 1: Let p′ and p be two sets of n image points.

Let Hr be the least-squares homography computed from p′

and p having the form (6), and let Hl be the least-squares

homography computed from p′ and p having the form (8).

Then, Hr = Hl · diag(1/s, 1/s, 0).
Proof: Let us define pd

r = Hr · p
′, and the image

coordinates of the individual point i as pd
ri = (pdrxi, p

d
ryi)

T ,

pi = (pxi, pyi)
T and p′

i = (p′xi, p
′

yi)
T . Then, the sum of

squared Euclidean distances in the image plane between the

transformed image points pd
r and the points p is given by:

Sr =
n
∑

i=1

||pi − pd
ri||

2 = (p′2xi + p′2yi) + (p2xi + p2yi)

−2[cosφr(p
′

xipxi − p′yipyi) + sinφr(p
′

yipxi − p′xipyi)]. (9)

For Hl, we get: pd
l = Hl · p

′, and the sum of squared

distances is:

Sl =

n
∑

i=1

||pi − pd
li||

2 = (p′2xi + p′2yi) +
1

s
(p2xi + p2yi)

−
2

s
[cosφl(p

′

xipxi − p′yipyi) + sinφl(p
′

yipxi − p′xipyi)]. (10)

Since we find the least-squares solutions to the homogra-

phy in the two cases, both Sr and Sl are minimum. Assuming

that s is a positive scale factor, it can be seen that if a given

angle φr minimizes Sr, then an angle φl of the same value

minimizes Sl as well, and viceversa. Therefore, φr = φl,
and Hr = Hl · diag(1/s, 1/s, 0).

Taking advantage of this proposition, we compute Hl from

p′

c and pc and then we obtain the desired homography,

having the required shape (6), as:

Hd = Hl · diag(1/s, 1/s, 0), (11)

where s is computed as the norm of the upper left hand 2×2
matrix of Hl.

Note that after we compute the desired homography (Hd),

the image positions given by the mapping it encodes must

be translated back so that they are centered on the actual

centroid of the points in the current image. That is, the

desired image points are obtained as follows:

pd = Hdp′

c + cp. (12)

The control scheme we propose is based on driving the

robots’ current image projections p to the positions pd.

III. MULTIPLE-CAMERA COORDINATED VISUAL

CONTROL

In this section, we employ the homography-based frame-

work presented thus far to propose a coordinated control

scheme of the multirobot system with multiple cameras.

Fig. 3. Top view of the plane where the robots lie. Each robot’s state is
expressed as (x, y, φ)T or (ρ, α, φ)T in the global reference frame. The
depicted variables are described in the text.

Fig. 4. Geometric variables used to control each robot, defined in the
image plane. Point p is the projection of a robot in the current image, and
p
d its desired location within the desired configuration of the robot set.

A. Multi-camera framework and coordinate systems

We define in this section the model of the robots to be

controlled, the parameters used in our control scheme and the

characteristics of the multi-camera control framework. Note

that the subscripts identifying an individual generic robot

will be omitted throughout this section for clarity.

Figure 3 shows the coordinate systems and geometric

variables in 3D space. The localization of each robot is

expressed as (x, y, φ)T or (ρ, ψ, φ)T in the global reference

frame, where

x = −ρ sinψ , y = ρ cosψ , α = φ− ψ . (13)

We assume the robots have unicycle kinematics, and are

commanded through two velocity inputs: the linear velocity

v in the direction of motion, and the angular velocity ω about

the axis perpendicular to the ground plane.

We depict in Fig. 4 the variables that define the state

of each of the robots in the image plane, given by

(ρm, ψm, φm)T . The coordinate system for robot p in the

image plane is centered in the desired position pd. Thus,

the robot set is in the desired configuration when for every

robot, its image projection is at the origin of its reference.

The distance, ρm, between the current projection of a robot

in the image plane p and its desired position pd is given by:
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ρm =
√

(px − pdx)
2 + (py − pdy)

2 , (14)

The angle ψm can be computed as:

ψm = atan2
(

−(px − pdx), (py − pdy)
)

. (15)

We can obtain φm directly from the image of the robot.

The alignment error in the image, αm, can then also be

obtained as αm = φm − ψm.

