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1 Introduction

Effective fractal dimension was defined by Lutz [13] in order to quantitatively
analyze the structure of complexity classes. The dimension of a class X inside
a base class C is a real number in [0,1] corresponding to the relative size of
X ∩ C inside C. Basic properties include monotonicity, so dimension 1 classes
are maximal and dimension 0 ones are minimal, and the fact that dimension is
defined for every class X, making effective dimension a precise quantitative tool.

The first goal of such quantitative methods is to extend existence results of
the form “there is a problem in C that is in X” to abundance results of the form
“a non-negligible part of the problems in C are in X” formally expressed as “the
class X has positive dimension in C”. Another application is in relation with
the probabilistic method, proving that X has positive dimension can be simpler
than proving non-emptiness, the easiness here comes from proving abundance as
opposed to constructing a particular object. A third aspect of effective dimension
is as a formal tool in Computational Complexity, allowing us to consider new
working hypothesis such as “NP has positive dimension in exponential time”,
that can imply plausible consequences that haven’t been derived from P6=NP.

The concept of effective dimension is a generalization of classical fractal or
Hausdorff dimension, one of the most powerful tools of fractal geometry, an
extensively developed subfield of geometric measure theory with applications
throughout the sciences [5, 7, 6]. Tricot [19] and Sullivan [18] independently de-
veloped a dual of Hausdorff dimension called packing dimension, that now rivals
Hausdorff dimension’s importance in such investigations.

In 2000 Lutz proved a new characterization of Hausdorff dimension in terms
of gales [13], that are betting strategies that generalize martingales. The most
important benefit of this characterization is that it enables one to define effective
versions of fractal dimension by imposing various computability and complexity
constraints on the gales. Four years later Athreya, Lutz, Hitchcock and May-
ordomo [3] proved that packing dimension also admits a gale characterization,
with a different notion of gale success. We can now define versions of Hausdorff
and packing dimensions that are meaningful inside complexity classes such as
exponential time and exponential space.
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Effective dimension has indeed proven to be very fruitful in Computational
Complexity for obtaining useful results in the three aspects mentioned above. A
very recent summary of the main achievements can be found in [10].

In this note we propose two interesting open problems on Computational
Complexity, both related to polynomial-time reductions. Complete or partial
solutions of these problems imply a big advance in what we know on the classes
NP and BPP. In both cases quantitative methods such as resource-bounded
measure have given initial answers in the past, and the fact that dimension is
defined for every class can overcome non-measurability obstacles.

2 Effective dimension

For the sake of completeness we include the basic definitions of resource-bounded
or effective dimension, based on the notion of s-gale. A more detailed treatment,
motivation, references and historical introduction can be found in [10], [15], and
[14].

We work in the Cantor space C that is the set of all infinite binary sequences.
{0, 1}∗ is the set of finite binary strings.

Formally, if s ∈ [0,∞), then an s-gale is a function d : {0, 1}∗ → [0,∞)
satisfying the condition

d(w) = 2−s[d(w0) + d(w1)] (1)

for all w ∈ {0, 1}∗ [13]. A martingale is a 1-gale.
A gale d succeeds on a sequence S if

lim sup
w→S

d(w) = ∞

and succeeds strongly on S if

lim inf
w→S

d(w) = ∞.

The success set S∞[d] of a gale d is the set of all sequences on which d succeeds.
The strong success set S∞str[d] is the set of all sequences on which d succeeds
strongly.

Intuitively, we think of a gale d as a strategy for betting on the successive
bits of a sequence S. The quantity d(w) is interpreted as the capital (amount of
money) that a gambler using the strategy d has after betting on the successive
bits of the prefix w of S. The parameter s regulates the fairness of the payoffs via
identity (1). If s = 1, the payoffs are fair in the usual sense that the conditional
expectation of the gambler’s capital d(wb), given that w has occurred, is precisely
d(w), the gambler’s actual capital before betting on the last bit of wb. If s < 1,
then the payoffs are unfair, and the smaller s is, the more unfair the payoffs are.

Theorem 1. (Gale characterization of fractal dimension) Let X be a set of
sequences.



1. (Lutz [13]) dimH(X) = inf{s | there is an s-gale d such that X ⊆ S∞[d]}.
2. (Athreya et al. [3]) dimP(X) = inf{s | there is an s-gale d such that

X ⊆ S∞str[d]}.

Intuitively, Theorem 1 says that the fractal dimension of a set X of sequences
is the most hostile environment (i.e., most unfair payoff parameter s) in which a
gambler can win on every sequence in X. Of course, the word “win” here means
“succeed” in the case of Hausdorff dimension and “succeed strongly” in the case
of packing dimension.

