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Abstract

The “analyst’s traveling salesman theorem” of geometric measure the-
ory characterizes those subsets of Euclidean space that are contained in
curves of finite length. This result, proven for the plane by Jones (1990)
and extended to higher-dimensional Euclidean spaces by Okikiolu (1991),
says that a bounded set K is contained in some curve of finite length
if and only if a certain “square beta sum”, involving the “width of K”
in each element of an infinite system of overlapping “tiles” of descending
size, is finite.

In this paper we characterize those points of Euclidean space that lie on
computable curves of finite length. We do this by formulating and proving
a computable extension of the analyst’s traveling salesman theorem. Our
extension, the computable analyst’s traveling salesman theorem, says that
a point in Euclidean space lies on some computable curve of finite length
if and only if it is “permitted” by some computable “Jones constriction”.
A Jones constriction here is an explicit assignment of a rational cylinder
to each of the above-mentioned tiles in such a way that, when the radius
of the cylinder corresponding to a tile is used in place of the “width of
K” in each tile, the square beta sum is finite. A point is permitted by a
Jones constriction if it is contained in the cylinder assigned to each tile
containing the point. The main part of our proof is the construction of a
computable curve of finite length traversing all the points permitted by a
given Jones constriction. Our construction uses the main ideas of Jones’s
“farthest insertion” construction, but takes a very different form, because,
having no direct access to the points permitted by the Jones constriction,
our algorithm must work exclusively with the constriction itself.

1 Introduction

Where can an infinitely small robot go? This paper answers a precise form of
this fanciful question by formulating and proving a computable extension of the
celebrated “analyst’s traveling salesman theorem” of geometric measure theory.
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The precise statement of our question is straightforward. Our robot is the
size of a geometric point (the “ultimate nanobot”), and it moves in a Euclidean
space Rn, where n ≥ 2. The robot’s motion is algorithmic, and there are no
obstacles, thermal effects, or quantum effects, so its path is a computable curve,
i.e., a curve traced by a computable function f : [0, 1] → Rn. The robot’s path
has arbitrary but finite length. (The computable curve is rectifiable. Among
other things, this implies that it is not a space-filling curve [21].) The robot’s
motion is otherwise unrestricted. For example, it may cross or retrace its own
path, so the function f is not required to be one-to-one. (In the terminology of
some, f describes a tour, rather than a curve. In the terminology of others, f
describes a curve that need not be simple.)

The collection of all possible paths of our robot forms a “computable transit
network” R ⊆ Rn. This is the set of all rectifiable points in Rn, i.e., all points
x ∈ Rn lying on rectifiable computable curves. Our question is simple. Which
points in Rn lie in the set R?

A brief summary of some basic properties of R (developed in detail in section
3) sets the stage for our main results. It is easy to see that R has Hausdorff
dimension 1, so most points in Rn are not rectifiable. On the other hand, R is
a dense subset of Rn, and R is path-connected in the strong sense that any two
points in R lie on a single computable curve of finite length. Each point x ∈ R
has dimension at most 1 (by which we mean that {x} has constructive dimension
at most 1 [14]), but the complement of R contains points of arbitrarily small
dimension, so this does not characterize membership in R.

Our main theorem characterizes points in R by extending the famous “ana-
lyst’s traveling salesman theorem” of geometric measure theory to a theorem in
computable analysis. The analyst’s traveling salesman theorem, proven for R2

by Jones in 1990 [9] and extended to Rn for n ≥ 2 by Okikiolu in 1991 [19] (see
also the monographs [16, 5]), gives a precise characterization of those subsets of
Rn that are contained in rectifiable curves.

For each m ∈ Z, let Qm be the set of all dyadic cubes of order m, which are
half-closed, half-open cubes

Q = [a1, a1 + 2−m) × · · · × [an, an + 2−m)

in Rn with a1, . . . , an ∈ 2−mZ. Note that such a cube Q has sidelength �(Q) =
2−m and all its vertices in 2−mZn. Let Q =

⋃
m∈Z

Qm be the set of all dyadic
cubes of all orders. We regard each dyadic cube Q as an “address” of the larger
cube 3Q, which has the same center as Q and sidelength �(3Q) = 3�(Q). The
analyst’s traveling salesman theorem is stated in terms of the resulting system
{3Q | Q ∈ Q} of overlapping cubes.

Let K be a bounded subset of Rn. For each Q ∈ Q, let r(Q) be the least
radius of any infinite closed cylinder in any direction in Rn that contains all of
K ∩ 3Q. Then the Jones beta-number of K at Q is

βQ(K) =
r(Q)
�(Q)

,

2



and the Jones square beta-number of K is

β2(K) =
∑
Q∈Q

βQ(K)2�(Q)

(which may be infinite). Here is the analyst’s traveling salesman theorem.

Theorem 1.1 (Jones [9], Okikiolu [19]). Let K ⊆ Rn be bounded. Then K is
contained in some rectifiable curve if and only if β2(K) <∞.

Jones’s proof of the “if” direction of Theorem 1.1 is an intricate “farthest
insertion” construction of a curve containing K, together with an amortized
analysis showing that the length of this curve is finite. This proof works in any
Euclidean space Rn. However, Jones’s proof of the “only if” direction of The-
orem 1.1 uses nontrivial methods from complex analysis and only works in the
Euclidean plane R2 (regarded as the complex plane C). Okikiolu’s subsequent
proof of the “only if” direction is a clever geometric argument that works in
any Euclidean space Rn. (It should also be noted that these papers establish
a quantitative relationship between β2(K) and the infimum length of a curve
containing K, and that the constants in this relationship have been improved in
the recent thesis by Schul [22]. In contrast, in this paper, we are only concerned
with the qualitative question of the existence of a rectifiable curve containing
K.)

Theorem 1.1 is generally regarded as a solution of the “analyst’s traveling
salesman problem” (analyst’s TSP), which is to characterize those sets K ⊆ Rn

that can be traversed by curves of finite length. It is then natural to pose the
computable analyst’s TSP, which is to characterize those sets K ⊆ Rn that can
be traversed by computable curves of finite length. While the analyst’s TSP is
only interesting for infinite sets K (because every finite set K is contained in a
rectifiable curve), the computable analyst’s TSP is interesting for arbitrary sets
K. In fact, the question posed at the beginning of this introduction is precisely
the computable analyst’s TSP restricted to singleton sets K = {x}. (We repeat
that we are focusing on the qualitative question here. The quantitative version
of the analyst’s TSP is interesting for finite sets, though not for singletons.)

