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Abstract

We study constructive and resource-bounded scaled dimension as an information content
measure and obtain several results that parallel previous work on unscaled dimension. Scaled
dimension for finite strings is developed and shown to be closely related to Kolmogorov com-
plexity. The scaled dimension of an infinite sequence is characterized by the scaled dimensions
of its prefixes. We obtain an exact Kolmogorov complexity characterization of scaled dimension.

Juedes and Lutz (1996) established a small span theorem for P/poly-Turing reductions which
asserts that for any problem A in ESPACE, either the class of problems reducible to A (the
lower span) or the class of problems to which A is reducible (the upper span) has measure 0
in ESPACE. We apply our Kolmogorov complexity characterization to improve this to (−3)rd-
order scaled dimension 0 in ESPACE. As a consequence we obtain a new upper bound on the
Kolmogorov complexity of Turing-hard sets for ESPACE.

1 Introduction

Fractal dimension is closely related to measures of information content. For example, Ryabko
[28, 29], Staiger [30, 31], and Cai and Hartmanis [5] proved results relating Hausdorff dimension to
Kolmogorov complexity. This relation becomes an equivalence with Lutz’s effective fractal dimen-
sions [25, 26]: constructive dimension has a characterization in terms of Kolmogorov complexity
[26, 27] and computable and space-bounded dimension in terms of space-bounded Kolmogorov
complexity [8]. While Kolmogorov complexity is a measure over finite strings, dimension is defined
for sets of infinite sequences. Thus, these relations between dimension and Kolmogorov complexity
are relations between the dimension of an infinite sequences and the Kolmogorov complexity of its
prefixes.

Lutz [26] also developed dimension of finite strings as a discrete version of constructive di-
mension. He proved that (i) the Kolmogorov complexity of a string is the product of its length
and its dimension, and (ii) the constructive dimension of an infinite sequence is characterized by
the dimensions of its prefixes. Taken together, (i) and (ii) constitute a proof of the Kolmogorov
complexity characterization of constructive dimension.
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Scaled dimension [12] is an extension of effective dimension defined by introducing scales at
which dimension may be measured. It was developed to quantify the difference in the size of some
complexity classes. For example, classes such as SIZE(2αn) or SIZE (2nα

) are not distinguished
by unscaled dimension because they all have dimension 0. Scaled dimension precisely quantifies
the difference among these circuit-size classes [12] and has several other applications in complexity
theory [7, 10, 11, 13, 14, 15].

In this paper, we develop relationships between scaled dimension and Kolmogorov complexity
that parallel the previous results on unscaled dimension.

• We develop scaled dimension for finite strings by rescaling Lutz’s dimension of finite strings.
For every integer k, each sufficiently large string w has a scaled dimension dim(k)(w). We
show that the scaled dimension of a string is closely related to its Kolmogorov complexity:

|K(w)− gk(|w|,dim(k)(w))| = O(1).

Here for each k, gk is a sublinear function defined in section 2. We also prove that the scaled
dimension of an infinite sequence S can be obtained from the scaled dimensions of its prefixes:

dim(k)(S) = lim inf
n→∞ dim(k)(S[0..n− 1]).

• We prove that the constructive, computable, and space-bounded scaled dimensions can be
interpreted as information content measures and we show how the scale influences this inter-
pretation. For example, the (−1)st-scaled pspace-dimension of a class X is the smallest s for
which there is a c such that for every A ∈ X,

KSmc
(A[0..m− 1]) ≤ m−m1−s i.o. m.

Equivalently, the (−1)st-order scaled pspace-dimension of X is the smallest s for which there
is a c that for every A ∈ X,

KS2cn
(A≤n) ≤ 2n+1 − 2n(1−s) i.o. n.

This means that the (−1)st-scaled pspace-dimension of X is directly related to the smallest
i.o. upper bound (equivalently, to the largest a.e. lower bound) of the form 2n+1 − 2nα on
the space-bounded Kolmogorov complexity of all languages in X. By this characterization,
each scaled dimension result can be interpreted as a Kolmogorov complexity upper bound.

Juedes and Lutz [19] proved a small span theorem for P/poly-Turing reductions in ESPACE.
This theorem says that for any A ∈ ESPACE, either the class of languages reducible to A (the
lower span) or the class of problems to which A can be reduced (the upper span) has measure 0 in
ESPACE. We improve this theorem by replacing measure with (−3)rd-scaled dimension. The proof
uses our Kolmogorov complexity characterization of scaled dimension. This result also subsumes
the scaled dimension small span theorem for polynomial-time many-one reductions in ESPACE
[10].

Our small span theorem implies that the class of ≤P/poly
T -hard sets for ESPACE has (−3)rd-

scaled pspace-dimension 0. From this it follows that every ≤P/poly
T -hard set has unusually low
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space-bounded Kolmogorov complexity. The upper bound we give matches the bound of Juedes of
Lutz [19] for the ≤P/poly

m -hard sets.
The paper is organized as follows. Section 2 outlines notation and preliminaries. Section 3

develops scaled dimension of finite strings and studies its relation with Kolmogorov complexity and
constructive scaled dimension. Section 4 describes our characterization and section 5 presents our
results for the Kolmogorov complexity of hard sets.

2 Preliminaries

A string is a finite and binary sequence w ∈ {0, 1}∗. Let |w| denote the length of a string and λ
denote the empty string. The Cantor space C is the set of all infinite binary sequences. Let x[i..j]
for 0 ≤ i ≤ j denote the i-th through the j-th bits of x, where x ∈ {0, 1}∗ ∪C. Let wx denote the
concatenation of the string w and the string or sequence x. Let w v x denote that w is a prefix of
x. Let T be the set of all terminated binary strings and prefixes, that is

T = {0, 1}∗ ∪ {0, 1}∗¤ ,

where the symbol ¤ is used to mark the end of a string.
Let s0, s1, s2 . . . be the standard enumeration of {0, 1}∗ in lexicographical order. We identify

each language with its characteristic sequence χA ∈ C where

χA[i] =
{

1 if si ∈ A.
0 if si /∈ A.

For each n ∈ N, let

A=n = A ∩ {0, 1}n or A=n = A[2n − 1..2n+1 − 2] ,

A≤n = A ∩ {0, 1}≤n or A≤n = A[0..2n+1 − 2] ,

depending on the context. For each i ∈ N, let Gi be the class of functions from N to N defined by

G0 = {f | (∃k)(∀∞n)f(n) ≤ kn} .

Gi+1 = {f | (∃g ∈ Gi)(∀∞n)f(n) ≤ 2g(log n)} .

Let ∆ denote any of the following classes of total functions,

all = {f | f : {0, 1}∗ → {0, 1}∗} ,

comp = {f ∈ all | f is computable} ,

pispace = {f ∈ all | f is computable in Gi space} (i ≥ 1) ,

and let R(∆) denote any of the following complexity classes,

R(all) = C ,

R(comp) = DEC ,

R(pispace) = EiSPACE = DSPACE(2Gi−1) for i ≥ 1 .

