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Abstract. The zeta-dimension of a set A of positive integers is

Dimζ(A) = inf{s | ζA(s) < ∞},

where

ζA(s) =
X
n∈A

n−s.

Zeta-dimension serves as a fractal dimension on Z+ that extends natu-
rally and usefully to discrete lattices such as Zd, where d is a positive
integer.

This paper reviews the origins of zeta-dimension (which date to the eigh-
teenth and nineteenth centuries) and develops its basic theory, with par-
ticular attention to its relationship with algorithmic information theory.
New results presented include a gale characterization of zeta-dimension
and a theorem on the zeta-dimensions of pointwise sums and products
of sets of positive integers.

1 Introduction

Natural and engineered complex systems often produce structures with fractal
properties. These structures may be explicitly observable (e.g., shapes of neurons
or patterns created by cellular automata), or they may be implicit in the be-
haviors of the systems (e.g., strange attractors of dynamical systems, Brownian
trajectories in financial data, or Boolean circuit complexity classes). In either
case, the choice of appropriate mathematical models is crucial to understanding
the systems.
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Many, perhaps most, fractal structures are best modeled by classical fractal
geometry [15], which provides top-down specifications of many useful fractals
in Euclidean spaces and other manifolds that support continuous mathematical
methods and attendant methods of numerical approximation. Classical fractal
geometry also includes powerful quantitative tools, the most notable of which
are the fractal dimensions (especially Hausdorff dimension [19, 15], packing di-
mension [39, 38, 15], and box dimension [15]). Theoretical computer scientists
have recently developed effective fractal dimensions [28, 26, 27, 10, 4] that work
in complexity classes and other countable settings, but these, too, are best re-
garded as continuous, albeit effective, mathematical methods.

Some fractal structures are inherently discrete and best modeled that way.
To some extent this is already true for structures created by cellular automata.
For the nascent theory of nanostructure self-assembly [1, 33], the case is even
more compelling. This theory models the bottom-up self-assembly of molecular
structures. The tile assembly models that achieve this cannot be regarded as dis-
crete approximations of continuous phenomena (as cellular automata often are),
because their bottom-level units (tiles) correspond directly to discrete objects
(molecules). Fractal structures assembled by such a model are best analyzed
using discrete tools.

This paper concerns a discrete fractal dimension, called zeta-dimension, that
works in discrete lattices such as Zd, where d is a positive integer. Curiously,
although our work is motivated by twenty-first century concerns in theoreti-
cal computer science, zeta-dimension has its mathematical origins in eighteenth
and nineteenth century number theory. Specifically, zeta-dimension is defined in
terms of a generalization of Euler’s 1737 zeta-function [14] ζ(s) =

∑∞
n=1 n−s,

defined for nonnegative real s (and extended in 1859 to complex s by Riemann
[32], after whom the zeta-function is now named). Moreover, this generalization
can be formulated in terms of Dirichlet series [12], which were developed in 1837,
and one of the most important properties of zeta-dimension (in modern terms,
the entropy characterization) was proven in these terms by Cahen [8] in 1894.

Our objectives here are twofold. First, we present zeta-dimension and its
basic theory, citing its origins in scattered references, but stating things in a
unified framework emphasizing zeta-dimension’s role as a discrete fractal dimen-
sion in theoretical computer science. Second, we present several results on zeta-
dimension and its interactions with classical fractal geometry and algorithmic
information theory.

Our presentation is organized as follows. In section 2, we give an intuitive
development of zeta-dimension in the positive integers. In section 3, we extend
this development in a natural way to the integer lattices Zd, for d ≥ 1. In addition
to reviewing known properties of zeta-dimension, we prove discrete analogs of
two theorems of classical fractal geometry, namely, the dimension inequalities for
Cartesian products and the total disconnectivity of sets of dimension less than
1.

In section 4, we discuss relationships between zeta-dimension and classical
fractal dimensions. Many discrete fractals in Zd have been observed to “look



like” corresponding fractals in Rd. The most famous such correspondence is the
obvious resemblance between Pascal’s triangle modulo 2 and the Sierpinski tri-
angle [36]. We define a version of discrete self similar fractal and its continuous
counterpart and use result from [6] to show that the zeta-dimension of the dis-
crete fractal is always the Hausdorff dimension of its continuous version. We will
further discuss issues along these lines [6, 7, 37] in the full version of this paper.
We also prove a result relating zeta-dimension in Z+ to Hausdorff dimension in
the Baire space.

