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Abstract The workflow model of description and execution of complex tasks can
be of great use to design and parallelize scientific experiments, though it remains a
scarcely studied area in its application to phylogenetic analysis. In order to remedy
this situation, we study and identify sources of parallel tasks in the main recon-
struction stages as well as in other indispensable problems on which it depends:
model selection and sequence alignment. Finally, we present a general-purpose im-
plementation for use in cluster environments and examine the performance of our
method through application to very large sets of whole mitochondrial genomes, by
which problems of biological interest can be solved with new-found efficiency and
accuracy.

1 Introduction

Phylogenetics is a prominent branch of the discipline of bioinformatics, founded on
the fundamental driving force of life: evolution. Its goal is to ascertain the relations
between living organisms, extant and extinct, and determine the history and course
of the diversity of life at large. Despite the shortcomings of imperfect information
a great scientific corpus of knowledge has been amassed over the past decades: ad-
vances in software techniques and computer architecture are continually expanding
the frontiers of what is practicable as opposed to what, due to excessive computa-
tional requirements, is not. For inference of phylogenies belongs to the ample class
of interesting problems that resist efficient treatment for their very combinatorial
nature. Moreover, the use of models of evolution that reflect the specific patterns of
change observed in each dataset is crucial for obtaining realistic phylogenies but has
been avoided for large datasets due to its associated computational cost.
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Parallel execution is one in the arsenal of techniques that can be used to re-
duce total running times of (in particular) costly algorithms, putting to good use
the copious computational resources that are available in the form of independent
processors interconnected by gargantuan communication networks. Efforts in this
direction have been focused on fine-grain parallelization of standard algorithms
and application of algorithmic engineering techniques to improve implementations
([11, 13] are representative examples). Some of these undertakings have harvested
remarkably good performance measures, but nonetheless typical algorithms were
not designed with an eye on concurrency, and the number of independent tasks at
a given moment is limited, as is their individual load —which may hinder simple
assignment schemes or constrain its use to tightly coupled, low-latency networks.
Master-worker schemes dominate these approaches.

On the other hand, workflows are an abstract formalism to describe complex tasks
composed of related subtasks. This systematization developed naturally in manufac-
turing and business environments. When applied to scientific experimentation, not
only are they found to structure and document experiments very fittingly, but given
suitable specifications and implementations they form the base for automated ex-
periment execution environments [8]. Many software projects have been developed
to this end, including several specialized in bioinformatics applications [10]. Un-
fortunately, they are not well suited to expressing and managing arbitrary levels of
parallelism, though with some effort they can be coaxed into describing it to a de-
gree. Yet their highly interactive nature becomes their undoing for these purposes.
Previous work in workflows for phylogenetics has followed this philosophy [5].

While low-level and interactive execution environments have distinct advantages,
both can benefit from lower computational costs, the former being used by our pro-
posed workflows, which at the same time can be integrated into the latter. We ad-
vocate an effective use of: a) known sources of independent, potentially concurrent
tasks; and b) known or inferred biological information which simplifies the general
case of uninformed algorithms, and offers solutions of higher quality in less time.

With this in mind, this paper has two major objectives: firstly, to unveil existing
high-level concurrency in traditional approaches to the phylogenetic reconstruction
problem, including partitioning methods that increase granularity and improve run-
ning times while allowing further biological insight (e.g., different genes and loci in
multilocus studies evolve differently); secondly, to design and implement arbitrar-
ily scalable, fully automated workflows to put these ideas efficiently into practice,
with an emphasis on modularity, ease of maintenance and problem integration (most
notably, model selection).

2 Problem Decomposition

We focus our study on the canonical reconstruction problem in computational phy-
logenetics. Given a set of sequences S, suitably aligned, our goal is to produce a tree
T which satisfies (or approximates) a certain optimality criterion. The connection
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between S and T is given by a labeling of the leaves of the tree by the sequences
of the set. The fundamental dimensions of the problem, which govern algorithmic
complexity, are the number of sequences s, shared by S and T , and the length of
these sequences l, hidden in the tree. By l we usually designate the total number of
cladistic characters of the dataset, and equivalently the length of the alignment.