Let pspace and ESPACE denote p1space and E1SPACE respectively.
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Definition. Let D be a discrete domain such as N, {0, 1}∗ or T and let f : D → [0,∞).

1. f is ∆-computable if there exists a function f̂ : D × N → Q ∩ [0,∞) in ∆ such that for all
(w, n) ∈ D × N, |f̂(w, n) − f(w)| ≤ 2−n (with n coded in unary and the output coded in
binary).

2. f is exactly ∆-computable if f : D → Q ∩ [0,∞) and f ∈ ∆.

3. f is constructive (or lower semicomputable) if there is a computable function f̂ : D × N →
Q ∩ [0,∞) such that,

(a) f̂(w, n) ≤ f̂(w, n + 1) < f(w), for all (w, n) ∈ D × N,

(b) lim
n→∞ f̂(w, n) = f(w), for all w ∈ D.

Definition.

1. A series
∑∞

n=0 an of nonnegative real numbers an is ∆-convergent if there is a function h :
N→ N such that h ∈ ∆ and ∞∑

n=h(r)

an ≤ 2−r

for all r ∈ N. Such a function h is called a modulus of the convergence.

2. A sequence
∞∑

n=0

aj,n (j = 0, 1, 2, . . .)

of series of nonnegative real numbers is uniformly ∆-convergent if there is a function f : N2 →
N such that f ∈ ∆ and fj is a modulus of the convergence of the series

∑∞
n=0 aj,n for every

j ∈ N, where fj(n) = f(j, n) for every j and n.

2.1 Scaled Dimension

Scaled dimension is defined using functions called scaled gales. These functions are a rescaled
version of the more familiar concept of gales [25]. The main concept in the definition of scaled
gales is a scale, which is a function g : (a,∞)× [0,∞) → R. A scale must satisfy certain properties
that are given in [12] and will not be discussed here. The most important family of scale functions
gi : (ai,∞) × [0,∞) → R and g−i : (ai,∞) × [0,∞) → R is defined by the following recursion on
i ∈ N.

• g0(m, s) = ms.

• gi+1(m, s) = 2gi(log m,s).

• g−i(m, s) =
{

m + gi(m, 0)− gi(m, 1− s) for 0 ≤ s ≤ 1.
gi(m, s) for s > 1.

The domain of gi coincides with that of g−i and ai is given for the recursion a0 = −∞ and ai+1 = 2ai .
Let mi denote max{ai, 0}.
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Definition. Let s ∈ [0,∞), let g : (a,∞)× [0,∞) → R be a scale function and let m = max{a, 0}.
1. An s-supergale is a function d : {0, 1}∗ → [0,∞) such that for all w ∈ {0, 1}∗,

d(w) ≥ 2−s[d(w0) + d(w1)]. (2.1)

2. A g-scaled s-supergale (briefly, an sg-gale) is a function d : {0, 1}∗ → [0,∞) such that for all
w ∈ {0, 1}>m,

d(w) ≥ 2−∆g(|w|,s)[d(w0) + d(w1)], (2.2)

where ∆g : (a,∞)× (a,∞) → R is defined by

∆g(m, s) = g(m + 1, s)− g(m, s).

3. An s-gale (a g-scaled s-gale) is a function d : {0, 1}∗ → [0,∞) that verifies equation 2.1 (2.2)
with equality.

An s-gale can be interpreted as a strategy for betting on the successive bits of a binary string.
The fairness of the gambling game depends on s. An sg-gale can also be interpreted as a betting
strategy, but in this case, the fairness of the gambling depends on the scale g and on s. The notion
of success corresponds to getting unbounded capital in this game.

Definition. Let d : {0, 1}∗ → [0,∞) be an sg-supergale,

1. d succeeds on a language A ⊆ {0, 1}∗ if

lim sup
n→∞

d(A[0..n− 1]) = ∞.

2. The success set of d is

S∞[d] = {A ⊆ {0, 1}∗ | d succeeds on A}.

3. The unitary success set of d is

S1[d] = {A ∈ C | ∃n d(A[0..n− 1]) ≥ 1}.

We are ready to define scaled dimension now.

Definition. Let X ⊆ C and let g : (a,∞)× [0,∞) → R be a scale function.

1. The g-scaled ∆-dimension of X is

dimg
∆(X) = inf{s | there exists a ∆-computable sg-supergale d s.t. X ⊆ S∞[d]}.

2. The g-scaled ∆-dimension of X within R(∆) is

dimg
∆(X|R(∆)) = dimg

∆(X ∩R(∆)).
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3. The g-scaled constructive dimension of X is

cdimg(X) = inf{s | there exists a constructive sg-supergale d s.t. X ⊆ S∞[d]}.

Lutz [25] and Hitchcock [9] proved respectively that resource-bounded and constructive dimen-
sion can be defined in terms of gales.

Notice that the definition of scaled gales coincides with the definition of gales when the scale g0

is considered. For this scale functions, g0(m+1, s)−g0(m, s) = s and there is not dependence on m.
In particular dimg0

all(X) = dimH(X) is the Hausdorff dimension of X; cdimg0

all(X) = cdim(X) is the
constructive dimension of X as defined in [26]; and dimg0

∆ (X) = dim∆(X) is the resource-bounded
dimension as defined in [25].

In this paper we restrict the gales to the family above but our results can be extended to other
families of scale functions.
Notation. Let k ∈ Z,

1. s(k)-gale denotes the sgk -gale.

2. dim(k)
∆ denotes the kth-order scaled ∆-dimension dimgk

∆ .

3. cdim(k) denotes the kth-order scaled constructive dimension cdimgk .

The next family of functions will be used in several results.

Definition. Let i ∈ N. Let fi : N× [0,∞) → R and f−i : N× [0,∞) → R be defined by

fi(n, x) =
log(i) x

log(i) n

(f−i)(n, x) = 1− log(i)(n− x− gi(n, 0))
log(i) n

where log(i) denotes the i-time iterated applications of log, that is,

log(i)(x) =

i︷ ︸︸ ︷
log(. . . log x).

Notice that for each k ∈ Z, x ∈ [0,∞), fk(·, x) is the inverse of gk(·, x).

2.2 Kolmogorov Complexity

We next review the Kolmogorov complexity, some of its variants and some well-known results (for
more details see the textbook by Li and Vitányi [22]).

Definition. Fix a universal Turing machine U . Let t : N→ N and w ∈ {0, 1}∗.

1. The Kolmogorov complexity of w is

K(w) = min{|π| | U(π) = w}.
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2. The t-space bounded Kolmogorov complexity of w is

KSt(w) = min{|π| | U(π) = w in ≤ t(|w|) space}.

The above definition is (additively) invariant of the choice of the universal machine U [22].

Definition.

1. A subprobability measure on {0, 1}∗ is a function p : {0, 1}∗ → [0, 1] such that
∑

w∈{0,1}∗
p(w) ≤ 1

2. A constructive subprobability measure p on {0, 1}∗ is optimal if for every constructive sub-
probability measure p′ there is a real constant α > 0 such that, for all w ∈ {0, 1}∗, p(w) >
αp′(w).