To solve the computable analyst’s TSP, we first replace the Jones square
beta-number of the arbitrary set K with a data structure that can be required
to be computable. To this end, we define a cylinder assignment to be a function
γ assigning to each dyadic cube Q an (infinite) closed rational cylinder γ(Q), by
which we mean that γ(Q) is a cylinder whose axis passes through two (hence
infinitely many) points of Qn and whose radius ρ(Q) is rational. (If ρ(Q) = 0,
the cylinder is a line; if ρ(Q) < 0, the cylinder is empty.) The set permitted by
a cylinder assignment γ is the (closed) set κ(γ) consisting of all points x ∈ Rn

such that, for all Q ∈ Q,

x ∈ (3Q)o ⇒ x ∈ γ(Q),

where (3Q)o is the interior of 3Q.
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There is one technical point that needs to be addressed here. If γ is a
cylinder assignment that, at some Q ∈ Q, prohibits a subcube 3Q′ of 3Q (i.e.,
γ(Q)∩(3Q′)o = ∅), then κ(γ) contains no interior point of 3Q′, so it is pointless
and misleading for γ to assign Q′ a cylinder γ(Q′) that meets (3Q′)o. We define
a cylinder assignment γ to be persistent if it does not make such pointless
assignments, i.e., if, for all Q,Q′ ∈ Q with Q′ ⊆ Q and γ(Q) ∩ (3Q′)o = ∅,
we have γ(Q′) ∩ (3Q′)o = ∅. It is easy to transform a cylinder assignment γ
into a persistent cylinder assignment γ′ that is equivalent to γ in the sense that
κ(γ) = κ(γ′), with γ′ computable if γ is.
Definition. Let γ be a cylinder assignment.

1. The Jones beta-number of γ at a cube Q ∈ Q is

βQ(γ) =
ρ(Q)
�(Q)

.

2. The Jones square beta-number of γ is

β2(γ) =
∑
Q∈Q

βQ(γ)2�(Q).

� Note that β2(γ) may be infinite. Definition. A Jones constriction is a
persistent cylinder assignment γ for which β2(γ) <∞. �

We can now state our main result, the computable analyst’s traveling sales-
man theorem.

Theorem 1.2 Let K ⊆ Rn be bounded. Then K is contained in some rectifiable
computable curve if and only if there is a computable Jones constriction γ such
that K ⊆ κ(γ).

Theorem 1.2 solves the computable analyst’s TSP, and thus immediately
solves our question about where an infinitely small robot can go:

Corollary 1.3 A point x ∈ Rn is rectifiable if and only if x is permitted by
some computable Jones constriction. That is,

R =
⋃

computable γ

κ(γ),

where the union is taken over all computable Jones constrictions.

It should be noted that (the proof of) Theorem 1.2 relativizes to arbitrary
oracles, so it implies Theorem 1.1. This is the sense in which our computable
analyst’s traveling salesman theorem is an extension of the analyst’s traveling
salesman theorem.

Our proof of the “only if” direction of Theorem 1.2 is easy, because we are
able to use the corresponding part of Theorem 1.1 as a “black box”. How-
ever, our proof of the “if” direction is somewhat involved. Given an arbitrary
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computable Jones constriction γ, we construct a rectifiable computable curve
containing κ(γ). In this construction, we are able to follow the broad outlines
of Jones’s “farthest insertion” construction and to use its key ideas, but we
have an additional obstacle to overcome. The analyst’s TSP does not require
an algorithm, so Jones’s proof can simply “choose” elements of the given set
K according to various criteria at each stage of the construction (often moving
these points later as needed). However, even if γ is computable, neither the set
κ(γ) nor its elements need be computable. Hence the algorithm for our com-
putable curve cannot directly choose points in (or even reliably near) κ(γ). Our
construction succeeds by carefully separating the algorithm from the amortized
analysis of the length of the curve that it computes. The proof is discussed in
some detail in section 4 and at greater length in the appendix.

2 Curves and Computability

We fix an integer n ≥ 2 and work in the Euclidean space Rn. A curve is a
continuous function f : [0, 1] → Rn. The length of a curve f is

length(f) = sup
�a

k−1∑
i=0

|f(ai+1) − f(ai)|,

where |x| is the Euclidean norm of a point x ∈ Rn and the supremum is taken
over all dissections �a of [0, 1], i.e., all �a = (a0, . . . , ak) with 0 = a0 < a1 <
· · · < ak = 1. Note that length(f) is the length of the actual path traced by
f . If f is one-to-one (i.e., the curve is simple), then length(f) coincides with
H1(f([0, 1])), which is the length (i.e., the one-dimensional Hausdorff measure
[4]) of the range of f , but, in general, f may “retrace” parts of its range, so
length(f) may exceed H1(f([0, 1])). A curve f is rectifiable if length(f) <∞.

A tour of a set K ⊆ Rn is a curve f : [0, 1] → Rn such that K ⊆ f([0, 1]).
Since curves are continuous, the extended computability notion introduced

by Braverman [1] coincides with the computability notion formulated in the
1950s by Grzegorczyk [6] and Lacombe [11] and exposited in the recent paper
by Braverman and Cook [2] and in the monographs [20, 10, 24]. Specifically,
a curve f : [0, 1] → Rn is computable if there is an oracle Turing machine
M with the following property. For all t ∈ [0, 1] and r ∈ N, if M is given a
function oracle ϕt : N → Q such that, for all k ∈ N, |ϕt(k) − t| ≤ 2−k, then
M , with oracle ϕt and input r, outputs a rational point Mϕt(r) ∈ Qn such that
|Mϕt(r) − f(t)| ≤ 2−r.

A point x ∈ Rn is computable if there is a computable function ψx : N → Qn

such that, for all r ∈ N, |ψx(r) − x| ≤ 2−r. It is well known and easy to see
that, if f : [0, 1] → Rn and t ∈ [0, 1] are computable, then f(t) is computable.
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3 The Set R
As in the introduction, we let R denote the set of all rectifiable points in Rn, i.e.,
points that lie on rectifiable computable curves. We briefly discuss the structure
of R, referring freely to existing literature on fractal geometry [4] and effective
dimension [13, 14, 3].

For each rectifiable curve f , we have H1(f([0, 1])) ≤ length(f) < ∞, so the
Hausdorff dimension of f([0, 1]) is 1, unless f([0, 1]) is a single point (in which
case the Hausdorff dimension is 0). Since R is the union of countably many
such sets f([0, 1]), it follows by countable stability [4] that R has Hausdorff
dimension 1. This implies that R is a Lebesgue measure 0 subset of Rn, i.e.,
that almost every point in Rn lies in the complement of R.

Since R contains every computable point in Rn, R is dense in Rn. Also, if
x ∈ f([0, 1]) and y ∈ g([0, 1]), where f and g are rectifiable computable curves,
then we can use f , g, and the segment from f(1) to g(0) to assemble a rectifiable
computable curve h such that x, y ∈ h([0, 1]). Hence, R is path-connected in
the strong sense that any two points in R lie in a single rectifiable computable
curve.

For each rectifiable computable curve f , the set f([0, 1]) is a computably
closed (i.e., Π0

1) subset of Rn [18]. Since R is the union of all such f([0, 1]),
it follows by Hitchcock’s correspondence principle [7] that the constructive di-
mension of R coincides with its Hausdorff dimension, which we have observed
to be 1. (It is worth mention here that R can easily be shown not to have com-
putable measure 0, whence R has computable dimension n [13]. By Staiger’s
correspondence principle [23, 7], this implies that R is not a Σ0

2 set.) It follows
that each point x ∈ R has dimension at most 1 (in the sense that {x} has
constructive dimension 1 [14]). It might be reasonable to conjecture that this
actually characterizes points in R, but the following example shows that this is
not the case.