Section 5 concerns the relationships between zeta-dimension and algorith-
mic information theory. We review the Kolmogorov-Staiger characterization [43,
35] of the zeta-dimensions of computably enumerable and co-computably enu-
merable sets in terms of the Kolmogorov complexities (algorithmic information
contents) of their elements. We prove a theorem on the zeta-dimensions of sets
of positive integers that are defined in terms of the digits, or strings of digits,
that can occur in the base-k expansions of their elements. Most significantly,
we prove that zeta-dimension, like classical and effective fractal dimensions, can
be characterized in terms of gales. Finally, we prove a theorem on the zeta-
dimensions of pointwise sums and products of sets of positive integers that may
have bearing on the question of which sets of natural numbers are definable by
McKenzie-Wagner circuits [29].

Note: Researchers have considered other fractal dimensions in Zd that are
not equivalent to zeta-dimension, but nevertheless of interest [5, 6, 16, 21]. These
will be discussed further in the full version of this paper.

Throughout this paper, log t = log2 t, and ln t = loge t.

2 Zeta-Dimension in Z+

A set of positive integers is generally considered to be “small” if the sum of the
reciprocals of its elements is finite [2, 18]. Easily verified examples of such small
sets include the set of nonnegative integer powers of 2 and the set of perfect
squares. On the other hand, the divergence of the harmonic series means that
the set Z+ of all positive integers is not small, and a celebrated theorem of Euler
[14] says that the set of all prime numbers is not small either.

If a set is small in the above qualitative (yes/no) sense, we are still entitled to
ask, “Exactly how small is the set?” This section concerns a natural, quantitative
answer to this question. For each set A ⊆ Z+ and each nonnegative real number
s, let

ζA(s) =
∑

n∈A

n−s. (2.1)

Note that ζZ+ is precisely ζ, the Riemann zeta-function [32] (actually, Euler’s
original version [14] of the zeta-function, since we only consider ζA(s) for real
s). The zeta-dimension of a set A ⊆ Z+ is then defined to be

Dimζ(A) = inf{s|ζA(s) < ∞}. (2.2)



Since ζZ+(s) < ∞ for all s > 1, we have 0 ≤ Dimζ(A) ≤ 1 for every set A ⊆ Z+.
By the results cited in the preceding paragraph, the set of all positive integers
and the set of all prime numbers each have zeta-dimension 1. Every finite set
has zeta-dimension 0, because ζA(0) is the cardinality of A. It is easy to see
that the set of nonnegative integer powers of 2 also has zeta-dimension 0. For
a deeper example, Wirsing’s nO( 1

ln ln n ) upper bound on the number of perfect
numbers not exceeding n [42] implies that the set of perfect numbers also has
zeta-dimension 0.

The zeta-dimension of a set of positive integers can also lie strictly between
0 and 1. For example, if A is the set of all perfect squares, then ζA(s) = ζ(2s),
so Dimζ(A) = 1

2 . Similarly, the set of all perfect cubes has zeta-dimension 1
3 ,

etc. In fact, this argument can easily be extended to show that, for every real
number α ∈ [0, 1], there exist sets A ⊆ Z+ such that Dimζ(A) = α.

Intuitively, we regard zeta-dimension as a fractal dimension, analogous to
Hausdorff dimension [19, 15] or (more aptly, as we shall see) upper box dimen-
sion dimension [39, 38, 15], on the space Z+ of positive integers. This intuition
is supported by the fact that zeta-dimension has the following easily verified
functional properties of a fractal dimension.

1. Monotonicity: A ⊆ B implies Dimζ(A) ≤ Dimζ(B).
2. Stability: Dimζ(A ∪B) = max{Dimζ(A),Dimζ(B)}.
3. Translation invariance: For each k ∈ Z+, Dimζ(k + A) = Dimζ(A), where

k + A = {k + n|n ∈ A}.
4. Expansion invariance: For each k ∈ Z+, Dimζ(kA) = Dimζ(A), where kA =
{kn|n ∈ A}.
Equation (2.1) can be written as a Dirichlet series

ζA(s) =
∞∑

n=1

f(n)n−s (2.3)

in which f is the characteristic function of A. In the terminology of analytic
number theory, (2.2) then says that the zeta-dimension of A is the abscissa of
convergence of the series (2.3) [23, 18, 2, 3]. In this sense, zeta-dimension was
introduced in 1837 by Dirichlet [12]. The following useful characterization of
zeta-dimension was proven in this more general setting in 1894.