Theorem 2.1. (Levin [32]) There exists an optimal constructive subprobability measure m on
{0, 1}∗.

The following theorem is the well-known characterization by Levin [20, 21] and Chaitin [6] of
Kolmogorov complexity in terms of m. Further details may be found in [22].

Theorem 2.2. There is a constant c ∈ N such that for all w ∈ {0, 1}∗,
∣∣∣∣K(w)− log

1
m(w)

∣∣∣∣ ≤ c

3 Scaled Dimension of Finite Strings

In this section we extend the dimension of finite strings [26] to scaled dimension of finite strings.
We achieve this by introducing scaled termgales, variants of scaled gales adapted to terminating
strings, and then showing the existence of an optimal constructive scaled termgale. This allows
us to give a universal definition of the scaled dimension of a string. Finally, we characterized the
scaled dimension of a sequence in terms of the scaled dimension of its finite prefixes. In the next
section we will use this result to give a Kolmogorov characterization of constructive scaled dimension
and we also give a Kolmogorov characterization of resource-bounded scaled dimension through an
alternative proof. Our proofs differ from [26] due to the dependence on the scale function.

Our notion of termgale is an extension of gales to terminating strings.

Definition. Let s ∈ [0,∞) and k ∈ Z,

1. An s-termgale is a function d : T → [0,∞) such that

(a) d(λ) ≤ 1.

(b) For all w ∈ {0, 1}∗,
d(w) ≥ 2−s[d(w0) + d(w1) + d(w2)].
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2. An s(k)-termgale is a function d : T → [0,∞) such that

(a) For all w ∈ {0, 1}≤m|k| , d(w) ≤ 1.

(b) For all w ∈ {0, 1}>m|k| ,

d(w) ≥ 2−4gk(|w|,s)[d(w0) + d(w1) + d(w2)].

Remember that mk := max{ak, 0}, where (ak,∞) is the domain of gk.

Remark. As in the case of s(k)-gales, an s(k)-termgale is a strategy for betting on the successive
bits of a binary string but also on the point where the string terminates. The fairness of the
gambling game depends on the scale function gk. In the case of an s-termgale, the fairness of the
game depends only on s. An s0-termgales is an s-termgale.

Observation 3.1. Let k ∈ Z, let s, t ∈ [0,∞) and let d, d′ : T → [0,∞). If

2−gk(|w|,s)d(w) = 2−gk(|w|,t)d′(w),

for all w ∈ T with |w| > m|k|, then d is an s(k)-termgale if and only if d′ is a t(k)-termgale.

Due to this observation, each 0(k)-termgale determines a whole family of s(k)-termgales that
will be used in the definition of scaled dimension.

Definition. 1. A k-termgale is a family d = {ds | s ∈ [0,∞)} such that each ds is an s(k)-
termgale and for all s, t ∈ [0,∞), w ∈ T with |w| > m|k|,

2−gk(|w|,s)ds(w) = 2−gk(|w|,t)dt(w).

2. A k-termgale d is constructive if d0 is constructive.

3. A constructive k-termgale d̃ is optimal if for every constructive k-termgale d there is a constant
α > 0 such that for all s ∈ [0,∞) and w ∈ {0, 1}>m|k| ,

d̃s(w2) > α ds(w2).

4. The k-termgale induced by a subprobability measure p on {0, 1}∗ is the family dk[p ] = {ds
k[p ] |

s ∈ [0,∞)}, where each ds
k[p ] is defined by

ds
k[p ](w) = 2gk(|w|,s) ∑

x∈{0,1}∗
wvx2

p(x)

for all w ∈ T with |w| > m|k|.

Theorem 3.2. Let k ∈ Z. If p̃ is an optimal constructive subprobability measure on {0, 1}∗ then
dk[p̃ ] is an optimal constructive k-termgale.

Proof. Similar to the proof of Theorem 5.4 in [26].

Corollary 3.3. For every k ∈ Z, there exists an optimal constructive k-termgale.
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Proof. It follows immediately from Theorems 2.1 and 3.2.

Definition. Let k ∈ Z and w ∈ {0, 1}>m|k| . Let dk be a constructive k-termgale. The scaled
dimension of w relative to dk is

dimdk
(w) = inf{s ∈ [0,∞) | ds

k(w2) > 1}.
Notice that this definition depends on the constructive k-termgale chosen. The next two results

prepare for a general definition of kth order scaled dimension of a string.

Proposition 3.4. Let k ∈ Z. Let d̃ be an optimal constructive k-termgale and let d be a constructive
k-termgale. There exists C > 0 such that

dimd̃(w) ≤ dimd(w) +
C

∂gk
∂s (|w|+ 1, 0)

for all |w| ∈ {0, 1}>m|k|, where ∂gk
∂s is the derivative of function gk(m, s) relative to its second

argument.

Proof. Let α > 0 be such that d̃s(w2) > α ds(w2) for all s ∈ [0,∞) and w ∈ {0, 1}>m|k| . Such an
α exists because d̃ is an optimal constructive k-termgale.
Let t ≥ dimd(w). Define h : {0, 1}>m|k| → [0,∞) by h(w) = s′, where s′ is such that

gk(|w|+ 1, t + s′)− gk(|w|+ 1, t) = log 1
α .

Notice that h is well defined because for all m ∈ N, the functions gk(m, ·) : [0,∞) → R are
continuous and strictly increasing.
Let s = t + h(w). For all w ∈ {0, 1}>m|k| ,

d̃k
s
(w2) > α ds

k(w2) =
α 2gk(|w|+1,s)−gk(|w|+1,t)dt

k(w2) ≥ 1. (3.1)

Thus,

dimd̃(w) ≤ s = t + h(w) ∀w ∈ {0, 1}>m|k| .

Since t can be chosen arbitrarily close to dimd(w), for all w ∈ {0, 1}>m|k|

dimd̃(w) ≤ dimd(w) + h(w).

The last part of the proof is to estimate the value of h(w). By definition of h,

gk(|w|+ 1, t + h(w))− gk(|w|+ 1, t) = log
1
α

.

By the mean value theorem, there exist ŝ ∈ (t, t + h(w)) such that

gk(|w|+ 1, t + h(w))− gk(|w|+ 1, t) =
∂gk

∂s
(|w|+ 1, ŝ)h(w).

Then,

h(w) =
log 1

α
∂gk
∂s (|w|+ 1, ŝ)

≤ log 1
α

∂g
∂s (|w|+ 1, 0)

where the last inequality holds since ∂gk
∂s (m, ·) is an increasing function.
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Corollary 3.5. Let k ∈ Z and let d̃1 and d̃2 be optimal constructive k-termgales. There exists a
constant C > 0 such that for all w ∈ {0, 1}>m|k|,

|dim
d̃1(w)− dim

d̃2(w)| ≤ C
∂gk
∂s (|w|+ 1, 0)

.