It is easy to see that 0 ≤ dimH(X) ≤ dimP(X) ≤ 1 holds in any case.
Both of these fractal dimensions are monotone (i.e., X ⊆ Y implies dim(X) ≤
dim(Y )), countably stable (i.e., dim(

⋃∞
i=0 Xi) = supi dim(Xi)), and nonatomic

(i.e., dim({S}) = 0 for each sequence S) [6]. In particular, every countable set
of sequences has Hausdorff and packing dimension 0.

We say that a gale d : {0, 1}∗ → [0,∞) is p-computable if there is a function
d̂ : {0, 1}∗×N→ Q such that d̂(w, r) is computable in time polynomial in |w|+r

and |d̂(w, r)−d(w)| ≤ 2−r holds for all w and r. Gales that are p2 -computable are
defined analogously, with d̂(w, r) required to be computable in 2(log(|w|+r))O(1)

time.
We are finally ready to bring this all home to complexity classes. We iden-

tify each language (i.e., decision problem) A ⊆ {0, 1}∗ with its characteristic
sequence, whose nth bit is 1 if the nth string in {0, 1}∗ (in the standard enumer-
ation λ, 0, 1, 00, 01, . . .) is an element of A, and 0 otherwise. We say that a gale
succeeds on A if it succeeds on the characteristic sequence of A and similarly for
strong success. We now show how to define fractal dimension in the complexity
classes E = TIME(2linear) and EXP = TIME(2polynomial).

Definition 1. [13, 3] Let X be a set of languages.

1. If ∆ is any of the resource bounds p, p2 , then the ∆-dimension of X is

dim∆(X) = inf{s | there is a ∆-computable s-gale d such that X ⊆ S∞[d] },

and the strong ∆-dimension of X is

Dim∆(X) = inf{s | there is a ∆-computable s-gale d such that X ⊆ S∞str[d]}.

2. The dimension of X in E is dim(X | E) = dimp(X ∩ E).
3. The dimension of X in EXP is dim(X | EXP) = dimp2

(X ∩ EXP).
4. The strong dimensions Dim(X | E), Dim(X | EXP) are defined analogously.

By Theorem 1, dim(X | C) and Dim(X | C) are analogs of Hausdorff and
packing dimension, respectively. It was shown in [13, 3] that these analogs are in
fact well-behaved, internal dimensions in the classes C that we have mentioned.
In all these classes, 0 ≤ dim(X | C) ≤ Dim(X | C) ≤ 1 hold, with dim(C | C) = 1.



2.1 Scaled dimension

Scaled dimension [9] are versions of resource-bounded dimension that have been
“rescaled” to better fit the phenomena that they are measuring. They correspond
to the concept of generalized dimension already suggested by Hausdorff.

Scaled dimension arises using more general factors than 2−s in the definition
of gale in equation 1. In the general theory, there is a natural hierarchy of scales
gi(s, n), one for each integer i ∈ Z, built around the standard scale

g0(m, s) = ms.

The ith scale gives us ith-order scaled dimension.
The first scales are the following, for 0 ≤ s ≤ 1,

g3(m, s) = 22(log log m)s

g2(m, s) = 2(log m)s

g1(m, s) = ms

g0(m, s) = ms

g−1(m, s) = m + 1−m1−s

g−2(m, s) = m + 2− 2(logm)1−s

g−3(m, s) = m + 22 − 22(log log m)1−s

We refer to [9] for a justification of the choice of these scales, related for instance
to complexity classes such as SIZE(2nα) and SIZE(2nα

).
An s(i)-gale is a function d : {0, 1}∗ → [0,∞) satisfying

d(w) = 2−gi(|w|+1,s)+gi(|w|,s)[d(w0) + d(w1)]

for all w ∈ {0, 1}∗.
The concept of success and strong success of an s(k)-gale on a sequence is

defined exactly as in the previous section, the corresponding limsup (liminf)
must be infinity.

Definition 2. [9] Let X be a set of languages.

1. If ∆ is any of the resource bounds p, p2 , then the ith-order scaled ∆-dimension
of X is

dim(i)
∆ (X) = inf{s | there is a ∆-computable s(i)-gale d such that

X ⊆ S∞[d]}.

2. The ith-order scaled dimension of X in E is dim(i)(X | E) = dim(i)
p (X ∩ E).

3. The ith-order scaled dimension of X in EXP is dim(i)(X | EXP) = dim(i)
p2

(X∩
EXP).



The ith-order scaled strong ∆-dimension of X, written Dim(i)
∆ (X), is defined

in the same way, instead requiring strong success of the scaled-gale. We also
define Dim(i)(X | E) = Dim(i)

p (X ∩ E), Dim(i)(X | EXP) = Dim(i)
p2

(X ∩ EXP),
etc. (analogously to the definitions in Section 2).

The 0th-order scaled dimension is the standard (unscaled) dimension. The
other scaled dimensions have similar properties. For example, 0 ≤ dim(i)

∆ (X) ≤
Dim(i)

∆ (X) ≤ 1 and if dim(i)
∆ (X) < 1, then X has ∆-measure 0. The following

theorem states two important facts about the scaled dimensions.