Theorem 2.1 (entropy characterization of zeta-dimension – Cahen [8];
see also [22, 23, 18, 2, 3]). For all A ⊆ Z+,

Dimζ(A) = lim sup
n→∞

log |A ∩ {1, . . . , n}|/ log n. (2.4)

Example 2.2 The set C ′, consisting of all positive integers whose ternary ex-
pansions do not contain a 1, can be regarded as a discrete analog of the Cantor
middle thirds set C, which consists of all real numbers in [0, 1] who ternary
expansions do not contain a 1. Theorem 2.1 implies immediately that C ′ has
zeta-dimension log 2

log 3 ≈ 0.6309, which is exactly the classical fractal (Hausdorff,
packing or box) dimension of C. We will see in section 4 that this is not a
coincidence, but rather a special case of a general phenomenon.



By Theorem 2.1 and routine calculus, we have

Dimζ(A) = lim sup
n→∞

log |A ∩ {1, . . . , 2n}|/n (2.5)

and
Dimζ(A) = lim sup

n→∞
log |A ∩ {2n, . . . , 2n+1 − 1}|/n (2.6)

for all A ⊆ Z+. The right-hand side of (2.6) has been called the (channel) capacity
of A, the (topological) entropy (rate) of A, and the upper (fractal/mass) dimension
of A [34, 24, 17, 13, 9, 11, 20, 35, 7, 30, 31, 5, 6]. In particular, Staiger [35] (see also
[20]) rediscovered (2.6) as a characterization of the entropy of A.

The following section shows how to extend zeta-dimension to the integer
lattices Zd, for d ≥ 1.

3 Zeta-Dimension in Zd

For each ~n = (n1, . . . , nd) ∈ Zd, where d is a positive integer, let ‖~n‖ be the
Euclidean distance from the origin to ~n, i.e.,

‖~n‖ =
√

n2
1 + · · ·+ n2

d. (3.1)

For each A ⊆ Zd, define the A-zeta-function ζA : [0,∞) → [0,∞] by

ζA(s) =
∑

~0 6=~n∈A

‖~n‖−s (3.2)

for all s ∈ [0,∞), and define the zeta-dimension of A to be

Dimζ(A) = inf{s | ζA(s) < ∞}. (3.3)

Note that, if d = 1 and A ⊆ Z+, then definitions (3.2) and (3.3) agree with
definitions (2.1) and (2.2), respectively. The zeta-dimension that we have defined
in Zd is thus an extension of the one that was defined in Z+.

Observation 3.1 For all d ∈ Z+ and A ⊆ Zd, 0 ≤ Dimζ(A) ≤ d.

We next note that zeta-dimension has key properties of a fractal dimension
in Zd. We state the invariance property a bit more generally than in section 2.

Definition. A function f : Zd → Zd is bi-Lipschitz if there exists α, β ∈ (0,∞)
such that, for all ~m, ~n ∈ Zd, α‖~m− ~n‖ ≤ ‖f(~m)− f(~n)‖ ≤ β‖~m− ~n‖.

Observation 3.2 (fractal properties of zeta-dimension) Let A, B ⊆ Zd.

1. Monotonicity: A ⊆ B implies Dimζ(A) ≤ Dimζ(B).
2. Stability: Dimζ(A ∪B) = max{Dimζ(A), Dimζ(B)}.



3. Lipschitz invariance: If f : Zd → Zd is bi-Lipschitz, then Dimζ(f(A)) =
Dimζ(A).

For A ⊆ Zd and I ⊆ [0,∞), let AI = {~n ∈ A | ‖~n‖ ∈ I}. Then the Dirichlet
series

ζD
A (s) =

∞∑
n=1

|A[n,n+1)|n−s =
∑

~0 6=~n∈A

b‖~n‖c−s
, (3.4)

converges exactly when ζA(s) converges, so equation (3.3) says that Dimζ(A) is
the abscissa of convergence of this series. Cahen’s 1894 characterization of this
abscissa thus gives us the following extension of Theorem 2.1.