It is easy to see that ∂gk
∂s (m, 0) → +∞ as m → ∞. This means that if the definition of k-

dimension is based on an optimal constructive k-termgale d̃k, then the particular choice of d̃k has
negligible impact on the dimension dimd̃k

(w).

Definition. Fix d̃k an optimal constructive k-termgale. Let k ∈ Z and w ∈ {0, 1}>m|k| . The
kth-order dimension of w is

dim(k)(w) = dimd̃k
(w).

Remark. A natural question is the possibility to define resource-bounded scaled dimension of
individual strings. The definition of scaled dimension of individual strings is based on the existence
of an optimal constructive scaled termgale. This optimal termgale is defined using the optimal con-
structive subprobability measure m. Unfortunately, there are no optimal subprobability measures
in other interesting complexity classes of functions ∆. Thus, the techniques that we use in this
paper and previously in [26] cannot be applied to define ∆-dimension of individual strings.

The optimal constructive subprobability measure m of a string w is closely related to its Kol-
mogorov complexity [20, 21, 6]. This connection states that Kolmogorov complexity of a finite
string is at most an additive constant away from the product of its length and its dimension [26].
In the case of scaled dimension of a string, we obtain a similar result: for every k ∈ Z, the Kol-
mogorov complexity of a string is the scale function of order k applied on the length of the string
and the k-order scaled dimension.

Theorem 3.6. Let k ∈ Z. Then there exists a constant c > 0 and N ∈ N such that

|K(w)− gk(|w|, dim(k)(w))| ≤ c ∀w ∈ {0, 1}>m|k| .

Proof. Let m be the optimal constructive subprobability measure in Theorem 2.1. Let c1 the
constant in Theorem 2.2 such that for all w ∈ {0, 1}∗,

∣∣∣∣K(w)− log
1

m(w)

∣∣∣∣ ≤ c1.

For all w ∈ {0, 1}>m|k| and s ∈ [0,∞),

ds
k[m](w2) > 1 ⇔ 2gk(|w|+1,s)m(w) > 1

⇔ gk(|w|+ 1, s) > log
1

m(w)
.

If |w| is sufficiently large, gk(m, 0) > log 1
m(w) and there exists sw ∈ [0,∞) such that gk(|w|+1, sw) =

log 1
m(w) . Then dimdk[m](w) = sw. So,

|K(w)− gk(|w|, sw)| ≤ |K(w)− gk(|w|+ 1, sw)|+ |gk(|w|+ 1, sw)− gk(|w|, sw)|
≤

∣∣∣∣K(w)− log
1

m(w)

∣∣∣∣ + c2 < c1 + c2.
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The next result states that the constructive scaled dimension of a sequence is characterized by
the scaled dimension of its prefixes.

Theorem 3.7. Let k ∈ Z and S ∈ C,

dim(k)(S) = lim inf
n→∞ dim(k)(S[0..n− 1]).

Proof. To see that dim(k)(S) ≤ lim inf
n→∞ dim(k)(S[0..n − 1]), let s and s′ be rational numbers such

that s′ > s > lim inf
n→∞ dim(k)(S[0..n− 1]). It suffices to show that dim(k)(S) ≤ s′.

By our choice of s, there is an infinite set J ⊆ N such that for all n ∈ J, dim(k)(S[0..n−1]) < s,
whence d̃k

s
(S[0..n− 1]) > 1. Define dk : {0, 1}>m|k| → [0,∞) by

dk(w) =
1
2

d̃k
s′
(w[0..|w| − 2]2) + d̃k

s′
(w).

Notice that dk is a constructive s′(k)-supergale and for all n ∈ J ,

dk(S[0..n]) =
1
2
d̃k

s′
(S[0..n− 1]2) + d̃k

s′
(S[0..n])

≥ 1
2

d̃k
s′
(S[0..n− 1]2)

=
1
2

2gk(n,s′)−gk(n,s)d̃k
s
(S[0..n− 1]2)

>
1
2

2gk(n,s′)−gk(n,s)

Since J is infinite, this implies that S ∈ S∞[dk ], whence dim(k)(S) ≤ s′.

To see that dim(k)(S) ≥ lim inf
n→∞ dim(k)(S[0..n − 1]), let s′ and s be rational numbers such

that s′ > s > dim(k)(S). It suffices to show that there exist infinitely many n ∈ N for which
dim(k)(S[0..n− 1]) ≤ s′.
Since s > dim(k)(S), there is a constructive s(k)-supergale dk such that S ∈ S∞[dk]. Let |w| > m|k|,
define d′k(w) = dk(w) and d′k(w2) = [24gk(|w|,s′) − 24gk(|w|,s)]dk(w). It is easy to check that d′k is a
constructive s′(k)-supertermgale.

Let s ∈ [0,∞) and let d̂k
s

: T → [0,∞) defined by

d̂k
s
(x) = 2gk(|x|,s)−gk(|x|,s′)d′k(x)

when |x| > m|k|. The family d̂k = {d̂k
s | s ∈ [0,∞)} is a constructive k-termgale. It follows by the

optimality of d̃k that there is a constant α > 0 such that for all s ∈ [0,∞) and w ∈ {0, 1}>m|k| ,
d̃k

s
(w2) > α d̂k

s
(w2). Since S ∈ S∞[dk] and ∆gk

(n, s′) ≥ ∆gk
(n, s), there are infinitely many

n ∈ N such that
α [24gk(n,s′) − 24gk(n,s)]dk((S[0..n− 1]) > 1.

For all such n we have

d̃k
s′
(S[0..n− 1]2) > α d̂k

s′
(S[0..n− 1]2) =

α [24gk(n,s′) − 24gk(n,s)]dk(S[0..n− 1]) > 1

whence dim(k)(S[0..n− 1]) ≤ s′.
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4 Scaled Dimension and Kolmogorov Complexity

In this section we provide a characterization of scaled dimension in terms of Kolmogorov complexity.
Ryabko [28, 29], Staiger [30, 31], and Cai and Hartmanis [5] studied the relationship between

Hausdorff dimension and Kolmogorov complexity, obtaining several results that are reviewed in
[26].

With the development by Lutz of the constructive version of Hausdorff dimension it was possible
to establish the following full characterization:

cdim(X) = sup
S∈X

lim inf
n→∞

K(S[0..n− 1])
n

.

This result was proved for individual infinite sequences by Mayordomo [27] in a direct way and
also by Lutz [26] using the concept of dimension of finite sequences. Hitchcock [8] proved that
space-bounded dimension and space-bounded Kolmogorov complexity are related in the same way:

dimpspace(X) = inf
t∈pspace

sup
S∈X

lim inf
n→∞

KSt(S[0..n− 1])
n

.

In this section, we extend all these results to scaled dimension. The following notation will be
necessary in the characterization.

Definition. Let S ∈ C, k ∈ Z and let t : N→ N be a resource bound.

i) K(k)(S) = lim inf
n→∞ fk(n, K(S[0..n− 1]).

ii) KSt
(k)(S) = lim inf

n→∞ fk(n, KSt(n)(S[0..n− 1])).

where fk is defined in Section 2 as a partial inverse of gk.