Theorem 2. [9] The scaled dimension dim(i)
∆ (X) is nondecreasing in the order

i. There is at most one order i for which dim(i)
∆ (X) is not 0 or 1.

In particular, the sequence of scaled dimensions must have one of the follow-
ing four forms.

(i) For all i, dim(i)
∆ (X) = 0. (ii) For all i, dim(i)

∆ (X) = 1.

(iii)
There is an order i∗ such that
– dim(i)

∆ (X) = 0 for all i ≤ i∗ and
– dim(i)

∆ (X) = 1 for all i > i∗.
(iv)

There is an order i∗ such that
– dim(i)

∆ (X) = 0 for all i < i∗,
– 0 < dim(i∗)

∆ (X) < 1, and
– dim(i)

∆ (X) = 1 for all i > i∗.

We find (iv) to be the most interesting case. Then i∗ is the “best” order at
which to measure the ∆-dimension of X because dim(i∗)

∆ (X) provides much more
quantitative information about X than is provided by dim(i)

∆ (X) for i 6= i∗.

3 Small span theorems and BPP

We classify an apparently intractable problem A by identifying and studying the
class of all problems that are efficiently reducible to A. Efficiently reducible can
be taken as polynomial-time many-one reducible (≤P

m-reductions), polynomial-
time Turing reducible (≤P

T-reductions) or any of the intermediate reductions ob-
tained by restricting the query mechanism in polynomial-time Turing reducibil-
ities.

The lower ≤P
m-span of A is the set of problems that are ≤P

m-reducible to A

Pm(A) =
{

B
∣∣∣ B≤P

mA
}

and similarly for other reductions, and the upper ≤P
m-span is the set P−1

m (A)
consisting of those decision problems B to which A is ≤P

m-reducible.



A Small Span Theorem for a reduction ≤P
r in a class C is the assertion that

for every A ∈ C it must be the case that either Pr(A) or P−1
r (A) have minimal

size. This kind of result implies that the degree structure of C is very fine, so
whenever a subclass is not minimal it must contain problems in several degrees.

Juedes and Lutz [12] obtained the first Small Span Theorem for the reduction
≤P

m and both classes E and EXP, using resource-bounded measure. Other authors
pushed this result to ≤P

k−tt in E and ≤P
no(1) in EXP [2, 4].

In dimension the situation is far more complicated, sice Ambos-Spies et al. [1]
and later Hitchcock [8] proved that for scales i ≥ −2 there are degrees of maximal
p-dimension 1. For scale -3, Hitchcock [8] proved a Small Span Theorem for ≤P

m

and E.
An important application of Small Span Theorems is related to BPP, the class

corresponding to probabilistic polynomial time, since the class of hard problems
for BPP has maximal size in all quantitative settings (Martin-Löf tests, resource-
bounded measure, effective dimensions) also when restricted to the subclass of
hard sets for BPP in EXP. The existence of a Small Span Theorem for ≤P

T or
≤P

tt would imply the separation of BPP and EXP, since the degree of Turing-
complete sets for EXP would then be minimal size.

Open question. Prove that for every A ∈ EXP

dim(−3)(PT(A) | EXP) = 0 or dim(−3)(P−1
T (A) | EXP).

Alternatively prove that dim(−3)(degP
T(A) | EXP) = 0. Similar questions for

E in the place of EXP and for ≤P
tt in the place of ≤P

T are relevant.
Notice that a solution to this question would be the least exigent form of a

Small Span Theorem for dimension and polynomial-time reductions. Any state-
ment about other scaled or strong dimensions is either false or would imply an
affirmative answer to this. It is also weaker, thus an affirmative answer is more
plausible, than a resource-bounded measure version.

4 Completeness separations

Even if we assume that P6=NP, many open questions in Computational Com-
plexity remain open. Lutz [17] proposed investigation of various strong, measure-
theoretic hypothesis, the most notable of which is the hypothesis that NP does
not have resource-bounded measure 0 in EXP, that is known now to have many
interesting consequences (not known to follow from P6=NP).

One of these consequences is the separation of the notions of ≤P
m and ≤P

T-
completeness for the class NP [16], a statement that seems far stronger than P
versus NP.

The answer to each of the following questions would be an improvement over
the result in [16].

Open questions. Prove that dimp(NP ) > 0 implies the separation of ≤P
T

and ≤P
tt completeness notions for NP.

Hitchcok et al. have proven in [11] that the separation of ≤P
m and ≤P

T-
completeness for NP can be obtained from the hypothesis dim(−3)

p (NP ) > 0,



which is weaker than the original measure hypothesis. Can this be improved to
a bigger scale (-2, -1, 0, . . . )?
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