Construction 3.1 Given an infinite binary sequence R, define a sequence A0,
A1, A2, . . . of closed squares in R2 by the following recursion. First, A0 = [0, 1]2.
Next, assuming that An has been defined, let a and b be the 2nth and (2n+ 1)st
bits, respectively of R. Then An+1 is the ab-most closed subsquare of An with
area(An+1) = 1

16area(An), where 00 =“lower left”, 01 =“lower right”, 10 =
“upper left”, and 11 =“upper right”. Let xR be the unique point in R2 such that
xR ∈ An for all n ∈ N.

It is well known [17, 5] that the set K consisting of all such points xR is a
bounded set with positive, finite one-dimensional Hausdorff measure (and hence
with Hausdorff dimension 1), but thatK is not contained in any rectifiable curve.
The next lemma is a constructive extension of this fact.

Lemma 3.2 For any sequence R that is random (in the sense of Martin-Löf[15];
see also [12, 3]), the point xR of Construction 3.1 has dimension 1 and does not
lie on any computable curve of finite length.
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The following theorem shows that more is true, although the proof, a Baire
category argument, does not yield such a concrete example.

Theorem 3.3 The complement of R contains points of arbitrarily small di-
mension, including 0.

4 The Computable Analyst’s Traveling Sales-
man Theorem

This section presents the main ideas of the proof of Theorem 1.2. The detailed
proof appears in preliminary form in the appendix.

We first dispose of the “only if” direction. If we are given a rectifiable
computable curve f and a rational ε > 0, it is routine to construct a computable
Jones constriction γ such that f([0, 1]) ⊆ κ(γ) and β2(γ) ≤ β2(f([0, 1])) + ε.
The “only if” direction of Theorem 1.2 hence follows easily from the “only if”
direction of Theorem 1.1. We thus focus our attention on proving the “if”
direction of Theorem 1.2.

As pointed out by Jones [9], the analyst’s TSP is significantly different from
the classical TSP in that it typically involves uncountably many points at loca-
tions that are not explicitly specified. In his construction, he has the privilege
to “know” whether a point is in the set K or not, since he is concerned only with
the existence of a tour and not with the computability of the tour. This is no
longer true in our situation, since we work with only a computable constriction,
from which we may not computably determine whether a point is in the set.
Although the situations differ by so much, ideas with a flavor of the “farthest
insertion” and “nearest insertion” heuristics that are used in Jones’s argument
and the classical TSP are essential parts of our solution.

Given a computable Jones constriction γ, we construct computably a tour
f : [0, 1] → Rn of the set K = κ(γ) permitted by γ such that κ(γ) ⊆ f([0, 1])
and the length of the tour is finite.

Our construction proceeds in stages. In each stage m ∈ N, a set of points
with regulated density is chosen according to the constriction and a tour fm

of these points is constructed so that every point in K is at most roughly 2−m

from the tour. Every tour is constructed by patching the previous tour locally
so that the sequence of tours {fm} converges computably.

During the tour patching at each stage, the insertion ideas mentioned earlier
are applied at different parts of the set K according to the local topology given
by the constriction. Note that it is not completely clear that the use of “farthest
insertion” is absolutely necessary. However, it greatly facilitates the associated
amortized analysis of length, which is as crucial in our proof as it is in Jones’s. In
the following, we describe in more detail how and when these ideas are applied
in the algorithmic construction of the tour.

In each stage m ∈ N, we look at cubes Q of sidelength A2−m, where A = 2k0

is a sufficiently large universal constant. We pick points so that they are at
least 2−m from each other and every point in K is at most 2−m from some of
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those chosen points. Based on the value of βQ(γ), which measures the relative
width of 3Q ∩K, we divide cubes into “narrow” ones (βQ(γ) < ε0) and “fat”
ones (βQ(γ) ≥ ε0), where ε0 is a small universal constant.

The fat cubes are easy to process, since the associated square beta-number
is large. We connect the points in those cubes to nearby surrounding points,
some of which are guaranteed to be in the previous tour due to the density of
the points in the tour. Since the points are chosen with regulated density, the
number of connections we make here is bounded by a universal constant. The
length of each connection is proportional to the sidelength of the cube, which is
proportional to 2−m. Thus the total length we add to the tour is bounded by
c0 · ε20�(Q), which is then bounded by c0 · β2

Q(γ)�(Q), where c0 is a sufficiently
large universal constant.

For the narrow cubes, we carry out either “farthest insertion” or “nearest
insertion” depending on the local topology around each insertion point.

Suppose that we are about to patch the existing tour to include a point x.
Since from stage to stage, the points are picked with increasing density, there is
always a point z1 already in the tour inside the cube that contains x. However,
there are two possibilities for the neighborhood of x. One is that there is another
point z2 already in the tour and z2 is inside the cube that contains x. The other
possibility is that z1 is the only such point.

In the first case, point x lies in a narrow cube and there are points z1 and
z2 in the narrow cube such that x is between z1 and z2. Points z1 and z2 are in
the existing tour and are connected directly with a line segment in the tour. In
this case, we apply “nearest insertion” by letting z1 and z2 be the closest two
neighbors of x in the existing tour, breaking the line segment between z1, z2,
and connecting z1 to x and x to z2. The increment of the length of the tour
is �([z1, x]) + �([x, z2]) − �([z1, z2]), which is bounded by c1 · β2

Q(γ)�(Q) by an
application of the Pythagorean theorem, since the cube is very narrow.

In the second case, point z1 is the only point in the existing tour that is
in the same cube as x. It is not guaranteed that x can be inserted between
two points in the existing tour. Even when it is possible, the other point in
the existing tour would be outside the cube that we are looking at and thus
it might require backtracking an unbounded number of stages to bound the
increment of length, which would make the proof extremely complicated (if
even possible). Therefore, we keep the patching for every point local and, in
this case, we make sure x is locally the “farthest” point from z1 and connect x
directly to z1. (Note that the actual situation is slightly more involved and is
addressed in the full proof.) In this case, the Pythagorean theorem cannot be
used and thus we cannot use the Jones square beta-number to directly bound
the increment of length. To remedy this, we employ amortized analysis and
save spare square beta-numbers in a savings account over the stages and use
the saved values to bound the length increment. In order for this to work, we
choose ε0 so small that at a particular neighborhood, “farthest insertion” does
not happen very frequently and we always have the time to save up enough of
the square beta-number before we need to use it.
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[12] M. Li and P. M. B. Vitányi. An Introduction to Kolmogorov Complexity
and its Applications. Springer-Verlag, Berlin, 1997. Second Edition.

[13] J. H. Lutz. Dimension in complexity classes. SIAM Journal on Computing,
32:1236–1259, 2003.

[14] J. H. Lutz. The dimensions of individual strings and sequences. Information
and Computation, 187:49–79, 2003.
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A Technical Appendix

A.1 Proof of Theorem 3.3

Lemma A.1 DIM=0 ∩ [0, 1] is co-meager in [0, 1].