The following observation states the precise meaning of these concepts in terms of i.o. upper
bounds.

Observation 4.1. Let k ∈ Z and S ∈ C. Let t be a resource bound. Then,

i) K(k)(S) = inf{s ∈ [0,∞)|∃∞n K(S[0..n− 1]) < gk(n, s)}.
ii) KSt

(k)(S) = inf{s ∈ [0,∞)|∃∞n KSt(n)(S[0..n− 1]) < gk(n, s)}.
For classes of languages we consider the worst-case upper bound.

Definition. Let X ⊆ C, k ∈ Z and j ∈ N,

i) K(k)(X) = sup
S∈X

K(k)(S).

ii) Kcomp
(k) (X) = inf

t∈comp
sup
S∈X

KSt
(k)(S).

iii) KSpjspace

(k) (X) = inf
t∈pjspace

sup
S∈X

KSt
(k)(S).

Notice that Kcomp
(k) (X) can be also defined with the equivalent of KSt

(k)(S) for time-bounded
Kolmgorov complexity.

The main theorem of this section is the following characterization of scaled dimension.
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Theorem 4.2. Let X ⊆ C

1. For all i, j ∈ N with i ≤ j,

dim(i)
pjspace(X) = KSpjspace

(i) (X),

dim(−i)
pjspace(X) = KSpjspace

(−i) (X).

2. For all k ∈ Z,

cdim(k)(X) = K(k)(X),

dim(k)
comp(X) = Kcomp

(k) (X).

Remarks.

1. A similar characterization for the cases dim(−i)
pjspace (i > j) is not possible because it is known

(Theorem 3.3 in [19]) that for each S ∈ ESPACE there is an ε > 0 such that KS22n
(S≤n) <

2n+1 − 2εn a.e. n. Therefore,
KSpspace

(−2) (ESPACE) = 0,

whereas it is known that dim(−2)
pspace(ESPACE) = 1 [25].

2. A dual version of Theorem 4.2 can be proven for the packing or strong dimension as charac-
terized in [3].

4.1 Proof of Theorem 4.2.

We prove Theorem 4.2 from Lemmas 4.4 and 4.5. The first one states that dimension is smaller
than K or KS (depending on the case) and it only holds for i ≤ j in the space-bounded case. The
proof is based in the following scaled dimension version of the Borel-Cantelli Lemma [12].

Lemma 4.3. Let k ∈ Z and s ∈ [0,∞). If d : N2 × {0, 1}∗ → [0,∞) is a ∆-computable function
such that for each j, n ∈ N, dj,n is an s(k)-gale, and such that for each w with |w| = m|k| (remember
that m|k| = max{a|k|, 0}, where (a|k|,∞) is the domain of g|k|) the series

∞∑

n=0

dj,n(w) (j = 0, 1, 2 . . .),

are uniformly ∆-convergent, then

dim(k)
∆ (

∞⋃

j=0

∞⋂

t=0

∞⋃
n=t

S1[dj,n]) ≤ s.

Lemma 4.4. Let X ⊆ C

1. For all i, j ∈ N with i ≤ j
dim(i)

pjspace(X) ≤ KSpjspace

(i) (X),

dim(−i)
pjspace(X) ≤ KSpjspace

(−i) (X).
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2. For all k ∈ Z
cdim(k)(X) ≤ K(k)(X),

dim(k)
comp(X) ≤ Kcomp

(k) (X).

Proof. To prove the first part of case 1, let s > s′ > KSpjspace

(i) (X) be rational numbers. Let
t ∈ pjspace with t(n) ≥ n such that

∃∞n KSt(n)(S[0..n− 1]) < gi(n, s′)

for all S ∈ X. Notice that such a t exists by definition of KSpjspace

(i) (X) and Observation 4.1.
For all n ∈ N, let

Yn = {A ∈ C | KSt(n)(A[0..n− 1]) < gi(n, s′)}.
Then

X ⊆
∞⋂

m=0

∞⋃
n=m

Yn.

Let a ∈ [0,∞) be such that 2gi(n, s′) < gi(n, s) + a for every n ∈ N.
For all n ∈ N let dn : {0, 1}∗ → [0,∞) be defined by

dn(w) =





2−gi(n,s′)+a+gi(mi,s) if |w| ≤ mi,

2gi(|w|,s)−gi(mi,s)dn(w[0..mi − 1])ρ(w) if mi < |w| ≤ n,

2gi(|w|,s)−gi(n,s)−|w|+ndn(w[0..n− 1]) if |w| > n,

where

ρ(w) =
#{π | |π| < gi(n, s′), w v U(π) in ≤ t(n) space}

2gi(n,s′) − 1
.

Then dn is an s(i)-gale computable in O(t(n))-space for all n ∈ N, and for all w ∈ {0, 1}mi , the
series

∑∞
n=0 dn(w) is pjspace-convergent for i ≤ j (notice that this is not true for i > j). Moreover,

for all n ∈ N, Yn ⊆ S1[d].
By Lemma 4.3, dim(i)

pjspace(X) ≤ s. Since this holds for each s > KSpjspace

(i) (X) it follows that

dim(i)
pjspace(X) ≤ KSpjspace

(i) (X).

The proof of the second part of case 1 can be done in the same way by substituting gi by g−i.
The only change is in the definition of dn(w). In the case |w| ≤ mi we must consider

dn(w) = 2−gi(n,s′)+a+g−i(mi,s).

The proof of case 2 is analogous and simpler since the resource-bounds do not need to be
considered.

The second inequality (K or KS smaller than dimension) holds without restriction on the scale
used. This will be useful in the next section.
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Lemma 4.5. Let X ⊆ C. For all j ∈ N, k ∈ Z

KSpjspace

(k) (X) ≤ dim(k)
pjspace(X)

K(k)(X) ≤ cdim(k)(X)

Kcomp
(k) (X) ≤ dim(k)

comp(X)

Proof. Let s > dim(k)
pjspace(X) and let d be a pjspace-computable s(k)-gale with X ⊆ S∞[d]. Let

t ∈ pjspace be such that t(n) ≥ n and d can be computed in space t. Assume without loss of
generality that d(w) < 1 for all |w| ≤ m|k|. By the inequality (Lemma 3.6 in [12]),

∑

w∈{0,1}n

d(w) ≤ C2gk(n,s),

for all n ≥ m|k| and C = 2−gk(m|k|,s).
Define A = {w ∈ {0, 1}∗ | d(w) > 1}. For all n ≥ m|k|, |A=n| < C2gk(n,s) and A ∈ EjSPACE.
Each w ∈ A=n can be described by giving n and its index within a list of A=n in lexicographical

order. By reusing space, w can be computed from this description in 3t(n) space. Therefore, for
all w ∈ A=n (n ≥ m|k|),

KS3t(n)(w) ≤ log(|A=n|) + O(log n) < gk(n, s) + O(log n).

