
Weakly useful sequences

Stephen A. Fenner 1

University of South Carolina, Columbia, South Carolina, USA
E-mail: fenner@cse.sc.edu

Jack H. Lutz 2

Iowa State University, Ames, Iowa, USA
E-mail: lutz@iastate.edu

Elvira Mayordomo 3

University of Zaragoza, Zaragoza, SPAIN
E-mail: elvira@unizar.es

Patrick Reardon 4

SE Oklahoma State University, Durant, Oklahoma, USA
E-mail: preardon@sosu.edu

Abstract

An infinite binary sequence x is defined to be

(i) strongly useful if there is a computable time bound within which every decid-
able sequence is Turing reducible to x; and

(ii) weakly useful if there is a computable time bound within which all the se-
quences in a non-measure 0 subset of the set of decidable sequences are Turing
reducible to x.

Juedes, Lathrop, and Lutz (1994) proved that every weakly useful sequence is
strongly deep in the sense of Bennett (1988) and asked whether there are sequences
that are weakly useful but not strongly useful.

The present paper answers this question affirmatively. The proof is a direct con-
struction that combines the martingale diagonalization technique of Lutz (1994)
with a new technique, namely, the construction of a sequence that is “computably
deep” with respect to an arbitrary, given uniform reducibility. The abundance of
such computably deep sequences is also proven and used to show that every weakly
useful sequence is computably deep with respect to every uniform reducibility.

Preprint submitted to Elsevier Science 24 January 2005

Key words: Computability, Randomness, Random sequence, Computational
depth, Logical depth, Computable measure, Resource-bounded measure, Useful,
Weakly useful

1 Introduction

It is a truism that the usefulness of a data object does not vary directly with
its information content. For example, consider two infinite binary strings, χK ,
the characteristic sequence of the halting problem (whose nth bit is 1 if and
only if the nth Turing machine halts on input n), and z, a sequence that is
algorithmically random in the sense of Martin-Löf [1]. The following facts are
well-known.

(1) The first n bits of χK can be specified using only O(log n) bits of infor-
mation, namely, the number of 1’s in the first n bits of χK [2].

(2) The first n bits of z cannot be specified using significantly fewer than n
bits of information [1].

(3) Oracle access to χK would enable one to decide any decidable sequence
in polynomial time (i.e., decide the nth bit of the sequence in time poly-
nomial in the length of the binary representation of n) [3].

(4) Even with oracle access to z, most decidable sequences cannot be com-
puted in polynomial time. (This appears to be folklore, known at least
since [4].)

Facts (1) and (2) tell us that χK contains far less information than z. In
contrast, facts (3) and (4) tell us that χK is computationally much more
useful than z. That is, the information in χK is “more usefully organized”
than that in z.

Bennett [4] introduced the notion of computational depth (also called “logical
depth”) in order to quantify the degree to which the information in an object
has been organized. In particular, for infinite binary sequences, Bennett de-
fined two “levels” of depth, strong depth and weak depth, and argued that the

1 Supported in part by National Science Foundation Grants CCR–9209833, CCR–
9501794, and CCR–9996310.
2 Supported in part by National Science Foundation Grants 9157382, 9610461,
9988483, and 0344187.
3 Supported in part by Spanish Government projects PB98-0937-C04-02 and
TIC2002-04019-C03-03 and by National Science Foundation Grant 0344187.
4 Supported in part by a grant from the Applied and Organized Research Fund at
SEOSU.

2

above situation arises from the fact that χK is strongly deep, while z is not
even weakly deep. (The present paper is motivated by the study of compu-
tational depth, but does not directly use strong or weak depth, so definitions
are omitted here. The interested reader is referred to [4], [5], or [6] for details,
and for related aspects of algorithmic information theory.)

Investigating this matter further, Juedes, Lathrop, and Lutz [6] considered
two “levels of usefulness” for infinite binary sequences. Specifically, let C be
the Cantor space of all infinite binary sequences and let DEC be the set of
all decidable elements of C. For x ∈ C and t: N → N, let DTIMEx(t) be the
set of all y ∈ C for which there exists an oracle Turing machine M that, on
input n ∈ N with oracle x, computes y[n], the nth bit of y, in at most t(`)
steps, where ` is the number of bits in the binary representation of n. Then a
sequence x ∈ C is defined to be strongly useful if there is a computable time
bound t: N → N such that DTIMEx(t) contains every decidable sequence.
A sequence x ∈ C is defined to be weakly useful if there is a computable
time bound t: N → N such that the set of decidable sequences contained in
DTIMEx(t) is a non-measure 0 subset of DEC in the sense of resource-bounded
measure [7]. That is, x is weakly useful if access to x enables one to decide
a nonnegligible set of decidable sequences within some fixed computable time
bound. No decidable or algorithmically random sequence can be weakly useful.
It is evident that χK is strongly useful, and that every strongly useful sequence
is weakly useful.