Proof.
We prove in the Cantor space C instead of [0, 1] using Kolmogorov complex-

ity.
Let h : {0, 1}∗ 
→ {0, 1}∗ be defined as

h(w) = w02|w|

for all w ∈ {0, 1}∗. Let g : {0, 1}∗ 
→ {0, 1}∗ be arbitrary with the restriction
that w � g(w) for all w ∈ {0, 1}∗ and |g(w)| > |w|. Define w0 = λ, wi =
g(wi−1), if i is odd and wi = h(wi−1), if i is even.

We claim that lim
n→∞wn ∈ DIM=0.

Let i be even. wi = h(wi−1) = wi−102|wi−1|
. Then

K(wi) ≤ c′ + |wi−1| + K(02|wi−1|
) ≤ c+ 2|wi−1|,

where c, c′ are some fixed constants. Thus

K(wi)
|wi| ≤ c+ 2|wi−1|

|wi−1| + 2|wi−1| ,

and

lim inf
n→∞

K(wn)
|wn| = 0,

i.e., lim
n→∞wn ∈ DIM=0.

Therefore, we may always use h to avoid DIM>0, i.e., DIM>0 is meager and
DIM=0 is co-meager. � �

The following lemma is used in the proof of Theorem 3.3. As stated in the
text of Section 3, it may be proven using Staiger’s correspondence principle
[23, 7].

Lemma A.2 Every point in R has dimension at most 1.

In the following, we prove Theorem 3.3 in R2. The proof for the general
case in Rn is very similar. Also, here we only prove that the complement of
R contains points of arbitrarily small dimension. If we replace the dimension
notion in the proof with 1st order scaled dimension (see [8]), the existence of
points of dimension 0 follows immediately.

Theorem A.3 (R2 version of Theorem 3.3). Let α > 0. DIM=α ∩ R2 is not
contained in R.
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Proof. Without loss of generality, we consider the problem in unit square.
We use the Cantor space C = {0, 1}∞ in place of [0, 1] for this proof. Let

r ∈ RAND ∩ C. Let b = f(r), where f : C → C is defined such that for all
S ∈ C and all n ∈ N,

f(S)[2n − 1..2n − 1 + �α2n
 − 1] = S[2n − 1..2n − 1 + �α2n
 − 1]

and
f(S)[2n − 1 + �α2n
 ..2n+1 − 2] = 02n−�α2n�.

It is clear by the definition of f that dim(b) = α. Let Lb = {(x, b) | x ∈
[0, 1]}. Let L′

b = {(x, b) | x ∈ DIM=0 ∩ [0, 1]}. Note that every point in L′
b has

dimension α in R2.
Suppose every point in DIM=α ∩R2 ⊆ R, then every point in L′

b is on some
computable rectifiable curve. Since there are only countably many computable
curves — Γ0,Γ1, . . . ,

L′
b ⊆

∞⋃
i=0

(Γi ∩ L′
b).

For A ⊆ R2, let P (A) = {x | (x, y) ∈ A}. Then we have

P (L′
b) ⊆

∞⋃
i=0

P (Γi ∩ L′
b).

Note that P (L′
b) = DIM=0 ∩ [0, 1]. By Lemma A.1, we have that for some

n0 ∈ N, P (Γn0 ∩ L′
b) is dense in some interval I ⊆ [0, 1]. Since Γn0 is compact,

I×{b} ⊆ Γn0∩(I×{b}). Let RANDr be the subset of [0, 1] that contains all real
numbers that are random relative to r. Since RANDr is dense in [0, 1], there is
a real number r′ ∈ RANDr ∩ I. Since r′ is random relative to r, r is random
relative to r′. Hence r′ is random relative to b and b has dimension α relative
to r′. Therefore dim((r′, b)) = 1 +α, which contradicts Lemma A.2. Therefore,
some point of dimension α is not on any computable rectifiable curve. � �

A.2 Pythagorean Theorem

h
θ

a b

c
θ′

Figure 1: Pythagorean Theorem

Theorem A.4 Let m ∈ Z and A > 9. Let a, b, c be the lengths of three line
segments that form a triangle inside a cylinder of length l = A21−m and width

13



w < l
A3

√
n

such that 21−m ≥ a, b ≥ 2−m and c ≥ 21−m, where n is dimension
of the space. Let β = w

l . Then

a+ b ≤ c+ 2Aβ2l.

Proof. Let θ be the small angle determined by line segments a and c. Let θ′

be the small angle determined by line segments b and c. Let h be the distance
from the intersection of line segments a and b to line segment c.

a+ b− c ≤ h sin θ + h sin θ′ = h · h
a

+ h · h
b

= a ·
(
h

a

)2

+ b ·
(
h

b

)2

≤ 2A
(w
l

)2

· l

= 2Aβ2l.

� � This version of Pythagorean Theorem easily generalizes to the case

where more line segments are involved in the setting.

A.3 The Construction

Note that by the definition of constriction, the set K = κ(γ) permitted by con-
striction γ is compact. Without loss of generality, we assume K ⊆ [0, 1/

√
n]n,

(0, . . . , 0) ∈ K, and (1/
√
n, . . . , 1/

√
n) ∈ K. Let A = 2k0 > 9. Let ε0 < 1

A3
√

n

be a fixed small constant, where n is the dimension of the Euclidean space we
are working with.

In the construction, we inductively build point sets L0 ⊆ L1 ⊆ · · · ⊆ Lm · · ·
in stages with the following properties.

C1: |zj − zk| ≥ 2−m −√
n2−2m

, for zj , zk ∈ Lm, j �= k.

C2: For m ∈ N and every x ∈ K, there exists z ∈ Lm such that |x − z| ≤
2−m +

√
n2−2m

.

Note that for each m ∈ N, Lm ⊆ Km, where Km is the union of dyadic
cubes of sidelength 2−2m

permitted by γ. However, the points in Lm are not
specified by explicit coordinates. Instead, every point in Lm is specified by an
algorithm, which when given a precision parameter r, outputs the coordinates
of the dyadic cube of sidelength at most 2−r that the point lies in. At stage m,
we use r = 2m. Although the points we pick may not have rational coordinates,
at each stage m, we only look at them with precision r and treat them as if they
all have rational coordinates. The dyadic cube determined by the coordinates is
a sub-cube of the dyadic cube given by smaller precision parameter m. Thus the
point is specified by a nested chain of dyadic cubes of progressively smaller sizes.
When, for some m, such a dyadic cube is not permitted by γ, the output of the
algorithm remains to be coordinates given by the algorithm with the largest
precision parameter that leads to an output of a dyadic cube that is permitted
by γ. Thus it is possible that a point in Lm is not in K.
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In stage m ∈ N, we look at cubes Q of sidelength A2−m. For each Q,
we use 3Q to denote the cube of side length 3A2−m centered at the center
of Q. For the sake of precision, we look at the resolution level of Km. Let
β(Q) = βQ(γ) = ρ(Q)

�(Q) . Note that Jones square beta-number β2(γ) of set K is∑
Q∈Q β

2(Q)�(Q). For each term in the sum, we call β2(Q)�(Q) the local square
beta-number at Q. We build a tour fm : [0, 1] → Rn of Lm by patching the tour
fm−1 locally according to the local topology of Km given by the constriction so
that the sequence of tours {fm} converges computably.