Obviously, at some point it is necessary to solve these kinds of simple prob-
lems, for which there exists a plethora of algorithmic methods, themselves poorly
scalable in general. We need not concern ourselves with these at this point, though
each may allow certain low-level improvements, which are completely compatible
with the high-level workflows that are discussed here. Only one aspect must be con-
templated now: the method of statistical evaluation [9]. This customary addition is
imposed by the desirable assessment of such traits as robustness and quality of the
results. In most methods, a number of statistical replicates r is provided to a sam-
pler (possibly alongside additional parameters), which generates an equal number
of derivative alignments. Each of these constitutes an independent problem of the
same magnitude as the original, solved independently and condensed with the rest
in the final solution. In this we find a first level of data-independent concurrency.

Additionally, we can identify in model selection [14] a precedent task that is
apt for deterministic treatment. Whereas the parameters for use with the selected
tree algorithm may be furnished by the user, it is generally convenient to employ
selection procedures that evaluate a wide range of models M and elect that which
best appears to fit the aligned data. Once again, we find a simple workflow composed
of as many tasks as models under consideration m; each of these is independent from
the rest and, when all models have been assessed, their results are harvested and the
best pick is decided upon. This process takes place after alignment and before any
of the resampled instances may commence execution.

So much for problem-independent concurrency. Nonetheless, an oft-disregarded
source of independent tasks can be found in the data themselves and, most im-
portantly, is exploitable by automated means. To boot, biological data are far from
unstructured and, as a matter of fact, complex multilocus studies are becoming in-
creasingly common. Therefore, it will be beneficial to make use of what information
is previously known about data. In this light, preclassification in accordance with es-
tablished facts or hypotheses —notwithstanding the trial of these by whatever means
necessary— becomes of great use to produce partitioned datasets with twofold ben-
efits: the generation of independent tasks and the reduced size of these. We will now
examine the effects of this proposal in both fundamental dimensions.

Firstly, let us consider the nature of cladistic characters, represented by l. Despite
the homogeneous nature of sequence alignments, genomes are actually composed
of coding (genes) and non-coding regions, often subject to evolutionary pressure
in different form and intensity. Consequently, an alignment should be divided in
subsets of columns corresponding to each self-contained genetic unit, say g in num-
ber. For this, it suffices for the alignment to contain an annotated sequence with
unit thresholds, and use these to perform the splitting. Each subalignment thus gen-
erated can be processed as described above (sampling and model selection), and
finally combined with its companions by some suitable model of coalescence [7].
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Secondly, whereas sequences represent individual organisms (s in terms of prob-
lem complexity) and it is the task of phylogenetic analysis to ascertain their relation-
ships, it may well be possible to easily identify groups of evolutionarily related se-
quences in advance (haplogroups in our case), and treat these as indivisible units for
the purposes of tree construction. To this end, a hierarchical classification scheme
can be used to classify each sequence as belonging to one of h groups of subtrees,
which can be independently built and integrated by resort to supertree algorithms
[2]. We have previously shown how this technique offers great improvements in
large, representative datasets [4]. Obviously, both strategies can be combined for
greater effect.

It must be noted that the multiple sequence alignment problem, which precedes
all others, can profit by the application of the same partitioning principles that have
just been expounded. In fact, both sources of partition information —an annotated
sequence for l and a sequence classifier for s— are ordinarily applied to individual
sequences, aligned with the reference sequence pairwise.