Theorem 3.3 (entropy characterization of zeta-dimension in Zd – Ca-
hen [8]). For all A ⊆ Zd,

Dimζ(A) = lim sup
n→∞

log|A[1,n]|/ log n. (3.5)

As in Z+, it follows immediately by routine calculus that

Dimζ(A) = lim sup
n→∞

log|A[1,2n]|/n (3.6)

and
Dimζ(A) = lim sup

n→∞
log|A[2n,2n+1)|/n (3.7)

for all A ⊆ Zd. Willson [40] has used (a quantity formally identical to) the
right-hand side of (3.6) as a measure of the growth-rate dimension of a cellular
automaton.

We next note that “subspaces” of Zd have the “correct” zeta-dimensions.

Theorem 3.4. If ~m1, . . . , ~mk ∈ Zd are linearly independent (as vectors in Rd)
and S = {a1 ~m1 + · · ·+ ak ~mk | a1, . . . , ak ∈ Z}, then Dimζ(S) = k.

By translation invariance, it follows that “hyperplanes” in Zd also have the
“correct” zeta-dimensions.

The Euclidean norm (3.1) is sometimes inconvenient for calculations. When
desirable, the L1 norm, ‖~n‖1 = |n1| + · · · + |nd|, can be used in its place. That
is, if we define the L1 A-zeta-function ζL1

A by ζL1

A (s) =
∑

~0 6=~n∈A‖~n‖−s
1 , then

2−sζA(s) ≤ ζL1

A (s) ≤ ζA(s) holds for all s ∈ [0,∞), so Dimζ(A) = inf{s |
ζL1

A (s) < ∞}. The entropy characterizations (3.5), (3.6), and (3.7) also hold
with each set AI replaced by the set AL1

I = {~n ∈ A | ‖~n‖1 ∈ I}. Note that other
norms can be used to define zeta dimension too.

Example 3.5 (Pascal’s triangle modulo 2) Let A = {(m, n) ∈ N2 | (
m+n

m

)

≡ 1 mod 2}. Then it is easy to see that |AL1

[1,2n]| = 3n for all n ∈ N, whence the
L1 version of (3.6) tells us that Dimζ(A) = log 3 ≈ 1.5850. This is exactly the
fractal (Hausdorff, packing or box) dimension of the Sierpinski triangle that A
so famously resembles [36]. This connection will be further illuminated in section
4.



In order to examine the zeta-dimensions of Cartesian products, we define the
lower zeta-dimension of a set A ⊆ Z+ to be

dimζ(A) = lim inf
n→∞

log|A[1,n]|/ log n. (3.8)

By Theorem 3.3, dimζ(A) is a sort of dual of Dimζ(A). By routine calculus, we
also have

dimζ(A) = lim inf
n→∞

log|A[1,2n]|/n, (3.9)

i.e., the dual of equation (3.6) holds. Note, however, that the dual of equation
(3.7) does not hold in general.

The following theorem is exactly analogous to a classical theorem on the
Hausdorff and packing dimensions of Cartesian products [15].

Theorem 3.6. For all A ⊆ Zd1 and B ⊆ Zd2 , dimζ(A) + dimζ(B) ≤ dimζ(A×
B) ≤ dimζ(A) + Dimζ(B) ≤ Dimζ(A×B) ≤ Dimζ(A) + Dimζ(B).

Although connectivity properties play an important role in classical fractal
geometry, their role in discrete settings like Zd will perforce be more limited.
Nevertheless, we have the following. Given d, r ∈ Z+, and points ~m,~n ∈ Zd, an
r-path from ~m to ~n is a sequence π = (~p0, . . . , ~pl) of points ~pi ∈ Zd such that
~p0 = ~m, ~pl = ~n, and ‖~pi− ~pi+1‖ ≤ r for all 0 ≤ i < l. Call a set A ⊆ Zd boundedly
connected if there exists r ∈ Z+ such that, for all ~m,~n ∈ A, there is an r-path
π = (~p0, . . . , ~pl) from ~m to ~n in which ~pi ∈ A for all 0 ≤ i ≤ l.

A result of classical fractal geometry says that any set of dimension less
than 1 is totally disconnected. The following theorem is an analog of this for
zeta-dimension.

Theorem 3.7. Let d ∈ Z+ and A ⊆ Zd. If Dimζ(A) < 1, then no infinite subset
of A is boundedly connected.

The next section examines the relationships between zeta-dimension and classical
fractal dimensions in greater detail.