Juedes, Lathrop, and Lutz [6] generalized Bennett’s result that χK is strongly
deep by proving that every weakly useful sequence is strongly deep. This con-
firmed Bennett’s intuitive arguments by establishing a definite relationship be-
tween computational depth and computational usefulness. It also substantially
extended Bennett’s result on χK by implying (in combination with known re-
sults of recursion theory [1,8–10]) that all high Turing degrees and some low
Turing degrees contain strongly deep sequences.

Notwithstanding this progress, Juedes, Lathrop, and Lutz [6] left a critical
question open: Do there exist weakly useful sequences that are not strongly
useful? The main result of the present paper answers this question affirma-
tively. This establishes the existence of strongly deep sequences that are not
strongly useful. More importantly, it indicates a need for further investigation
of the class of weakly useful sequences.

The proof of our main result is a direct construction that combines the martin-
gale diagonalization technique introduced by Lutz [11] with a new technique,
namely, the construction of a sequence that is computably F -deep, where F is
an arbitrary uniform reducibility. This notion of computable uniform depth is
closely related to Bennett’s notion of weak depth.

3

The paper is organized as follows. Section 2 contains basic definitions. In
Section 3 we introduce and investigate the notions of computable F -depth
and computable weak depth. In addition to using specific constructions of
computably F -deep sequences, we prove that for each uniform reducibility
F , almost every sequence in DEC is computably F -deep. This implies that a
weakly useful sequence is computably F -deep for any uniform reducibility F .
The main theorem is proved in Section 4, where in addition we introduce a
canonical technique for constructing computably F -deep sequences that satisfy
an additional property which, loosely translated, guarantees that the depths
of their initial segments increase at a rate exponential in the length of the
segment.

2 Preliminaries

We use N to denote the set of natural numbers (including 0), and Q to denote
the set of rational numbers. We write [[ϕ]] for the Boolean value of a condition
ϕ, i.e.,

[[ϕ]] = if ϕ then 1 else 0.

For any x, y ∈ {0, 1}∗ ∪ {0, 1}∞, we write x v y to mean that x is a prefix of
y. For every w ∈ {0, 1}∗, define Cw = {x ∈ C : w v x}. We fix a computable,
bijective pairing function 〈·, ·〉: N2 → N, monotone in both arguments, such
that i ≤ 〈i, j〉 and j ≤ 〈i, j〉 for all i, j ∈ N.

Weakly useful sequences are defined (in Section 1) in terms of computable
measure, a special case of the resource-bounded measure developed by Lutz
[7]. We very briefly sketch the elements of this theory, referring the reader to
[7,11] for motivation, details, and intuition.

Definition 1 A martingale is a function d: {0, 1}∗ → [0,∞) such that d(w) =
(d(w0) + d(w1))/2 for all w ∈ {0, 1}∗. A martingale d is computable if there
is a total computable function d̂: N× {0, 1}∗ → Q such that, for all r ∈ N and
w ∈ {0, 1}∗,∣∣∣d̂(r, w)− d(w)

∣∣∣ ≤ 2−r.

We make use of two notions of “success” for a martingale.

Definition 2 Suppose d is a martingale.

4

(1) d succeeds on a sequence x ∈ C if

lim sup
n→∞

d(x[0 . . . n− 1]) = ∞,

where x[0 . . . n− 1] is the n-bit prefix of x.
(2) The success set of d is

S∞[d] = {x ∈ C : d succeeds on x}.

(3) The strong unitary success set of d is

SS1[d] = {x ∈ C : for all but finitely many n, d(x[0 . . . n− 1]) ≥ 1}.

Definition 3 Let X ⊆ C.

(1) X has computable measure 0, and we write µcomp(X) = 0, if there is a
computable martingale d such that X ⊆ S∞[d].

(2) X has computable measure 1, and we write µcomp(X) = 1, if µcomp(X
c) =

0, where Xc = C−X is the complement of X.
(3) X has measure 0 in DEC, and we write µ(X | DEC) = 0, if µcomp(X ∩

DEC) = 0.
(4) X has measure 1 in DEC, and we write µ(X | DEC) = 1, if µ(Xc |

DEC) = 0. In this case, we say that X contains almost every element of
DEC.

3 Uniform Computable Depth

Bennett [4] defines an infinite sequence A to be weakly deep if A is not tt-
reducible to any algorithmically random sequence. The definition of algorith-
mic randomness, due to Martin-Löf [1], can be stated in terms of constructive
null sets, which are sets with a uniformly computably enumerable sequence of
open covers whose measures grow arbitrarily small. In this section we develop
a similar notion of depth based on computable measure, a special case of the
resource-bounded measure developed by Lutz [7]. This depth notion is used
in the proof of our main result in Section 4. It is also of independent interest
as it is closely related to Bennett’s weak depth.