Since the tour we build is computable, which requires parameterized ap-
proximation, the approximation scheme in computing the points in Lm is not
harmful.

As we mentioned earlier that points in Lm may not lie in K, thus it is
possible that, at some stage, a point chosen earlier is discovered to be outside
K. However, when this happens, we don’t remove the point. Instead, we keep
such points in order to maintain the convergence of the parameterizations of the
sequence of tours. Therefore, due to the inability to computably choose points
strictly from K, we may introduce extra length to the tours. However the extra
length turns out to be bounded by the local square beta-numbers and thus the
access to the set K in Jones’s original construction is a nonessential feature of
the analyst’s traveling salesman problem and our characterization using Jones
constriction is a proper relaxation of Jones’s characterization. However, we also
note that in Jones’s world, using K is equivalent to using the constriction.

Before getting into the construction, we describe some sub-routines that we
will use in the construction to patch the tours.

First note again that, at each stage m, we use a precision parameter of
r = 2m for points and treat them as if they have dyadic rational coordinates. It
is also easy to make sure that for each fm, for all p ∈ [0, 1] such that fm(p) ∈ Lm,
then p ∈ [0, 1]∩Q. Thus, we may keep a table of all p ∈ [0, 1] with fm(p) ∈ Lm.

The first procedure is attach(f, z, x,m) with z ∈ Lm−1 or z ∈ Lm being
already explicitly traversed by f . This procedure modifies f so that the output
f ′ = attach(f, z, x,m) traverses line segment [z, x] in addition to the set f
originally traverses and for all p ∈ [0, 1], |f(p) − f ′(p)| ≤ 21−m.

The procedure first looks up the table and finds q ∈ [0, 1] such that f(q) = z.
Then it finds a ∈ Q∩(0, 1) such that |f(q−2a)−f(q)| < 21−m, |f(q+2a)−f(q)| <
21−m, and z is the only point in Lm−1 ∩ f([q − 2a, q + 2a]) and it appears only
once. The output f ′ is such that for all p ∈ [0, 1] \ [q− 2a, q+2a] , f ′(p) = f(p);
f ′ maps [q−2a, q−a] to f([q−2a, q]) linearly; f ′ maps [q−a, q] to [z, x0] linearly;
f ′ maps [q, q+a] to [x0, z] linearly; f ′ maps [q+a, q+2a] to f([q, q+2a]) linearly.

The second procedure is reconnect(f, z1, z2, x0, . . . , xN ,m) with the assump-
tion that f traverses line segment [z1, z2] from one end to the other. This pro-
cedure first looks up the table and, without loss of generality, we assume that it
finds the smallest interval [p, q] ⊆ [0, 1] such that f(p) = z1 and f(q) = z2 and
f([p, q]) = [z1, z2]. We obtain f ′ by reparameterizing f to include x0, . . . , xN

in order. First we pick rational points q0, . . . , qN such that for each i ∈ [0..N ],
|f(qi) − xi| ≤ 2ε03A2−m. Then we let f ′ map [p, q0] to [z1, x0] and let f ′ map
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[qN , q] to [xN , z2]. For i ∈ [0..N−1], let f ′ map [qi, qi+1] to [xi, xi+1]. Note that
if all these points involved lie in a very narrow strip, it is guaranteed that the
newly added line segments are very close to the longer line segment they replace.
The distance between the new parameterization and the old one is bounded by
2ε03A2−m.

Note that in each of the above procedures, when f is reparameterized to
obtain f ′, the table that saves the information on the preimages of points in
Lm−1 and Lm is updated to reflect the changes.

Stage 0: m = 0 and the size of Q we consider is �(Q) = A. L0 contains
the two diagonal points of [0, 1/

√
n]n, i.e., L0 = {(0, . . . , 0), (1/

√
n, . . . , 1/

√
n)}.

And let f0 maps [0, 1] linearly to the line segment [(0, . . . , 0), (1/
√
n, . . . , 1/

√
n)].

Stage m: For any point z and x with z �= x, let

Ez,x = {y | y − z is at most 2
3π from x− z }.

For all x ∈ K, let Qx be such that x ∈ Qx and Qx ∈ Qm−k0 . Let zx ∈ Lm−1 be
the closest neighbor of x (2−m −√

n2−2m ≤ |x− zx| ≤ 21−m +
√
n2−2m−1

).
First we build a set of points that we eventually add into Lm−1 to form Lm.

The following piece of code first find new points in Km that correspond to the
cases where “farthest insertion” is required. Note that in this case, as long as
the point we pick is sufficiently close to the farthest point, the construction will
work. (By “sufficiently close”, we mean that the point we pick is close to a
farthest point enough so that another instance of “farthest insertion” does not
happen within k0 stages in that neighborhood.) This allows us to computably
pick points for “farthest insertion” without worrying about not being able to
pick the actual farthest points.

L′ ⊆ Km be a set of points (dyadic cubes) such that Lm−1 ∪ L′ satisfies conditions C1 and C2;
L′ = L′ ∩ {x ∈ Km | β(Qx) < ε0 and Lm−1 ∩BA21−m+

√
n2−2m (zx) ∩ Ezx,x \ {zx} = ∅};

L̂ = ∅;
for all x0 ∈ L′ do

if �([x0, zx0 ]) ≥ max{�([x, zx]) | x ∈ Ezx0 ,x0 ∩B21−m(zx0) ∩Km} − √
n2−2m

;
then

L̂ = L̂ ∪ {x0};
else

let x′0 ∈ Km be such that
�([x′0, zx0 ]) = max{�([x, zx0 ]) | x ∈ Ezx0 ,x0 ∩Km ∩B21−m(zx0)} −

√
n2−2m

;
/* zx′

0
≡ zx0 */

L̂ = L̂ ∪ {x′0};
end if

end for
Let L̂1 = L̂ /* L̂1 contains all the “farthest insertion” points */
Greedily add more points into L̂ so that L̂ satisfies conditions C1 and C2;
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We connect every point in L̂ to some points in Lm−1 by reparameterizing
fm−1 to get fm. Initially, let Lm = Lm−1 and fm = fm−1. We divide the
process into 3 steps.