4 Zeta-Dimension and Classical Fractal Dimension

The following result shows that the agreement between zeta-dimension and Haus-
dorff dimension noticed in Examples 2.2 and 3.5 are instances of a more general
phenomenon: Given any discrete fractal with enough self similarity, its zeta-
dimension is equal to the Hausdorff dimension of its classical version. In earlier
investigations along these lines, discrete self similar fractals were defined using
additive cellular automata [40, 41], reverse iterative function system [5, 6, 37],
etc. Here we give a slightly different definition of self similarity.

Definition. Let c, d ∈ N, F ⊂ Nd. F is a c-discrete self similar fractal, if there
exists a function S : {1, 2, · · · , c}d → {no, R0, R1, R2, R3} such that S(1, · · · , 1)
= R0, and for every integer k and every (i1, · · · , id) ∈ {1, 2, · · · , c}d,

F ∩ Ck
i1,i2,··· ,id

=

{
Rj(Ck

1,··· ,1) if S(i1, · · · , id) = Rj ,

∅ if S(i1, · · · , id) = no



where Rj (j = 0, · · · , 3) is a rotation of angle jπ/2, and Ck
i1,i2,··· ,id

is a d-
dimensional cube of side c is defined by [(i1− 1)ck + 1, i1c

k]× · · · × [(id− 1)ck +
1, idc

k].

Given any c-discrete self similar fractal F ⊂ Nd, we construct its continuous
analogue F ⊂ [0, 1]d recursively, via the following contraction T : x 7→ 1

cx.
F0 = [0, 1] and Fk = T (k)(F ∩ [1, ck]d), where T (k) = T ◦ · · · ◦ T , denotes k
iterations of T . The fractal F = limk→∞ Fk obtained by this construction is a
self-similar continuous fractal with contraction ratio 1/c. The following result
shows that the zeta-dimension of the discrete fractal is equal to the Hausdorff
dimension of its continuous counterpart. See Barlow and Taylor [6] for their more
general result that implies this theorem.

Theorem 4.1. If c, d, F,F are as above, then Dimζ(F ) = dimH(F).

The following result gives a relationship between zeta-dimension and dimen-
sion in the Baire space. We consider the Baire space N∞ representing total func-
tions from N to N in the obvious way. Given w ∈ N∗, let Cw = {z ∈ N∞|w @ z}.
We define real : N∞ → [0, 1] by real(z) =

1

(z0 + 1) +
1

(z1 + 1) + · · ·

. The cylinder

generated by w is the interval ∆(w) = {x ∈ [0, 1]|x = real(z), w @ z}.
A subprobability supermeasure on N∞ is a function p : N∗ → [0, 1] such that

p(λ) ≤ 1 and for each w ∈ N∗, p(w) ≥ ∑
n p(wn).

For each subprobability supermeasure p we can define a Hausdorff dimension
and a packing dimension on N∞, dimp and Dimp, using the metric ρ defined as
ρ(z, z′) = p(w) for w ∈ N∗ the longest common prefix of z, z′ ∈ N∞.

Gauss measure is defined on each E ⊆ R as γ(E) = 1/ ln 2
∫

E
(1+ t)−1dt. We

will abuse notation and use γ(w) = γ(real(Cw)) for each w ∈ N∗. Notice that
γ(λ) = 1 and therefore γ is a probability measure on N∞.

Define FA = {f : N → N|f(N) ⊆ A and limn→∞ f(n) = ∞}, for each
A ⊆ Z+. The following result relates zeta-dimension to Gauss-dimension.

Theorem 4.2. Dimζ(A) = 2 · dimγ(FA) = 2 ·Dimγ(FA).

5 Zeta-Dimension and Algorithmic Information

The entropy characterization of zeta-dimension (Theorem 3.3) already indicates
a strong connection between zeta-dimension and information theory. Here we
explore further such connections. The first concerns the zeta-dimensions of sets
of positive integers that are defined in terms of the digits, or strings of digits,
that can appear in the base-k expansions of their elements. We write repk(n)
for the base-k expansion (k ≥ 2) of a positive integer n. Conversely, given a
nonempty string w ∈ {0, 1, · · · , k − 1}∗ that does not begin with 0, we write
numk(w) for the positive integer whose base-k expansion is w.



A prefix set over an alphabet Σ is a set B ⊆ Σ∗ such that no element of B
is a proper prefix of another element of B. An instantaneous code is a nonempty
prefix set that does not contain the empty string.