We first make our terminology precise. As in [12], we define a truth-table
condition (briefly, a tt-condition) to be an ordered pair τ = ((n1, . . . , nk), g),
where k, n1, . . . , nk ∈ N and g: {0, 1}k → {0, 1}. We write TTC for the class
of all tt-conditions. The tt-value of a sequence B ∈ C under a tt-condition
τ = ((n1, . . . , nk), g) is the bit τB = g(B[n1]B[n2] · · ·B[nk]). If τ is a tt-
condition, then we say that τ queries the integer m if m ∈ {n1, . . . , nk}, and
the query height of τ is defined as max(n1, . . . , nk) + 1.

5

A truth-table reduction (briefly, a tt-reduction) is a total computable function
F : N → TTC. A truth-table reduction F naturally induces a function F̂ :C →
C defined by

F̂ (B) = F (0)BF (1)B · · · .

In general, we identify a truth-table reduction F with the induced function
F̂ , writing F for either function and relying on context to avoid confusion.

The following terminology is convenient for our purposes.

Definition 4 A uniform reducibility is a total computable function F : N× N →
TTC.

If F is a uniform reducibility, then we use the notation Fk(n) = F (k, n) for
all k, n ∈ N. We thus regard a uniform reducibility as a computable sequence
F0, F1, F2, . . . of tt-reductions.

Definition 5 If F and G are uniform reducibilities, then we define the com-
position of F with G to be the uniform reducibility

F ◦G: N× N → TTC

defined by

(F ◦G) (〈k, j〉, n) = (Fk ◦Gj) (n)

for all k, j, n ∈ N, where “Fk ◦ Gj” denotes the (easily defined) truth-table
reduction satisfying (Fk ◦Gj)(B) = Fk(Gj(B)) for all B ∈ C.

Definition 6 Suppose F is a uniform reducibility, and A and B are infinite
binary sequences.

(1) A is F -reducible to B, and we write A ≤F B, if there is some k such
that A = Fk(B).

(2) The upper F -span of A is the set F−1(A) = {X ∈ C : A ≤F X}.
(3) A is computably F -deep if µcomp(F

−1(A)) = 0.
(4) A is computably weakly deep if, for every uniform reducibility F , A is

computably F -deep.

We pursue for a moment the analogy between Definition 6(3) and Bennett’s
weak depth. In [13], Terwijn and Torenvliet extended the resource-bounded
measure of Lutz [7] using computably enumerable supermartingales, functions
like martingales except the averaging condition they must satisfy is weaker
than that required of ordinary martingales. Using this notion of measure,

6

termed c.e. measure, Terwijn and Torenvliet proved that the class of non-
algorithmically random languages is the maximum c.e. measure 0 class. Ben-
nett’s notion of weak depth can thus be characterized in terms of c.e. measure
in the sense that a language A is weakly deep if and only if the c.e. measure of
its upper tt-span is 0. Definition 6(3) reflects the spirit of this characterization,
but replaces ‘tt-reducible’ with ‘F -reducible’ and replaces ‘c.e. measure 0’ with
‘comp-measure 0’. Regarding Definition 6(4), observe that every computably
weakly deep sequence is weakly deep. Lathrop and Lutz [14] have shown the
converse is not true.

Although the definition of a weakly useful sequence was stated in terms of
Turing reductions, we work almost exclusively in this section and the next
with truth table reductions. The connection between these two notions is
expressed by the following well-known fact.

Lemma 7 For every computable time bound t(n) > 0, there is a uniform
reducibility F such that for all x ∈ C, DTIMEx(t) = {F0(x), F1(x), . . .}.

We now prove the main result of this section.

Theorem 8 For every uniform reducibility F , almost every sequence in DEC
is computably F -deep.

PROOF. Let F denote a uniform reducibility, and write F = F0, F1,
For each j ∈ N, define Dj(w) = {B ∈ C : Fj(B)[0 . . . |w| − 1] = w}, i.e.,
those oracles which allow Fj to correctly compute w. For every j ∈ N and
w ∈ {0, 1}∗, we may, using a program that computes F , calculate Lj(w) =
max({h ∈ N : h is the query height of Fj(i) for some 0 ≤ i < |w|}), and then
poll {0, 1}Lj(w) using the tt-conditions Fj(i) for 0 ≤ i < |w| to obtain the set

Ej(w) = {α ∈ {0, 1}Lj(w) : Fj(B)[0 . . . |w| − 1] = w for all B w α}.