Step 1: Farthest Insertion

for all x0 ∈ L̂1 do /* β(Qx0) < ε0 */
if |L̂ ∩ Ezx0 ,x0 ∩B21−n(zx0) \ {x0}| = 0
then

Lm = Lm ∪ {x0};
f = attach(f, zx0 , x0,m);

else /* |L̂ ∩ Ezx0 ,x0 ∩B21−m(zx0) \ {x0}| = 1 */
Let x1 ∈ L̂ ∩ Ezx0 ,x0 ∩B21−m(zx0) with x1 �= x0;
Lm = Lm ∪ {x0, x1};
f = attach(f, zx1 , x1,m); f = attach(f, x1, x0,m);

end if
end for

Step 2: Nearest Insertion

for x0 ∈ L̂ with β(Qx0) < ε0 that are not processed yet do
Let z1 be the closest neighbor of x0 in Lm−1 ∩BA21−m(zx0) ∩ Ezx0 ,x0 \ {zx0};
/* Note that f already explicitly traverses [zx0 , z1] */
Let {x∗, x1, . . . , xN} = L̂ ∩ Ezx0 ,x0 ∩B�([zx0 ,z1])(zx0) be ordered by x component;
if x∗ �= x0 then continue; end if
f = reconnect(f, zx0 , z1, x0, . . . , xN ,m);
Lm = Lm ∪ {x0, x1, . . . , xN};
mark x0, x1, . . . , xN as processed and never process again;

end for

Step 3:
for all x0 ∈ L̂ with β(Qx0) ≥ ε0 do

if [zx0 , x0] is not explicitly traversed by f then f = attach(f, zx0 , x0,m);
for all x1 ∈ 3Qx0 ∩ (L̂ ∪ Lm−1) do

if [x0, x1] is not explicitly traversed by f then f = attach(f, x0, x1,m);
end for
Lm = Lm ∪ {x0};

end for

By construction, for everym ∈ N, the distance between fm and fm+1 is bounded
by

√
n3A2−m. So by the convergence of the geometric series, {fm} is a conver-

gent sequence of bounded continuous functions. Thus f = limm→∞ fm exists
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and is actually computable, since each fm is computable from the computable
constriction and the modulus of computation may be obtained by using the
geometric series for the distance between fm and fm+1.

A.4 The Proof

In this section, we analyze the construction and prove that if Jones square
beta-number of γ is finite, then K = κ(γ) ⊆ f([0, 1]) and length(f) <∞.
Proof. In order to make the analysis possible, we associate with each z ∈⋃

m∈N
Lm a variable M(z) and a variable V (z). Variables M may be taken as a

savings account where local square beta-numbers are saved at times when they
are not used up. The saved values are then used to cover the cost at times
when new local square beta-numbers may not cover the cost. Variables V are
used to keep track of the information about the local environment of each point
z ∈ ⋃

m∈N
Lm during the construction. The initial value of M(z) before the

first assignment is 0 and that of V (z) is ∅. M(z) only changes when a new
assignment occurs. The values of the variables may change over stages and
during the various steps of the construction in a single stage, so M(z) and V (z)
always refer to their respective current values.

In the following, we describe how the values of variables M and variables V
are updated during each stage and each step of the construction. We also ana-
lyze the construction and argue that, any at time during the construction, the
increment to M values is bounded by corresponding local square beta-numbers
and M values are always sufficient to cover the construction cost when local
square beta-numbers may not be used. Since M values come from local square
beta-numbers, the increase of the length is again bounded by local square beta-
numbers, though indirectly. During the construction, whenever we use M val-
ues, we decrement M values accordingly to ensure that M values are not used
repeatedly.

Since the construction is inductive, the analysis is also inductive. We will
show that the following two properties hold during the construction for all z ∈
Lm, m ∈ N.

P1: For all z′ ∈ V (z), let {y1, . . . , yN} = V (z) be arranged in the order of
their projections on the line determined by [z, z′]. Then for all j ≤ N − 1,
[yj , yj+1] is a direct line segment in fm.

P2: V (z) �= ∅ and one of the following is true.

(1) If there are at least two points z1, z2 ∈ V (z) such that the angle be-
tween [z, z1] and [z, z2] is at least 2π/3, thenM(z) ≥ ∑

z′∈V (z) �([z, z
′]).

(2) If for some z′ �= z, Ez,z′ ∩V (z) = ∅ and V (z) �= ∅, then we have both
of the following.

(a) M(z) ≥ 21−m +
∑

z′∈V (z) �([z, z
′]).

(b) For all k ≥ 0, if B2−m−k(z) ∩ Ez,z′ �= B21−m(z) ∩ Ez,z′ (at the
resolution of Km), then M(z) ≥ A21−m−k +

∑
z′∈V (z) �([z, z

′]).
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We verify that the properties are true initially and that if the properties are true
at any time, after any legal step of construction the properties are still true.

Stage 0: Initially, M values are all 0 and V values are all ∅, so the properties
trivially hold.

Let the two diagonal points be z1, z2. Note that �([z1, z2]) = 1. Let M(z1) =
A + 1 and M(z2) = A + 1. Let V (z1) = {v2} and V (z2) = {v1}. Note that
this assignment may be regarded as a special case for step 3 in the construction.
Without loss of generality, assume z1 is added before z2. It is easy to check that
property P1 and property P2 (part (2)) are true after z1 is added and remain
true when z2 is added.

Stage m: We give different assignment rules for M values for each of the
3 steps in the construction. For clarity, we keep the code for the construction
and give the assignment rules in annotations.

Step 1: Farthest Insertion

for all x0 ∈ L̂1 do /* β(Qx0) < ε0 */
if |L̂ ∩ Ezx0 ,x0 ∩B21−m(zx0)| = 1
then

Lm = Lm ∪ {x0};
f = attach(f, zx0 , x0,m);
@ V (x0) = V (x0) ∪ {zx0};
@ if V (zx0) ∩ Ezx0 ,x0 �= ∅

@ then
@ V (zx0) = V (zx0) \ V (zx0) ∩ Ezx0 ,x0 ;
@ end if
@ V (zx0) = V (zx0) ∪ {x0};
@ M(zx0) = M(zx0) −A21−m + 21−m;
@ M(x0) = 2 · 21−m;

else /* |L̂ ∩ Ezx0 ,x0 ∩B21−m(zx0) \ {x0}| = 1 */
Let x1 ∈ L̂ ∩ Ezx0 ,x0 ∩B21−m(zx0) with x1 �= x0;
Lm = Lm ∪ {x0, x1};
f = attach(f, zx1 , x1,m); f = attach(f, x1, x0,m);
@ V (x0) = V (x0) ∪ {x1};
@ V (x1) = V (x1) ∪ {zx0 , x0};
@ if V (zx0) ∩ Ezx0 ,x0 �= ∅

@ then
@ V (zx0) = V (zx0) \ V (zx0) ∩ Ezx0 ,x0 ;
@ end if
@ V (zx0) = V (zx0) ∪ {x1};
@ M(zx0) = M(zx0) −A21−m + 21−m + 2

√
n2−2m−1

;
@ M(x0) = 2(21−m + 2

√
n2−2m−1

);
@ M(x1) = 2(21−m + 2

√
n2−2m−1

);
end if
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end for

Whenever “farthest insertion” is involved, the point x0 under considera-
tion always lies in a narrow cube that contains x0, zx0 , and possibly x1.
Therefore, P1 is satisfied at x0 due to the narrowness of the cube. For
zx0 , P1 is maintained due to the removal of points in V (zx0) ∩ Ezx0 ,x0

from V (zx0).