Theorem 5.1. Let Σ = {0, 1, · · · , k − 1}, where k ≥ 2. Assume that ∅ 6= ∆ ⊆
Σ − {0} and that B ⊆ Σ∗ is a finite instantaneous code, and let A = {n ∈
Z+|repk(n) ∈ ∆B∗}. Then Dimζ(A) = s∗, where s∗ is the unique solution of the
equation

∑
w∈B k−s∗|w| = 1.

Corollary 5.2 Let Σ = {0, 1, · · · , k − 1}, where k ≥ 2. If Γ ⊆ Σ and Γ 6⊆ {0}
and A = {n ∈ Z+|repk(n) ∈ Γ ∗}, then Dimζ(A) = ln|Γ |

ln k .

Example 5.3 Corollary 5.2 gives a quantitative articulation of the “paradox
of the missing digit”[18]. If A is the set of positive integers in whose decimal
expansions some particular digit, such as 7, is missing, then a naive intuition
might suggest that A contains “most” integers, but A has long been known to
be small in the sense that the sum of the reciprocals of its elements is finite
(i.e., ζA(1) < ∞). In fact, Corollary 5.2 says that Dimζ(A) = ln 9

ln 10 ≈ 0.9542,
a quantity somewhat smaller than, say, the zeta-dimension of the set of prime
numbers.

The main connection between zeta-dimension and algorithmic information
theory is a theorem of Staiger [35] relating entropy to Kolmogorov complexity.
To state Staiger’s theorem in our present framework, we define the Kolmogorov
complexity K(~n) of a point ~n ∈ Zd to be the length of a shortest program
π ∈ {0, 1}∗ such that, when a fixed universal self-delimiting Turing machine U
is run with (π, d) as its input, U outputs ~n (actually, some straightforward en-
coding of ~n as a binary string) and halts after finitely many computation steps.
Detailed discussions of Kolmogorov complexity’s definition, fundamental prop-
erties, history, significance, and applications appear in the definitive textbook
by Li and Vitanyi [25]. As we have already noted, K(~n) is a measure of the
algorithmic information content of ~n.

For ~0 6= ~n ∈ Zd, we write l(‖~n‖) for the length of the standard binary
expansion (no leading zeroes) of the positive integer b‖~n‖c.

If f : Zd → [0,∞) and A ⊆ Zd, then the limit superior of f on A is
lim sup~n∈A f(~n) = limk→∞ sup f(A[k,∞]). Note that this is 0 if A is finite.

Theorem 5.4 (Kolmogorov [43], Staiger [35]). For every A ⊆ Zd, Dimζ(A)
≤ lim sup~n∈A

K(~n)
l(‖~n‖) , with equality if A or its complement is computably enumer-

able.

In the case where d = 1 and A ⊆ Z+, Theorem 5.4 says that, if A is Σ0
1

or Π0
1 , then Dimζ(A) = lim supn∈A

K(n)
l(n) , where l(n) is the length of the binary

representation of A. Kolmogorov [43] proved this for Σ0
1 sets, and Staiger [35]

proved it for Π0
1 sets. The extension to A ⊆ Zd for arbitrary d ∈ Z+ is routine.

As Staiger has noted, Theorem 5.4 cannot be extended to ∆0
2 sets, because

an oracle for the halting problem can easily be used to decide a set B ⊆ Z+



such that, for each k ∈ Z+, B[2k,2k+1] contains exactly one integer n, and this n
also satisfies K(n) ≥ k. Such a set B is a ∆0

2 set satisfying Dimζ(B) = 0 < 1 =
lim supn∈B

K(n)
l(n) .

Classical Hausdorff and packing dimensions were recently characterized in
terms of gales, which are betting strategies with a parameter s that quantifies
how favorable the payoffs are [26, 4]. These characterizations have played a cen-
tral role in many recent studies of effective fractal dimensions in algorithmic
information theory and computational complexity theory [28]. We show here
that zeta-dimension also admits such a characterization.

Briefly, given s ∈ [0,∞), an s-gale is a function d : {0, 1}∗ → [0,∞) satisfying
d(w) = 2−s[d(w0) + d(w1)] for all w ∈ {0, 1}∗. For purposes of this paper, an
s-gale d succeeds on a positive integer n if d(w) ≥ 1, where w is the standard
binary representation of n.