Let Pr(Dj(w)) denote the probability that an oracle chosen at random belongs

to Dj(w). Then the function d̃(w) = 2|w| · Pr(Dj(w)) is a martingale, and

{d̃j}∞j=0 is uniformly computable since Pr(Dj(w)) = |Ej(w)| · 2−Lj(w). Set

d̃(w) =
∞∑

j=0

2−j · d̃j(w).

It is routine to verify that d̃ is computable.

To show that µcomp(F
−1(A)) = 0 for almost every A ∈ DEC, we construct

a computable martingale d which succeeds on F−1(A) whenever A ∈ DEC−

7

S∞[d̃]. Then for such an A and for every j ∈ N, we have

lim
m→∞

Pr(Dj(A[0 . . . m])) = 0.

Because of this we may, for each j, n ∈ N, compute a number mj,n such that
Pr(Dj(A[0 . . . mj,n])) ≤ 2−j−n−1. This can be accomplished by using programs
that compute both F and A to calculate, for any j, n ∈ N, Pr(Dj(A[0 . . . m]))
for increasing values of m. We then define mj,n to be the least m such that
Pr(Dj(A[0 . . . m])) ≤ 2−j−n−1. We remark that {mj,n}∞j,n=0 is uniformly com-
putable, and define a uniformly computable sequence {dj,n}∞j,n=0 of martingales
as follows. For all j, n ∈ N, let dj,n be the unique martingale with initial value
dj,n(λ) = Pr(Dj(A[0 . . . mj,n])), and satisfying Dj(A[0 . . . mj,n]) = SS1[dj,n].

This implies that dj,n(λ) ≤ 2−j−n−1 for all j, n ∈ N, and we define a function
d: {0, 1}∗ → [0,∞) by

d(w) =
∞∑

n=0

∞∑
j=0

dj,n(w).

Then

d(λ) =
∞∑

n=0

∞∑
j=0

dj,n(λ) ≤
∞∑

n=0

∞∑
j=0

2−j−n−1 = 2,

and thus d is a martingale. To see that it is computable, define d̂(r, w) =∑r+1+|w|
n=0

∑r+1+|w|
j=0 dj,n(w). The fact that {dj,n}∞j,n=0 is uniformly computable

implies that d̂(r, w) is computable, and

∣∣∣d(w)− d̂(r, w)
∣∣∣≤ ∞∑

n=0

∞∑
j=r+2+|w|

2|w| · 2−j−n−1 +
∞∑

n=r+2+|w|

∞∑
j=0

2|w| · 2−j−n−1

=
∞∑

n=0

2−r−2−n +
∞∑

n=r+2+|w|
2|w|−n

= 2−r−1 + 2−r−1 = 2−r.

For every B ∈ F−1(A), there exists j ∈ N such that for all n ∈ N, B ∈
SS1[dj,n], whence F−1(A) ⊆ S∞[d]. This shows that µcomp(F

−1(A)) = 0. The

sequence A ∈ DEC − S∞[d̃] was arbitrary, so it follows that almost every
decidable sequence is computably F -deep. 2

Theorem 9 Every weakly useful sequence is computably weakly deep.

8

PROOF. Assume that A is weakly useful and fix a uniform reducibility F .
Fix a computable time bound t: N → N such that µ(DTIMEA(t) | DEC) 6= 0.
Then by Lemma 7 there is a uniform reducibility F̃ such that DTIMEA(t) =
{F̃0(A), F̃1(A), . . .}. Let X denote the collection of computably (F̃ ◦ F)-deep
sequences. By Theorem 8, µ(X | DEC) = 1, so there is a sequence B ∈ X ∩
DTIMEA(t)∩DEC. Let C ∈ F−1(A) and choose j, k ∈ N such that A = Fj(C)
and B = F̃k(A). Then B = F̃k(Fj(C)), so C ∈ (F̃ ◦ F)−1(B). This shows that
F−1(A) ⊆ (F̃ ◦ F)−1(B). Since B ∈ X, it follows that µcomp(F

−1(A)) =
µcomp((F̃ ◦ F)−1(B)) = 0, whence A is computably weakly deep. 2

4 Main Result

In this section, we prove the existence of weakly useful sequences that are
not strongly useful. Although we consider infinite, nonuniform collections of
uniform reducibilities F , our construction uses computably F -deep sets that
are constructed in a canonical way.

We will deal extensively with partial characteristic functions, i.e., functions
with domain a subset of N and range {0, 1}. If σ and τ are partial characteristic
functions, we let dom(σ) denote the domain of σ, and say that σ and τ are
compatible if they agree on all elements in dom(σ) ∩ dom(τ). We say that σ
is extended by τ (σ v τ) if σ and τ are compatible and dom(σ) ⊆ dom(τ). If
D ⊆ N, then σ restricted to D is the unique partial characteristic function

τ [x] =

 σ[x] if x ∈ D

undefined otherwise.