In every stage m ∈ N, the tour fm traverses a set of line segments. By
the construction, every line segment is traversed at most twice. There-
fore, for each m ∈ N, length(fm) ≤ 2�(fm([0, 1])), where �(fm([0, 1]))
is the one dimensional Hausdorff measure of the set (fm([0, 1]). In the
following analysis, we bound �(fm([0, 1])) instead of length(fm).

The length of each line segment we add in this case is at most 21−m +
2
√
n2−2m−1

(taking into consideration of the approximation of the loca-
tions of end points), and we add at most 2 line segments. The total M
values for z, x0, and x1 (if it exists) is bounded by 5(21−m+2

√
n2−2m−1

).
So the sum of added length and M values is bounded by 7 · 21−m.

Since A > 9, it suffices to show that we may use A21−m from old M
value to cover the cost here.

Before this step of construction involving x0 and zx0 , zx0 satisfied prop-
erty P2.

If part (1) of property P2 was satisfied before this step, there is a point
z′ ∈ V (zx0)∩Ezx0 ,x0 such that �([zx0 , z

′]) > A21−m. Since z′ is removed
from V (zx0), the reduction of A21−m from M(zx0) is used to cover the
cost and is balanced by the removal of z′.

If after the addition of either x0 or x1 to V (zx0), the condition of part
(1) in property P2 is true, then since the addition to M(zx0), which is
21−m +2

√
n2−2m−1 ≥ �([zx0 , x0]) (or in case |L̂1∩Ezx0 ,x0 ∩B21−m(zx0)\

{x0}| = 1, 21−m + 2
√
n2−2m−1 ≥ �([zx0 , x1])), part (1) in property P2

remains true.

If after the addition of either x0 or x1 to V (zx0), the condition of
part (2) in property P2 is true, then since the addition to M(zx0) is
21−m + 2

√
n2−2m−1

, part (2)-(a) in property P2 is satisfied at zx0 .
Since β(Qx0) < ε0, on the side of zx0 (given by z′ in the P2) where
V (zx0)∩Exx0 ,z′ is empty, there will not be further construction within
less than k0 stages, i.e., the condition of part (2)-(b) of property P2
will not be true within k0 stages. Together with the fact that 21−m ≥
A21−m−k0 , part (2)-(b) of property P2 is satisfied at zx0 .

V (x0) contains only one point whose distance from x0 is between 2−m−
2−2m−1

and 21−m + 2−2m−1
. So part (2)-(a) of property P2 is satisfied

at x0. Since β(Qx0) < ε0, there will be no further construction within
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less than k0 stages on the empty side of V (x0), i.e., the condition of
part (2)-(b) of property P2 will not be true within k0 stages. Therefore,
part (2)-(b) of property P2 is satisfied at x0.

If x1 is added to Lm in this step, since β(Qx0) < ε0, x1 is between zx0

and x0, part (1) of property P2 is satisfied at x1.

If part (2) was satisfied before this step, we have two possibilities.

One possibility is that Ezx0 ,x0 ∩V (zx0) = ∅. Then since we have a “far-
thest insertion” construction at x0, B2−m(zx0)∩Ezx0 ,x0 �= B21−m(zx0)∩
Ezx0 ,x0 , i.e., the condition for part (2)-(b) of property P2 is true and
thus M(zx0) ≥ A21−m +

∑
z′∈V (zx0 ) �([zx0 , z

′]). Now the extra A21−m

may be used to cover the cost and is the amount that is deducted from
M(zx0). After we add x0 to V (zx0), since β(Qx0) < ε0, the condition of
part (1) of property P2 is true. Since 21−m + 2

√
n2−2m−1 ≥ �([zx0 , x0])

(or in case |L̂∩Ezx0 ,x0 ∩B21−m(zx0) \ {x0}| = 1, 21−m + 2
√
n2−2m−1 ≥

�([zx0 , x1])), part (1) of property P2 is satisfied at zx0 .

The other possibility is that Ezx0 ,x0 ∩ V (zx0) �= ∅. Then there is a
point z′ ∈ V (zx0) ∩ Ezx0 ,x0 such that �([zx0 , z

′]) > A21−m. Now the
analysis will be the same as in the case when part (1) of property P2
was satisfied before this step except that we need to note that although
V (zx0) changes, the amount M(zx0) −

∑
z′∈V (zx0 ) �([zx0 , z

′]) does not
decrease during the process. Therefore part (2) of property P2 remains
true and thus P2 remains true.

The analysis of the properties at x0 and x1 are the same as in the case
when part (1) of property P2 was satisfied before this step.

Also note that we never make variable V empty.

Step 2: Nearest Insertion

for all x0 ∈ L̂ with β(Qx0) < ε0 that are not processed yet do
Let z1 be the closest neighbor of x0 in Lm−1 ∩BA21−m(zx0) ∩ Ezx0 ,x0 \ {zx0};
/* Note that [zx0 , z1] is traversed explicitly by fm−1 */
Let {x∗, x1, . . . , xN} = L̂ ∩ Ezx0 ,x0 ∩B�([zx0 ,z1])(zx0) be ordered by x component;
if x∗ �= x0 then continue; end if
f = reconnect(f, zx0 , z1, x0, . . . , xN ,m);
@ V (zx0) = V (zx0) ∪ {x0} \ {z1};
@ M(zx0) = M(zx0) − �([zx0 , z1]) + �([zx0 , x0]);
@ V (x0) = V (x0) ∪ {zx0};
@ M(x0) = M(x0) + �([zx0 , x0]);
@ V (z1) = V (z1) ∪ {xN} \ {zx0};
@ M(z1) = M(z1) − �([zx0 , z1]) + �([xN , z1]);
@ V (xN ) = V (xN ) ∪ {z1};
@ M(xN ) = M(xN ) + �([xN , z1]);
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for i = 0 to N − 1 do
@ V (xi) = V (xi) ∪ {xi+1};
@ M(xi) = M(xi) + �([xi, xi+1]);
@ V (xi+1) = V (xi+1) ∪ {xi};
@ M(xi+1) = M(xi+1) + �([xi, xi+1]);

end for
Lm = Lm ∪ {x0, x1, . . . , xN};
mark x0, x1, . . . , xN as processed and never process again;

end for

Since in this case, the points we work with are all located along a very
narrow and long cylinder, by Pythagorean, we have that the length
added is bounded by

C3

∑
β(Q)<ε0

β(Q)2�(Q).

Note that if we make ε0 smaller, constant C3 can also be chosen smaller.
Since we don’t need to increase C3, we may fix C3 large enough for all
sufficiently small ε0 so that C3 does not depend on the choice of ε0 or
the choice of A. Also since the changes happen in a narrow cylinder,
P1 is maintained.

For j ∈ [0..N ], M(xj) satisfies P2, in particular part (1) of P2, since
each of them is connected to 2 other points that are more than 2π/3
angle apart.