Theorem 5.5 (gale characterization of zeta-dimension). For all A ⊆ Z+,
Dimζ(A) = inf{s | there is an s-gale d that succeeds on every element of A}.

Our last result is a theorem on the zeta-dimensions of pointwise sums and
products of sets of positive integers. For A,B ⊆ Z+, we use the notations A+B =
{a + b | a ∈ A and b ∈ B}, A ∗B = {ab | a ∈ A and b ∈ B}. The first equality in
the following theorem is due to Staiger [35].

Theorem 5.6. If A,B ⊆ Z+ are nonempty, then Dimζ(A∗B) = max{Dimζ(A),
Dimζ(B)} ≤ Dimζ(A+B) ≤ Dimζ(A)+Dimζ(B), and the inequalities are tight
in the strong sense that, for all α, β, γ ∈ [0, 1] with max{α, β} ≤ γ ≤ α+β, there
exist A,B ⊆ Z+ with Dimζ(A) = α, Dimζ(B) = β, and Dimζ(A + B) = γ.

We close with a question concerning circuit definability of sets of natural
numbers, a notion introduced recently by McKenzie and Wagner [29]. Briefly,
a McKenzie-Wagner circuit is a combinational circuit (finite directed acyclic
graph) in which the inputs are singleton sets of natural numbers, and each gate
is of one of five types. Gates of type ∪, ∩, +, and ∗ have indegree 2 and compute
set union, set intersection, pointwise sum, and pointwise product, respectively.
Gates of type − have indegree 1 and compute set complement. Each such circuit
defines the set of natural numbers computed at its designated output gate in
the obvious way. The fact that 0 is a natural number is crucial in this model.
Interesting sets that are known to be definable in this model include the set
of primes, the set of powers of a given prime, and the set of counterexamples
to Goldbach’s conjecture. Is there a zero-one law, according to which every set
definable by a McKenzie-Wagner circuit has zeta-dimension 0 or 1? Such a law
would explain the fact that the set of perfect squares is not known to be definable
by such circuits. Theorem 5.6 suggests that a zero-one law, if true, will not be
proven by a trivial induction on circuits.
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12. L. Dirichlet. Über den satz: das jede unbegrenzte arithmetische Progression, deren
erstes Glied und Differenz keinen gemeinschaftlichen Factor sind, unendlichen viele
Primzahlen enthalt. Mathematische Abhandlungen, 1837. Bd. 1, (1889) 313-342.

13. S. Eilenberg. Automata, Languages, and Machines, volume A. Academic Press,
1974.

14. L. Euler. Variae observationes circa series infinitas. Commentarii Academiae Sci-
entiarum Imperialis Petropolitanae, 9:160–188, 1737.

15. K. Falconer. Fractal Geometry: Mathematical Foundations and Applications. Wiley,
second edition, 2003.

16. H. Furstenberg. Intersections of Cantor sets and transversality of semigroups.
Problems in analysis. Symposium Salomon Bochner, 1969.

17. G. Hansel, D. Perrin, and I. Simon. Compression and entropy. In Proceedings
of the 9th Annual Symposium on Theoretical Aspects of Computer Science, pages
515–528, 1992.

18. G. Hardy and E. Wright. An Introduction to the Theory of Numbers. Clarendon
Press, 5th edition, 1979.
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25. M. Li and P. M. B. Vitányi. An Introduction to Kolmogorov Complexity and its
Applications. Springer-Verlag, Berlin, 1997. Second Edition.

26. J. H. Lutz. Dimension in complexity classes. SIAM Journal on Computing,
32:1236–1259, 2003.

27. J. H. Lutz. The dimensions of individual strings and sequences. Information and
Computation, 187:49–79, 2003.

28. J. H. Lutz. Effective fractal dimensions. Mathematical Logic Quarterly, 51:62–72,
2005.

29. P. McKenzie and K. Wagner. The complexity of membership problems for circuits
over sets of natural numbers. Proceedings of the Twentieth Annual Symposium on
Theoretical Aspects of Computer Science, pages 571–582, 2003.

30. L. Olsen. Distribution of digits in integers: fractal dimension and zeta functions.
Acta Arith., 105(3):253–277, 2002.

31. L. Olsen. Distribution of digits in integers: Besicovitch-Eggleston subsets of N.
Journal of London Mathematical Society, 67(3):561–579, 2003.
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