We often identify N with N2 via the pairing function. The ith section of natural
numbers {〈i, j〉 : j ∈ N} is denoted by Ni, the union of the first i sections
N0 ∪ . . . ∪ Ni−1 by N<i, and the complement of N<i by N≥i. If σ is a partial
characteristic function and n ∈ N, then

• σ=i denotes σ restricted to the domain Ni,
• σ=i[< n] denotes σ restricted to the domain {〈i, y〉 : 0 ≤ y < n},
• σ<i denotes σ restricted to the domain N<i, and
• σ<i[< n] is σ restricted to {〈x, y〉 : 0 ≤ x < i and 0 ≤ y < n}.

Definition 10 For each uniform reducibility F , the decidable sequence A pro-
duced by the construction below is called the canonical computably F -deep
sequence.

Construction. Suppose F is a uniform reducibility. Fix j, n ∈ N, and let L

9

be the maximum of the query heights of Fj(〈j, n′〉) for all n′ ≤ n. Partition
{0, 1}L into two sets R0 and R1 so that

α ∈ Rb ⇐⇒ (Fj(〈j, n〉)B = b for every oracle B w α).

Informally, we identify R0 with the set of oracles which answer “No” when
queried by Fj(〈j, n〉), and R1 with the set of oracles which answer “Yes.” Our
strategy will be to diagonalize against the majority in the construction of A,
ensuring that only the minority answer among those consistent with previous
answers can correctly compute any given bit of A. We thus define A[〈j, n〉] by
induction as follows. Assume that A[〈j, n′〉] has already been defined for all
n′ < n, and let

R = {α ∈ {0, 1}L : (∀B w α)(A=j[< n] v Fj(B))}

consist of the strings from which Fj computes the previous values of A on the
jth section correctly. Then we define

A[〈j, n〉] =

 1 if |R1 ∩R| ≤ |R0 ∩R|

0 if |R0 ∩R| < |R1 ∩R|.

Clearly A is decidable. Furthermore, our definition ensures that the partial
functions A=j[< n] of A have the following property.

Fact 11 The probability that an oracle chosen at random allows Fj to correctly
determine A=j[< n + 1] is at most half the probability that it allows Fj to
correctly determine A=j[< n].

It only remains to show that A is computably F -deep. To this end, define

Dj,n = {B ∈ C : A=j[< n] v Fj(B)}.

The computation of A=j[< n] is accomplished without making queries to any
k ≥ L, hence there is some S ⊆ {0, 1}L such that

Dj,n =
⋃

w∈S

Cw.

As in the proof of Theorem 8, we define dj,n to be the unique martingale with
initial value dj,n(λ) = Pr(Dj,n) and such that Dj,n = SS1[dj,n]. By Fact 11 we
have dj,n+1(λ) ≤ 1

2
dj,n(λ), and thus dj,n(λ) ≤ 2−n for any n ∈ N.

10

Define d: {0, 1}∗ → [0,∞) by

d(w) =
∞∑

j=0

∞∑
n=0

2−jdj,n(w).

Then

d(λ) ≤
∞∑

j=0

∞∑
n=0

2−j−n = 4,

so d is a martingale. If we define d̂: N× {0, 1}∗ → [0,∞) by

d̂(r, w) =
r+|w|+2∑

j=0

r+|w|+2∑
k=0

2−jdj,n(w),

then d̂ is computable. Also, each dj,n(w) ≤ 2|w|dj,n(λ) ≤ 2|w|−n, so for all r ∈ N
and w ∈ {0, 1}∗,

∣∣∣d̂(r, w)− d(w)
∣∣∣≤ ∞∑

j=r+|w|+3

∞∑
n=0

2|w|−j−n +
∞∑

j=0

∞∑
n=r+|w|+3

2|w|−j−n

= 2 ·
∞∑

j=r+|w|+3

∞∑
n=0

2|w|−j−n

= 4 ·
∞∑

j=r+|w|+3

2|w|−j

= 2−r,

i.e., d̂ testifies that d is computable.

We finish the proof by showing that F−1(A) ⊆ S∞[d]. To see this, let B ∈
F−1(A), and fix j ∈ N such that A = Fj(B). Then B ∈ ⋂∞

n=0 Dj,n =⋂∞
n=0 SS1[dj,n], so for every m ∈ N there is a w v B such that

d(w)≥ 2−j
m2j−1∑
n=0

dj,n(w)

≥ 2−j
m2j−1∑
n=0

1

= m.

This shows that B ∈ S∞[d]. We now have a computable martingale d with
F−1(A) ⊆ S∞[d].

11

Thus we have proved the following.

Proposition 12 If F is a uniform reducibility and A is the canonical com-
putably F -deep sequence, then µcomp(F

−1(A)) = 0.