For zx0 , in this case, z1 ∈ V (zx0) before we make the changes. So
Ezx0 ,x0 ∩ V (zx0) �= ∅, and after we make the changes to M(zx0), since
V (zx0) is changed accordingly, the value M(zx0)−

∑
z′∈V (zx0 ) �([zx0 , z

′])
does not decrease. Therefore P2 remains true after this step regardless
of whether part (1) or part (2) was true. The same argument tells us
that P2 remains true at z1.

Due to the way we assign M values, the total increment of M values
in this case is bounded by at most 2 times the total increase of length,
i.e.,

2 · C3

∑
β(Q)<ε0

β(Q)2�(Q).

Step 3:
for all x0 ∈ L̂ with β(Qx0) ≥ ε0 do

if [zx0 , x0] is not explicitly traversed by f then
f = attach(f, zx0 , x0,m);
@ V (x0) = V (x0) ∪ {zx0};
@ M(x0) = M(x0) + �([x0, zx0 ]);
@ V (zx0) = V (zx0) ∪ {x0};

22



@ M(zx0) = M(zx0) + �([x0, zx0 ]);
end if
for all x1 ∈ 3Qx0(L̂ ∪ Lm−1) do

if [x0, x1] is not explicitly traversed by f
then

f = attach(f, x0, x1,m);
@ V (x0) = V (x0) ∪ {x1};
@ M(x0) = M(x0) + �([x0, x1]);
@ V (x1) = V (x1) ∪ {x0};
@ M(x1) = M(x1) + �([x0, x1]);

end if
end for
Lm = Lm ∪ {x0};
@ M(x0) = M(x0) +A2−m;

end for

It is easy to verify that property P1 is maintained for each involved
point.

Since we assign A2−m to M(x0) in addition to the sum of length of
connected line segments, P2 is true for every x0. For those x1 ∈ Lm−1

that are involved in this case, M(x1) value is incremented by the length
of the line segment for each of the added line segment. The value
M(x1)−

∑
z′∈V (x1)

�([x1, z
′]) does not decrease. Therefore, P2 remains

true after the changes.

Let C1 be the maximum number of points that can be fit into 3Q and
satisfy property C1. Let C2 be the maximum number of points in
Lm \ Lm−1 that can fit into 3Q. Note that C1 and C2 are functions of
n, which is the dimension of the Euclidean space we are working with.
So both the total length we add to fm and for each point in Lm, the
total increment of M value are bounded by

C1 ·A2−m + C1 · 2
∑

β(Q)≥ε0

C2 · 3
√
n�(Q) =

9 · C1 · C2
√
n

ε20

∑
β(Q)≥ε0

ε20�(Q)

≤ 9 · C1 · C2
√
n

ε20

∑
β(Q)≥ε0

β(Q)2�(Q).

We have, by now, established case by case bound on length increment in
every stage. Now we put all these things together and bound the length of the
tour we obtain.

Let
Mm =

∑
z∈Lm

M(z),

where M(z) takes the value at the end of stage m. So M0 = 2A+ 2.
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Let lm be the total increment of length from fm−1 to fm introduced by
“farthest insertion” and l0 = 0.

Let C = max
(

9·C1·C2
√

n
ε20

, 2 · C3

)
.

Let Mm,1 be the total reduction of M values in stage m in “farthest inser-
tion”. Let Mm,23 be the total increment of M values in stage m in Steps 2 and
3. By the construction, Mm,23 ≤ C

∑
Q∈Qm−k0

β(Q)2�(Q).
Note that in an instance of “farthest insertion”, the increment of length Δl is

bounded by 2(21−m +2
√
n2−2m−1

), i.e., Δl ≤ 2(21−m +2
√
n2−2m−1

) ≤ 3 ·21−m.
For the involved point z ∈ Lm−1 ⊂ Lm and x0, x1 ∈ Lm \ Lm−1, the increment
of M values at z, x0, and x1 is at most by 5(21−m + 2

√
n2−2m−1

) ≤ 7 · 21−m

and the loss of M value at z is A21−m. Note that x1 may not be present in
the construction. Since we give an upper bound here, we use the worst case
and assume x1 is present. So the total reduction in M value involved in such
an instance of “farthest insertion”, ΔM(z) is at least (A − 5)2−m+1. So for
each individual instance of “farthest insertion” in stage m, the ratio between
the reduction in M values and the increment of length is

ΔM(z)
Δl

≥ A− 7
3

.

So Mm,1 ≥ A−7
3 lm.

Note that in the following, we are combining the β(Q) ≥ ε0 part and the
β(Q) < ε0 part of the sum of local square beta-numbers, i.e., the sums for Step
2 and Step 3 are combined.

Mm −Mm−1 = Mm,23 −Mm,1 < C
∑

Q∈Qm−k0

β(Q)2�(Q) − A− 7
3

lm.

Note that due to property P2, for all m0 ∈ N, Mm0 ≥ 0. So

0 ≤Mm0 = M0 +
m0∑

m=1

(Mm −Mm−1) < M0 +
m0∑

m=1

⎛
⎝C ∑

Q∈Qm−k0

β(Q)2�(Q) − A− 7
3

lm

⎞
⎠ .

Therefore

m0∑
m=1

A− 7
3

lm < M0 +
m0∑

m=1

⎛
⎝C ∑

Q∈Qm−k0

β(Q)2�(Q)

⎞
⎠ .

And thus

∞∑
m=1

A− 7
3

lm ≤M0 + C

∞∑
m=1

⎛
⎝ ∑

Q∈Qm−k0

β(Q)2�(Q)

⎞
⎠ .

So ∞∑
m=1

lm ≤ 3M0

A− 7
+

3C
A− 7

∞∑
m=1

∑
Q∈Qm−k0

β(Q)2�(Q).
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By our construction, �(fm) − �(fm−1) consists of the increments in Step 1,
Step 2, and Step 3. So

�(fm) − �(fm−1) ≤ lm + C
∑

Q∈Qm−k0

β(Q)2�(Q).

Now we have that the one dimensional Hausdorff measure of f([0, 1]) is

lim
m→∞ �(fm) = �(f0) +

∞∑
m=1

(�(fm) − �(fm−1))

≤ �(f0) +
∞∑

m=1

⎛
⎝lm + C

∑
Q∈Qm−k0

β(Q)2�(Q)

⎞
⎠

= �(f0) + C

∞∑
m=1

∑
Q∈Qm−k0

β(Q)2�(Q) +
∞∑

m=1

lm

≤ �(f0) + C

∞∑
m=1

∑
Q∈Qm−k0

β(Q)2�(Q) +
3M0

A− 7
+

3C
A− 7

∞∑
m=1

∑
Q∈Qm−k0

β(Q)2�(Q)

= �(f0) +
3M0

A− 7
+ C

(
1 +

3
A− 7

) ∞∑
m=1

∑
Q∈Qm−k0

β(Q)2�(Q).

Therefore

length(f) ≤ 2·H1(f([0, 1])) ≤ 2�(f0)+
6M0

A− 7
+2C

(
1 +

3
A− 7

) ∞∑
m=1

∑
Q∈Qm−k0

β(Q)2�(Q).

Since the square beta-number β2(γ) <∞, length(f) <∞. � �
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