Let us define next the elements of the multi-camera

system. We consider a set of n mobile robots and a set of

m cameras, each of which observes a subset of robots Si,

i = 1, ...,m. Our assumption is that for every value of i, at

least two of the robots in Si also belong to another subset

(or group of subsets) Sj , with i 6= j.
Each camera has an associated control unit that issues

motion commands to all the robots in its field of view (i.e. to

the robots in Si). These commands are generated employing

the homography-based control law that will be described in

the following section, which is based on the desired positions

determined as discussed in section II-B. Each control unit

has the information of the full desired configuration defined

in the image plane, but only uses at any time the part of it

corresponding to the robots in Si. The way in which each

robot computes its actual control command is also discussed

in the next section.

B. Visual control law

We propose a control scheme through which a control

unit can drive the set of robots within the field of view of its

associated camera to the desired configuration. The scheme

is based on the desired homography computed as described

in section II-B. We use this homography to define, using (12),

the set of desired positions pd for the robots in the image

plane. Then, we propose an image-based control law to drive

the projections of the robots from their current positions to

the desired ones, using the variables defined in section III-A.

The linear velocity of our control for each robot is defined

as proportional to the distance to the target image position,

while the angular velocity performs orientation correction

to align the robot with the direction to the goal, as follows

(again, we do not include a subscript for the robot for clarity):

{

v = −kv sign(cosαm) ρm
ω = kω (αd − αm)

, (16)

where kv > 0 and kω > 0 are control gains, and the angle

αd is defined as:

αd =

{

0 if |αm| ≤ π
2

π if |αm| > π
2

.

With this control, each robot can travel forwards or

backwards depending on its location relative to its desired

position. Note that the final orientation of the robots is

not controlled to a particular value. If we consider that the

robots have omnidirectional capabilities, the correction of

their orientation at the end of the control task is not critical.

Each of the controlled robots can receive multiple motion

commands from different control units at any time. We note

that it is possible for the robots to use these commands

in different ways to achieve convergence of the set to the

target configuration. We choose in particular a strategy where

each robot selects the received command having minimum

absolute linear velocity. This strategy is simple and was

experimentally observed to provide good performance in

terms of trajectory smoothness and convergence speed. It is

trivial that if each subset shares at least two robots with the

other subsets, then when all the partial desired configurations

are reached, the global desired configuration must also have

been reached. Due to the characteristics of our proposed

control method, the commands issued by different cameras

are cooperative, and their implicit coordination results in the

group being driven to the global target configuration.

Notice that in order to have this cooperative behavior, it is

required to use a control whose target configuration has the

same geometrical center as the current set of robots. There-

fore, the methods employed in our previous homography-

based multirobot control works [15], [16] would not allow

to perform the control with multiple cameras.
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Fig. 6. Simulation results for the multi-camera control method. Top-left: Paths of the robots. The desired configuration (triangle) is shown top-right of
this plot. The robots controlled only by camera 1 are shown in full lines. The robots controlled only by camera 2 are shown in dashed lines. The robots
controlled by both cameras are shown in thicker full lines. The initial positions of the robots are linked by dashed lines. The motions of the cameras
(represented as circles with inscribed triangles) are also shown. Camera 1 is plotted with a full line and camera 2 is plotted with a dashed line. Top-center
and Top-left: Linear and angular velocities, respectively, of the robots. Bottom row-columns 1 and 2: Evolution of the homography entries for cameras 1
and 2. The elements of the desired homography computed with all the robots are displayed with a thick line, the elements of the individual homographies
for each robot are displayed with thin lines. Bottom row-columns 3 and 4: Evolution of the image plane projections of the robots for cameras 1 and 2,
respectively. For both plots, the initial points are displayed joined by dashed lines, while the points at the end of the control are shown joined by full lines.

C. Stability analysis

The stability of the presented single-camera control law is

analyzed next.

Proposition 2: The multirobot system under the control

law (16) is locally exponentially stable.

Proof:

We define, for every robot i (i = 1, ..., n), xi(t) as the

actual 3D position of the robot projected in the current image

point pi(t), and xd
i (t) as the actual position associated to the

desired image point pd
i (t). Let us first prove that the real

positions associated to the desired image points used by our

method are fixed, i.e. for i = 1, ..., n, xd
i (t) is constant.