We are now ready to prove the main theorem. Our proof is an adaptation of
the martingale diagonalization method introduced by Lutz in [11]. We define
a sequence H one section at a time to satisfy the following conditions, where
H0, H1, H2, . . . are the sections of H, i.e., Hk[n] = H[〈k, n〉].

(1) Each section Hk is decidable (although H itself cannot be decidable).
(2) If d is any computable martingale, then there is some k such that d fails

on Hk.
(3) For every computable time bound t, there is a decidable set which is not

in DTIMEH(t).

These three conditions suffice for our purposes. By Condition 1, the set J =
{H0, H1, H2, . . .} ⊆ DEC, and by Condition 2, no computable martingale can
succeed on all its elements. Thus µcomp(J) 6= 0, which makes H weakly useful,
since J ⊆ DTIMEH(linear). Condition 3 ensures that H is not strongly useful.

Theorem 13 There exists a sequence H that is weakly useful but not strongly
useful.

PROOF. We divide the proof into two sections: (i) the construction of H,
and (ii) the proof that H satisfies the three conditions above, and is thus
weakly useful but not strongly useful.

Construction of H

Fix an arbitrary enumeration t0, t1, . . . of all computable time bounds and
an enumeration d̃0, d̃1, . . . of all computable martingales. These enumerations
need not be uniform in any sense, since we are not trying to control the
complexity of H. We will define (in order) a number of different objects for
each k:

• a uniform reducibility F k corresponding to tk,
• a decidable Ak such that Ak 6∈ DTIMEH(tk),
• a partial characteristic function αk of finite domain, compatible with all the

previous sections of H,
• martingales di,j

k,q which are uniformly computable over i, j, q ∈ N, which,
taken together for all k ≥ i, witness that each Ai is computably F i-deep,
and

• the section Hk itself, which is designed to make the martingale

12

dk = d̃k +
k∑

i=0

∞∑
j=0

∞∑
q=0

di,j
k,q · 2−q−j

fail on Hk, thus satisfying Condition 2 above. The section Hk will also partic-
ipate in a fixed finite number of diagonalizations against tt-reductions from
Ai to H for all i ≤ k.

Fix k ∈ N and assume the above objects have been defined for all k′ < k
(define α−1 = λ). Also assume that for each k′ < k we have at our disposal
programs to compute the objects Ak′

and F k′
j uniformly over j. Let

Mk
0 , Mk

1 , . . .

be a computable enumeration of all oracle Turing machines running in time
tk, and let

M̂k
0 , M̂k

1 , . . .

be a computable enumeration of oracle Turing machines which behave exactly
like the corresponding Mk

j ’s, except that when Mk
j makes a query of the form

〈x, y〉 for x < k, M̂k
j instead simulates the answer by computing Hx[y] directly.

Let

F k
0 , F k

1 , . . .

be an enumeration of tt-reductions, each of which simulates the corresponding
M̂k

m. This enumeration is computable and thus is a uniform reducibility. Note
that on any input, F k

j only makes queries to N≥k.

We define Ak to be the canonical computably F k-deep set. Let r, s ∈ N be
the unique pair such that k = 〈r, s〉. If there is a total characteristic function
B extending both H<k and αk−1 for which Ar 6= F r

s (B), then let αk w αk−1

be a finite sequence (the lexicographic minimum, say) that is compatible with
H<k ∪ αk−1 and whose domain is big enough to preserve this fact, i.e., Ar 6=
F r

s (B′) for any B′ ∈ C such that B′ w αk. In this case we say αk diagonalizes
against F r

s . Otherwise, we let αk = αk−1. This finite sequence will eventually
be included as a subseqence of H, but is added just one section at a time.

Now fix any i, j ∈ N with i ≤ k. For each n ∈ N and w ∈ {0, 1}∗, we define

(1) Di
j,n = {B ∈ C : Ai

=j[< n] v F i
j (B)},

(2) Rj,n = {B ∈ C : H<j[< n] v B}, and

13

(3) Sj,w = {B ∈ C : (∀0 ≤ m < |w|)(B[〈j, m〉] = w[m])}.

Fact 11 implies that Pr(Di
j,n) ≤ 2−n, and it is easy to see that Pr(Rj,n) = 2−jn.

Put

yi,j(n) = min

{
y ∈ N :

for all 0 ≤ m < n, all queries of F i
j (〈j, m〉)

are of the form 〈x, y′〉 with y′ < y

}
.