Let S ∈ X. Then
∃∞n S[0..n− 1] ∈ A=n

and
∃∞n KS3t(n)(S[0..n− 1]) < gk(n, s) + O(log n).

Therefore, KS3t
(k)(S) ≤ s and KSpjspace

(k) (X) ≤ s. Since this holds for each s > dim(k)
pjspace(X) it

follows that KSpjspace

(k) (X) ≤ dim(k)
pjspace(X).

The proof of the second part is analogous.

Lemma 4.5 also holds in the case of polynomial time scaled dimension and the corresponding
polynomial time-bounded Kolmogorov complexity. This can be proven by using the techniques
proposed in [17] and [16]. The other inequality (Lemma 4.4) for polynomial time-bounds is a hard
question given that reversible compression seems necessary to capture dimension [24].

Our characterization in Theorem 4.2 also holds when restricting to Kolmogorov complexity of
prefixes of the form A≤n, except in the 0th-scale case.

Theorem 4.6. Let X ⊆ C,

1. For all i, j ∈ N with 0 < i ≤ j,
dim(i)

pjspace(X) < s

iff there is a t ∈ pjspace such that for any A ∈ X

KSt(2n+1)(A≤n) < gi(2n+1, s) i.o. n.
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2. For all i, j ∈ N with 0 < i ≤ j,
dim(−i)

pjspace(X) < s

iff there is a t ∈ pjspace such that for any A ∈ X

KSt(2n+1)(A≤n) < g−i(2n+1, s) i.o. n.

3. For all k ∈ Z, k 6= 0,
cdim(k)(X) < s

iff for any A ∈ X
K(A≤n) < gk(2n+1, s) i.o. n.

4. For all k ∈ Z, k 6= 0,
dim(k)

comp(X) < s

iff there is a t ∈ comp such that for any A ∈ X

KT t(2n+1)(A≤n) < gk(2n+1, s) i.o. n.

Proof. ⇒
Case 1. Let s′ be a rational number such that dim(i)

pjspace(X) < s′ < s. From Lemma 4.5 and
Observation 4.1 there exists a t ∈ pjspace such that for every A ∈ X and infinitely many m,

KSt(m)(A[0..m− 1]) < gi(m, s′). (4.1)

Let A ∈ X and let m ∈ N be such that (4.1) holds and gi(2m, s′) + log(m + 1) ≤ gi(m, s).
Let n be the largest natural number such that 2n+1 − 1 ≤ m. A[0..2n+1 − 2] can be described by
A[0..m− 1] and the removal of the remaining m− 2n+1 bits. Therefore,

KSt(2n+1)+2n
(A[0..2n+1 − 2]) < n + gi(m, s′)

≤ log(m + 1) + gi(m, s′)
≤ gi(2n+1, s)

If t′(m) = t(m) + m/2 then t′ ∈ pjspace and the implication holds.
Case 2. Repeat the above argument but in this time let m ∈ N be such that

KSt(m)(A[0..m− 1]) < g−i(m, 1− s′) ≤ m− gi(m, 1− s′)

and gi(2m, 1−s)+log(m+1) ≤ gi(m, s′). Let n be the largest natural number such that 2n+1−1 ≥
m. Then, A[0..2n+1− 2] can be described by A[0..m− 1] and adding the missing 2n+1−m bits. In
this case,

KSt(2n+1)+2n
(A[0..2n+1 − 2]) < n + m− gi(m, 1− s′) + (2n+1 −m)

= log(m + 1)− gi(m, 1− s′) + 2n+1

≤ 2n+1 − gi(2n+1, 1− s) = g−i(2n+1, s)

Cases 3 and 4. The proof is a combination of the other two cases.
⇐
For all cases, the proof follows directly from Observation 4.1 and Lemma 4.4.
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For example, dim(−1)
pspace(X) < s iff there is a c such that for any A ∈ X

KS2c(n+1)
(A≤n) < 2n+1 − 2(n+1)(1−s) i.o. n.

Remark. Notice that it is not equivalent in general to consider KS(A=n) and KS(A≤n). Whereas
KS2cn

(A=n) < 2n − 2εn implies that KS2c′n
(A≤n) < 2n+1 − 2εn, the quantity KS2cn

(A≤n) can
be much lower than KS(A=n), relative to the corresponding length. Juedes and Lutz extensively
studied KS(A=n) in [19], mainly for languages in ESPACE and languages that are ≤P/poly

m -hard,
that is, hard for many-one non-uniform reductions. Theorem 4.6 will be used in Section 5 to study
KS(A≤n) for ≤P/poly

T -hard languages in ESPACE.

4.2 Alternative proof for constructive scaled dimension

Here we present an alternative proof of the characterization for constructive scaled dimension that
is a corollary of Theorems 3.6 and 3.7.

Corollary 4.7. Let X ⊆ C and k ∈ Z,

cdim(k)(X) = K(k)(X).

Proof. It was proved by Lutz [26] that

cdim(X) = sup
S∈X

dim(S),

and therefore it is enough to show that dim(S) = K(k)(S) for each sequence S.
By Theorem 3.6, there exist c > 0 and N ∈ N such that

|K(w)− gk(|w|, sw)| < c ∀w ∈ {0, 1}>m|k| , (4.2)

where sw = dim(k)(w).
On the other hand, for all |w| > m|k|, since fk is the inverse of gk,

K(w) = gk(|w|, fk(|w|,K(w))) (4.3)

By the mean value theorem there exists s′w such that

min{fk(|w|,K(w)), sw} ≤ s′w ≤ max{fk(|w|,K(w)), sw}

and
|gk(|w|, fk(|w|,K(w)))− gk(|w|, sw)| =

∂gk

∂s
(|w|, s′w) |fk(|w|, K(w))− sw|. (4.4)

By (4.2), (4.3) and (4.4)

|fk(|w|,K(w))− sw| < c
∂gk
∂s (|w|, 0)

, (4.5)
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where s′w can be replaced by 0 because ∂gk
∂s (m, .) is an increasing function for all m ∈ N. Then, by

Theorem 3.7,

dim(k)(S) = lim inf
n→∞ dim(k)(S[0..n− 1]) = lim inf

n→∞ fk(n,K(S[0..n− 1]))

where the last equality holds by applying (4.5) in S[0..n− 1] and using the fact that

lim
n→∞

c
∂gk
∂s (n, 0)

= 0.

5 Small Spans and the Kolmogorov Complexity of Hard Sets

In this section we study the behavior of P/poly-Turing reductions in the class ESPACE. These
reductions, denoted by ≤P/poly

T , are Turing reductions which are computed by a nonuniform family
of polynomial-size circuits.

The lower and upper spans of a set are defined as follows.

Definition. Let A ⊆ {0, 1}∗.

1. The ≤P/poly
T - lower span of A is

(P/poly)T(A) = {B ⊆ {0, 1}∗|B≤P/poly
T A}.

2. The ≤P/poly
T - upper span of A is

(P/poly)−1
T (A) = {B ⊆ {0, 1}∗|A≤P/poly

T B}.

Juedes and Lutz proved the following small span theorem for these reductions.