Due to the definition of our homography-based framework,

xd(t) are the set of desired positions for which

Sum(t) =
n
∑

i=1

||xi(t)− xd
i (t)||

2 (17)

is minimum. As we analyze the local stability behavior of

the system, we assume that all the robots have corrected their

orientation, i.e. αm = αd for each of them. Then, the control

moves the robots straight to their desired positions, in such

a way that xi(t+ δt) = xi(t)+ (xd
i (t)−xi(t)) · ksδt, where

ks is a positive constant proportional to the linear velocity

gain of the control, kv. Now, if we assume the new desired

positions may have changed instantaneously, let us define

them as: xd
i (t+ δt) = xd

i (t) +∆i. We then have:

Sum(t+ δt) =

n
∑

i=1

||xi(t+ δt)− xd
i (t+ δt)||2 =

n
∑

i=1

||xi(t) + (xd
i (t)− xi(t)) · ksδt− xd

i (t)−∆i||
2 =

(1 − ksδt) ·
n
∑

i=1

||xi(t)− (xd
i (t) +∆i/(1− ksδt))||

2, (18)

Now, if we compare this expression with (17), it can

be seen that if a given set of positions xd(t) make (17)

minimum, then in order for (18) to be minimum, it must hold

that ∆i = (0, 0)T for i = 1, ..., n. Thus, the real position for

each robot corresponding to its desired point in the image

plane remains fixed, i.e. for i = 1, ..., n, xd
i (t) is constant.

Given that the kinematics of each robot can be expressed

as ρ̇ = v cosα, the distance to its fixed goal for any of the

robots verifies:

ρ̇c = −v = −kvρm = −ksρc. (19)

Thus, it is straightforward to see that the convergence of

each robot to its fixed desired position is bounded by

an exponential decay, i.e. the multirobot system is locally

exponentially stable.



IV. EXPERIMENTS

Next, we provide simulation results in order to illustrate

the performance of our approach. For simplicity, we used

conventional cameras, having the following calibration ma-

trix: K = [(640, 0, 0)T , (0, 480, 0)T , (320, 240, 1)T ]. We first

present results for the control described in section III-B

implemented on a single camera. In order to evaluate our

approach, we consider an example of a set of four robots

having to form a square-shaped desired configuration. We

show the performance and compare it with the control of

the previous work [15]. The results are displayed in Fig. 5.

As can be observed, the proposed control generates shorter

trajectories than those of the previous approach. We can

see as well that the trajectories are straight lines once the

robots have corrected their angular error (i.e. the desired

positions remain constant). This good behavior is worthy

of note considering that our method does not perform any

position estimation and is purely image-based.

We show in Fig. 6 results from an example of the multiple-

camera control. It can be seen that the six robots reach

the desired formation (triangle) when controlled through two

cameras. Each camera is used to control four robots, and two

of the robots are common. Although the gains of the control

were manually selected for better visualization of the results,

satisfactory performance was observed for wide ranges of

values for the gains. The image plane representations in the

same figure illustrate the importance of the use of the homog-

raphy, the tool that makes it possible to abstract, based on the

image information, the motion of the robots from the camera

motion. The evolution of the entries h11 and h12 of the

desired homography is also displayed, along with the entries

of the homographies computed from each robot individually.

All the individual homographies eventually converge to the

desired homography as the control moves the robots to their

positions in the desired configuration.

V. DISCUSSION AND CONCLUSION

We have presented a homography-based multirobot control

approach where multiple cameras are used to observe and

control a set of robots moving on the ground plane in order

to bring them to a desired configuration. The method relies

on the overlap of two robots between the subsets seen by

the cameras. In practice, maintaining an overlap of only one

robot could be sufficient. In this case, the control we define

has the effect of making the robots come closer, which would

easily lead to an increase in the overlap between subsets.

The advantages of the partially distributed control ap-

proach presented with respect to a centralized method (i.e.

one that uses only a single camera and controller) are that it

overcomes the field of view limitation of a single camera, and

it is more scalable, since the processing load of the task is

shared between multiple control units. Its redundancy makes

it more robust to failure as well. With respect to a purely

distributed method, in our approach the robots have smaller

sensing and processing requirements, and do not need to

transmit any information.

The system should be dimensioned properly, in terms

of the number of cameras needed. This should take into

account the processing capabilities for each control unit, the

field of view of each camera, the total number of robots

and the size of the desired configuration, determined by the

distances between robots. We believe the proposed method

has potential to be developed further in different ways. Since

one of the advantages of the approach is that the cameras

can move arbitrarily, one objective can be to devise methods

that optimize the visibility of the set of robots and guarantee

that sufficient overlap between subsets will be maintained.

It would also be interesting to investigate different strategies

for a robot to determine its motion when it receives multiple

simultaneous commands.
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