For all q, ` ∈ N, define (letting Y = Rk,yi,j(q`) ∩Di
j,q`)

di,j
k,q,`(w) =

 2|w|−` · Pr(Sk,w | Y) if Pr(Y) > 0,

2−` otherwise,
(1)

where the probabilities refer to the uniform probability measure on C, and,
for measurable sets X,Y ⊆ C with Pr(Y) > 0, we define Pr(X | Y) to be
Pr(X ∩ Y)/ Pr(Y) as usual. Note that the definition of di,j

k,q,` above remains
unchanged if we replace yi,j(q`) with any y ≥ yi,j(q`), because Di

j,q` depends
on B ∈ C only for those queries made by F i

j on inputs 〈j, 0〉, . . . , 〈j, q`− 1〉,
and none of these queries is of the form 〈x, y〉 for y ≥ yi,j(q`).

Summing over ` ≥ 1, define

di,j
k,q(w) =

∞∑
`=1

di,j
k,q,`(w).

Finally, set

dk(w) = d̃k(w) +
k∑

i=0

∞∑
j=0

∞∑
q=0

di,j
k,q(w) · 2−q−j.

We define H=k: Nk → {0, 1} so that it is compatible with αk on their common
domain but diagonalizes out of the success set of dk otherwise. Specifically,

Hk[n] = H=k[〈k, n〉] =

 αk[〈k, n〉] if it is defined

[[dk(Hk[< n]1) ≤ dk(Hk[< n]0)]] otherwise.

As stated, it may not be the case that the comparison in the definition can
actually be accomplished since a computable martingale such as dk cannot in
general be computed exactly, but is only approximated. What we are really
comparing then are not dk(Hk[< n]1) and dk(Hk[< n]0), but rather their
nth approximations, which are computable. Since these approximations are

14

guaranteed to be within 2−n of the actual values, and our sole aim is to make
dk fail on Hk, it suffices for our purposes to consider only the approximations
when doing the comparisons above. The same trick is used in [11].

Hk is decidable, and for cofinitely many n, Hk[n] is chosen so that dk(Hk[<
(n+1)]) ≤ dk(Hk[< n])+2−n, the 2−n owing to the error in the approximation
of dk. Thus dk fails on Hk, from which we obtain

Fact 14 The martingales d̃k and di,j
k,q, where j, q are arbitrary and i ≤ k, all

fail on Hk.

Thus Conditions 1 and 2 above are satisfied. Define H to be the function whose
value at 〈u, v〉 is Hu[v]. Each Hk preserves the diagonalization commitments
made by the αk′ for k′ ≤ k, and one can easily see that α0 v α1 v · · ·H. This
completes the construction of H.

H is weakly useful but not strongly useful

Notice that J = {H0, H1, . . .} ⊆ DTIMEH(linear), but µcomp(J) 6= 0. There-
fore, H is weakly useful. It only remains to show that H is not strongly useful.
For every i, DTIMEH(ti) = {B ∈ C : B ≤F i H}. Hence it suffices to show
that for all i and j, the canonical computably F i-deep set Ai 6= F i

j (H).

We assume there are natural numbers r and s such that Ar = F r
s (H) and

work towards a contradiction. Define k0 = 〈r, s〉 and let σ = H<k0 ∪αk0−1. By
the definition of αk0 , it must be the case that Ar = F r

s (B) for every B w σ,
otherwise F r

s would have been diagonalized against by αk0 and would thus fail
to reduce Ar to H. Choose q0 > r such that N≥q0 ∩ dom(σ) = ∅. We will show
that dr,s

n,q0
succeeds on Hn for some n < q0, contradicting Fact 14.

For every y ∈ N, let {δi : 0 ≤ i < 2ry} be an enumeration of all partial
characteristic functions with domain T = {〈u, v〉 : 0 ≤ u < r and 0 ≤ v < y},
and such that δ0 = H<r[< y]. Partition C into cells Ei = {B ∈ C : δi v B}.
Fix any integer ` ≥ 1. Since F r

s makes no queries in T , the probabilities
Pr(Dr

s,q0` | Ei) are all equal for i < 2ry. Therefore

Pr(Dr
s,q0`) =

2ry−1∑
n=0

Pr(En) · Pr(Dr
s,q0` | En) = 2−ry

2ry−1∑
n=0

Pr(Dr
s,q0` | E0) = Pr(Dr

s,q0` | Rr,y),

and it follows that Rr,y and Dr
s,q0` are independent for all y and `. If r ≤ n < q0,

then for y ≥ yr,s(q0`),

Pr(Rn,y ∩Dr
s,q0`) ≥ Pr(Rq0,y ∩Dr

s,q0`) = Pr(Rq0,y) = 2−q0y > 0, (2)

since Rq0,y ⊆ Dr
s,q0` by our assumption. For these n, only the top equation in

15

(1) is relevant. Thus for sufficiently large y,

q0−1∏
n=r

dr,s
n,q0,`(Hn[< y]) =

q0−1∏
n=r

2y−` · Pr(Sn,Hn[<y] | Rn,y ∩Dr
s,q0`)

= 2(y−`)(q0−r) ·
q0−1∏
n=r

Pr(Rn,y ∩ Sn,Hn[<y] | Rn,y ∩Dr
s,q0`)

= 2(y−`)(q0−r) ·
q0−1∏
n=r

Pr(Rn+1,y | Rn,y ∩Dr
s,q0`)

= 2(y−`)(q0−r) · Pr(Rq0,y | Rr,y ∩Dr
s,q0`)

= 2(y−`)(q0−r) ·
Pr(Rq0,y ∩Dr

s,q0`)

Pr(Rr,y) Pr(Dr
s,q0`)

.