Theorem 5.1. (Juedes and Lutz [19]) For every A ∈ ESPACE.

µ((P/poly)T(A)|ESPACE) = 0

or
µpspace((P/poly)−1

T (A)) = 0.

This theorem states that for each A ∈ ESPACE, at least one of the lower and upper spans of A
is small in the sense of resource-bounded measure. Small span theorems for the class of exponential
time languages and polynomial time reductions have been studied for both measure and dimension
[18, 1, 23, 2, 4, 10]. Here we prove the following strengthening of Theorem 5.1.

Theorem 5.2. For every A ∈ ESPACE,

dim(1)( (P/poly)T(A) | ESPACE) = 0

or
dim(−3)

pspace( (P/poly)−1
T (A) ) = 0.
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Proof. Let
Z =

{
A ⊆ {0, 1}∗

∣∣∣ dim(−3)
pspace( (P/poly)−1

T (A) ) > 0
}

.

It is enough to show that
dim(1) ( Z | ESPACE) = 0. (5.1)

Given (5.1), we consider two cases:

1. (P/poly)T(A) ∩ ESPACE ⊆ Z.
Then it follows that

dim(1)((P/poly)T(A) | ESPACE) ≤ dim(1) ( Z | ESPACE) = 0.

2. (P/poly)T(A) ∩ ESPACE * Z.
Then there is a language B ∈ (P/poly)T(A)∩ESPACE such that B /∈ Z. Because B≤P/poly

T A,
we have (P/poly)−1

T (A) ⊆ (P/poly)−1
T (B) and therefore

dim(−3)
pspace( (P/poly)−1

T (A) ) ≤ dim(−3)
pspace( (P/poly)−1

T (B) )

by the monotonicity of scaled dimension. Because B 6∈ Z, we have dim(−3)
pspace( (P/poly)−1

T (B) ) =
0, so dim(−3)

pspace( (P/poly)−1
T (B) ) = 0 follows.

Our proof of (5.1) is based on the proof of Theorem 4.5 in [19]. We begin by recalling some of
the definitions and notations from that proof, slightly adapting them for use in this proof.

For each r ∈ N, define the functions ar, br : N→ N by

ar(n) = nr + r and br(n) =
n∑

i=0

ar(i).

Let ADVr be the class of all advice functions h : N→ {0, 1}∗ satisfying |h(n)| = ar(n) for all n ∈ N.
For any A,B ⊆ {0, 1}∗ satisfying A≤P/poly

T B, there exist r, k ∈ N and h ∈ ADVr such that

A = L(MB
k /h),

where Mk is the kth polynomial time-bounded oracle Turing machine.
A partial ar(n)-advice function is a finite function

h′ : {0, 1, . . . , k − 1} → {0, 1}∗

for some k ∈ N, such that for all 0 ≤ n < k, |h′(n)| = ar(n). For each partial ar(n)-advice function
h′, the cylinder generated by h′ is

CYL(h′) = {h ∈ ADVr | h ¹ {0, 1, . . . , k − 1} = h′},

where h ¹ {0, 1, . . . , k − 1} denotes h restricted to domain {0, 1, . . . , k − 1}. The probability of this
cylinder is defined to be

Pr(CYL(h′)) =
k−1∏

n=0

2−ar(n).
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For each r ∈ N, we will use the sample space

Ωr = ADVr ×C.

Here we use the product probability measure, with the above probability measure on ADVr and
the uniform distribution on C. For each r, k, j ∈ N, define the event EA

r,k,j ⊆ Ωr by

EA
r,k,j = {(h, B) | (∀ 0 ≤ i < j) [[si ∈ A]] = [[si ∈ L(MB

k /h)]]}.

For each r, k, j ∈ N and A ⊆ {0, 1}∗, let

NA(r, k, j) =
∣∣∣∣
{

i < j
∣∣∣ Pr(EA

r,k,i+1) ≤
1
2
Pr(EA

r,k,i)
}∣∣∣∣ .

Then for all r, k, j ∈ N and A ⊆ {0, 1}∗, we have

Pr(EA
r,k,j) ≤ 2−NA(r,k,j).

For each A ⊆ {0, 1}∗ and rational numbers s, δ > 0, define an s(−3)-gale dA
s,δ : {0, 1}∗ → [0,∞)

by

dA
s,δ(w) = 2−g3(|w|,1−s)

∞∑

r=0

∞∑

k=0

∞∑

j=0

2−(r+k)/4−jδ · dA
r,k,j(w),

where for all r, k, j ∈ N, dA
r,k,j is the martingale

dA
r,k,j(w) =

{
2|w|Pr(ADVr ×Cw | EA

r,k,j) if Pr(EA
r,k,j) > 0

1 if Pr(EA
r,k,j) = 0.

It is routine to show that dA
s,δ is pspace-computable if A ∈ ESPACE.

Let A,B ⊆ {0, 1}∗, k, r ∈ N, and h ∈ ADVr such that A = L(MB
k /h). There is a polynomial

time-bound on Mk and a polynomial length bound on h, so there is a constant c ∈ N so that all
queries of (MB

k /h)(si) have length strictly bounded by |si|c for all sufficiently large i. Defining
n(i) = dlog(i + 2)− 1e, we have |si| = n(i) for all i. For now, fix j ∈ N. If we choose

l = 2(log(j+1))c
,

then all queries of L(MB
k /h)(si) for 0 ≤ i < j are among s0, s1, . . . , sl−1. In other words, A[0..j−1]

is determined by B[0..l − 1]. Note that

j + 1 = 2(log l)
1
c .

Let hj = h ¹ {0, 1, . . . , n(j−1)}. Then hj is a restriction of h that provides advice for all the inputs
s0, . . . , sj−1. It follows that CYL(hj)×CB[0..l−1] ⊆ EA

r,k,j , so we can argue as in [19] that

Pr(EA
r,k,j | ADVr ×CB[0..l−1]) ≥ 2−br(n(j)),

and then obtain
dA

r,k,j(B[0..l − 1]) ≥ 2NA(r,k,j)−br(n(j)).
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Let ε > δ > 0 and define

Xε = {A ⊆ {0, 1}∗ | (∀k)(∀r)(∀∞j)NA(r, k, j) > jε}.

We claim that Xε ∩ ESPACE ⊆ Zc, i.e., that

dim(−3)
pspace( (P/poly)−1

T (A) ) = 0 (5.2)

for every A ∈ Xε ∩ ESPACE. For this, let A ∈ Xε ∩ ESPACE and let B ∈ (P/poly)−1
T (A). Then

there exist k, r ∈ N and h ∈ ADVr such that A = L(MB
k /h). Let j be sufficiently large to ensure

NA(r, k, j) > jε. Then, defining c and l as above, we have

log dA
s,δ(B[0..l − 1]) ≥ log dA

r,k,j(B[0..l − 1])− g3(l, 1− s)− (r + k)/4− jδ

≥ jε − br(n(j))− g3(l, 1− s)− (r + k)/4− jδ

=
(
2(log l)1/c − 1

)ε
− br(n(j))− 22(log log l)(1−s)

− (r + k)/4−
(
2(log l)1/c − 1

)δ
.

Since r and k are constants here, it follows that B ∈ S∞[dA
s,δ]. Therefore (P/poly)−1

T (A) ⊆ S∞[dA
s,δ].

Since A ∈ ESPACE, dA
s,δ is pspace-computable, so dim(−3)

pspace((P/poly)−1
T (A)) ≤ s. This holds for all

s > 0, so we obtain (5.2).
Now we show that for every ε > 0,

dim(1)
pspace(X

c
ε ) ≤ ε. (5.3)

Let A ∈ Xc
ε . Then there exist r, k ∈ N such that NA(r, k, j) ≤ jε for infinitely many j ∈ N. Notice

that NA(r, k, j) is determined by A[0..j − 1]. For each j ∈ N, let

Zr,k,j = {B[0..j − 1] | NB(r, k, j) ≤ jε} ⊆ {0, 1}j .

We can bound the size of Zr,k,j as

|Zr,k,j | ≤ jε

(
j

jε

)
2jε ≤ jε · 2H(jε−1)j+jε

because we can specify an element of the set by first identifying the at most jε positions i on which
EA

r,k,i+1 ≤ 1
2EA

r,k,i and then using jε bits to specify which of the two possibilities to use for the ith

bit in case EA
r,k,i+1 = 1

2EA
r,k,i. Therefore

H(jε−1)j + jε + log j

bits are enough to identify each string in Zr,k,j , where H(x) is the binary entropy H(x) = x log x +
(1 − x) log(1 − x). From this description along with encodings of r, k, and j we can compute the
string using polynomial space: for some polynomial p we have

KSp(w) ≤ H(jε−1)j + jε + 2 log j + log r + log k

for all w ∈ Zr,k,j . We have a single polynomial p that works for every r, k and for every j ≥ j0(r, k)
for some j0(r, k).
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Notice that

H(jε−1)j =
(

jε−1 log j1−ε + (1− jε−1) log
1

1− jε−1

)
j

= jε(1− ε) log j + j(1− jε−1) log
(

1 +
jε−1

1− jε−1

)

≤ jε(1− ε) log j + j(1− jε−1)
jε−1

1− jε−1
log e

= jε[(1− ε) log j + log e].

It follows from the above that KSp
(1)(A) ≤ ε because A satisfies A[0..j − 1] ∈ Zr,k,j infinitely often.

Since A ∈ Xε is arbitrary and the polynomial p does not depend on A, we have KSpspace
(1) (Xε) ≤ ε.

Appealing to Theorem 4.2, we establish (5.3).
We proved that Xε ∩ ESPACE ⊆ Zc for all ε ∈ (0, 1). This implies Y c ∩ ESPACE ⊆ Xc

ε , so

dim(1)(Z | ESPACE) = dim(1)
pspace(Z ∩ ESPACE) ≤ dim(1)

pspace(X
c
ε ) ≤ ε

for all ε ∈ (0, 1). Therefore dim(1)(Z | ESPACE) = 0.

Theorem 5.2 improves Theorem 5.1 because dim(−3)(X) < 1 implies
µpspace(X) = 0. Also, in [10] it is shown that (−2)nd-scaled small span theorems are not pos-
sible, since for A a ≤P

m-complete language for ESPACE, dim(−2)
pspace(P−1

m (A)) = 1. Therefore we can’t
substitute −3 by a bigger scale in the statement of Theorem 5.2.

Because of the connections we have obtained between scaled dimension and Kolmogorov com-
plexity we can conclude the following.

Theorem 5.3. For every A ∈ ESPACE, if

dim(1)((P/poly)T(A)|ESPACE) > 0

then
KS(−3)

pspace((P/poly)−1
T (A)) = 0

Proof. The theorem follows from Theorem 5.2 and Lemma 4.5.

In particular for hard languages we have the following corollary.

Corollary 5.4. Let H be the class of languages that are ≤P/poly
T -hard for ESPACE. Then

KS(−3)
pspace(H) = 0.

That is, for each ε > 0 there is a c such that for every ≤P/poly
T -hard language H,

KS2cn
(H≤n) < 2n+1 − 22(log n)1−ε

i.o. n.

In fact, by examining the proof of Theorem 5.2, we obtain a stronger bound in the following
theorem. This matches the upper bound given by Juedes and Lutz [19] for the ≤P/poly

m -hard
languages.
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Theorem 5.5. There is a constant c such that for every ≤P/poly
T -hard language H for ESPACE,

there is some ε > 0 such that

KS2cn
(H≤n) < 2n+1 − 2nε

i.o. n.

Proof. Let ε = 1
2 and recall the set Xε in the proof of Theorem 5.2. Since dim(1)

pspace(ESPACE) = 1,
we have ESPACE 6⊆ Xc

ε . Let A ∈ ESPACE ∩Xc
ε .

Let B be ≤P/poly
T -hard for ESPACE. Then A reduces to B via some ≤P/poly

T -reduction. Choose
c so that for all sufficiently large i, all queries of this reduction on input si have length strictly
bounded by |si|c. The proof of (5.2) shows that the s(−3)-gale dA

s,δ succeeds on B.
Let γ ∈ (1− ε

c , 1). Define a γ(−2)-gale d by

d(w) = 2g3(|w|,1−s)−g2(|w|,1−γ)dA
s,δ(w).

Then the calculation showing that dA
s,δ succeeds on B changes to

log d(B[0..l − 1]) ≥
(
2(log l)1/c − 1

)ε
− br(n(j))− 2(log l)1−γ − (r + k)/4−

(
2(log l)1/c − 1

)δ
.

Because 1− γ < ε
c , d also succeeds on B. Therefore dim(−2)

pspace(H) ≤ γ < 1.
Let α ∈ (γ, 1). From Lemma 4.5 (as applied in Theorem 4.6) we obtain that

KS2dn
(B≤n) < 2n+1 − 2n1−α

for infinitely many n. Here d is a constant that does not depend on B.

This result tells us that the ≤P/poly
T -hard languages are unusually simple, since for most lan-

guages the opposite holds, even when allowing any resource bound on the Kolmogorov complexity.

Theorem 5.6. For every resource bound t, the class of all sets A that satisfy

KSt(2n)(A≤n) < 2n+1 − 2nε
i.o. n

for some ε > 0 has (−3)rd-order comp-dimension 0.

Proof. The result follows from our characterization in Theorem 4.2.

Theorem 5.6 implies that most decidable languages (in a very strong sense) satisfy the lower
bound

KS2cn
(A≤n) ≥ 2n+1 − 2nε

a.e. n

for every ε > 0, whereas ≤P/poly
T -hard sets have the opposite property by Theorem 5.5. In fact

the best known lower bound for ≤P/poly
T -hard sets is much lower, in [19] it is proven that for each

≤P/poly
T -hard H there is an ε > 0 such that

KS2nε

(H≤n) > 2nε
a.e. n.
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