By Fact 11, Pr(Dr
s,q0`) ≤ 2−q0`, and this together with (2) implies that the last

expression above is bounded from below by

2q0y−q0`−ry+r` · 2−q0y

2−ry · 2−q0`
= 2r` ≥ 1.

Hence for any ` and all y ≥ yr,s(q0`), there must exist some n satisfying
r ≤ n < q0 and dr,s

n,q0,`(Hn[< y]) ≥ 1. Then by the Pigeon Hole Principle
there is some r ≤ n0 < q0 with the property that, for infinitely many `,
dr,s

n0,q0,`(Hn0 [< y]) ≥ 1 for all y ≥ yr,s(q0`). Hence dr,s
n0,q0

=
∑∞

`=1 dr,s
n0,q0,` succeeds

on Hn0 , but then so does dn0—a contradiction. Therefore, H is not strongly
useful. 2

Corollary 15 There is a sequence that is strongly deep but not strongly useful.

PROOF. This follows immediately from Theorem 13 and the fact [6] that
every weakly useful sequence is strongly deep. 2

It is easy to verify that weak and strong usefulness are both invariant under tt-
equivalence. Thus, Theorem 13 shows that there are weakly useful tt-degrees
that are not strongly useful. Our results do not say anything regarding the
Turing degrees of weakly useful sets, however. In particular, we leave open the
question of whether there is a weakly useful Turing degree that is not strongly
useful (i.e., whether there is a weakly useful set not Turing equivalent to
any strongly useful set). Some facts are known about these degrees. Jockusch
[9] neatly characterized the strongly useful Turing degrees (under a different
name), for example, as being either high or containing complete extensions of
first-order Peano arithmetic. This includes some low degrees, but no non-high

16

c.e. degrees. Stephan [15] has partially strengthened these results, showing
that no non-high c.e. Turing degree can be weakly useful, either. Therefore,
among the c.e. degrees, the strongly useful, weakly useful, and high degrees
all coincide.

Acknowledgements

The authors thank Martin Kummer and Frank Stephan for helpful discussions.

References

[1] P. Martin-Löf, On the definition of random sequences, Information and Control
9 (1966) 602–619.

[2] Y. Barzdin’, Complexity of programs to determine whether natural numbers
not greater than n belong to a recursively enumerable set, Soviet Mathematics
Doklady 9 (1968) 1251–1254.

[3] E. L. Post, Recursively enumerable sets of positive integers and their decision
problems, Bulletin of the American Mathematical Society 50 (1944) 284–316.

[4] C. H. Bennett, Logical depth and physical complexity, in: R. Herken (Ed.), The
Universal Turing Machine: A Half-Century Survey, Oxford University Press,
1988, pp. 227–257.

[5] M. Li, P. M. B. Vitányi, An Introduction to Kolmogorov Complexity and its
Applications, 2nd Edition, Springer, 1997.

[6] D. W. Juedes, J. I. Lathrop, J. H. Lutz, Computational depth and reducibility,
Theoretical Computer Science 132 (1994) 37–70.

[7] J. H. Lutz, Almost everywhere high nonuniform complexity, Journal of
Computer and System Sciences 44 (1992) 220–258.

[8] G. E. Sacks, Degrees of Unsolvability, Princeton University Press, 1966.

[9] C. G. Jockusch, Jr, Degrees in which the recursive sets are uniformly recursive,
Canadian Journal of Mathematics 24 (1972) 1092–1099.

[10] C. G. Jockusch, Jr, R. I. Soare, Degrees of members of Π0
1 classes, Pacific Journal

of Mathematics 40 (1972) 605–616.

[11] J. H. Lutz, Weakly hard problems, SIAM Journal on Computing 24 (1995)
1170–1189.

[12] H. Rogers, Jr, Theory of Recursive Functions and Effective Computability,
McGraw-Hill, 1967.

17

[13] S. A. Terwijn, L. Torenvliet, Arithmetical measure, Mathematical Logic
Quarterly 44 (4) (1998) 277–286.

[14] J. I. Lathrop, J. H. Lutz, Recursive computational depth, Information and
Computation 153 (1999) 139–172.

[15] F. Stephan, personal communication (1994).

18