Fig. 1 Bottom-up hierarchy
of concurrent levels with their
nestings and interactions with
related problems: (a) concur-
rent level 1 (statistical sam-
pling); (b) concurrent model
selection and integration with
Level 1; (c) concurrent level 2
(gene trees); and (d) concur-
rent level 3 (supertrees).
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3 Workflow Design

The number and variety of independent tasks thus uncovered is certainly great and
offers many possibilities for concurrent execution. The nature of these divisions
is both simple and homogeneous, consisting of generation steps, multiple-instance
execution steps, and combination steps, where the middle stage comprises the bulk
of the computational load. The different types of tasks are further arranged in a
nested fashion: reduction operations generate groups of related, though independent,
datasets, until the basic problems are solved and the classifying cascade is reversed
by the appropriate combination of summarizing algorithms (see Fig. 1).

From these considerations we propose a modular workflow based on the defi-
nition of reusable black boxes for each significant layer of concurrent work. The
construction we present is typical, though by no means unique, and variants are
simple to produce as needed. Each layer is easily overridden by supplying trivial
classifiers if needed.

The basic problem of computation of phylogenies consists of a core stage and
three parallel layers, as follows.

Tree algorithms. The basic computation stage may in fact be workflow-like in
form, due to combination of several programs (distance methods are typical exam-
ples) or to low-level parallel implementations. Whatever the case, this “box” can be
assumed to take an alignment A and a set of parameters and produce a tree T .

Statistical sampling. The fundamental parallel layer comprises the statistical
sampling and concurrent solution of a number of basic problems, followed by the
application of a consensus algorithm. Its interface is similar to that of the basic box,
except that it must be provided the number of replicates r which determine the total
magnitude of its associated workload.

Gene trees. Preprocessing on l operates on simple sequence alignments and gen-
erates a number of subalignments to be subsequently sampled according to the split
instructions represented by S, which is required additionally to the parameters of its
subordinate tasks. Note that a set of models M rather than a single model µ may be
supplied to choose the most adequate parameters for each gene, as will be explained
shortly. As with the other nested boxes, its purpose is the production of a single tree
T that explains the alignment A.

Supertrees. Treatment of s is achieved by a hierarchical classifier C charged with
generating the inputs for each subproblem, which are then passed on to the gene tree
stage. It should be noted that C may be added as an input to the supertree gatherer.
The rest of its parameters are passed on to the next nested layer, as usual.

Furthermore, the following precondition problems are an obvious target for
workflow integration, as well.

Model selection. The purpose of model selection, unlike that of previous layers,
is the selection of a model µ from a set of candidates M, according to a given align-
ment A, for which some measure of the fitness of each model must be provided by
the scoring program; after that, a selector evaluates these results (possibly balanced
against the complexity of each model) and emits its choice. This computation is
customarily included as part of Level 1, or rather immediately before it.
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Sequence alignment. Levels 2–3 can be adapted to the sequence alignment prob-
lem with minimal changes. They operate on unaligned sets of sequences instead of
the alignments that they are tasked with generating, each classifier dividing these
collections of sequences in either shorter or smaller ones. Workflow structure re-
mains the same, and only executable programs (or “boxes”) need to be replaced.

4 Implementation Issues

Each task to be performed on a part of the input (partial alignment, model analysis,
gene and subtree reconstruction) can be computed independently from the rest. The
resulting parallelism is ideally suited to the use of a cluster as a generally available
and highly flexible execution environment.

Out of the available alternatives we have selected Condor: a management sys-
tem specialized in high-throughput computing. One of the tools that make Con-
dor an optimal choice is DAGMan (Directed Acyclic Graph Manager) [6]: a meta-
scheduler that allows to design an order relationship between processes. The design
of our system has no cycles, so there is a direct translation between it and a di-
rected acyclic graph (DAG). Moreover, DAGMan offers the possibility of designing
a DAG’s where one node can be a new DAG, so the nodes after this one will have to
wait until the whole DAG ends correctly to start their work. This technique, called
DAGMan within DAGMan, contributes greatly to the black-box properties of our
system.

Condor workflows are generated automatically from the inputs and their classi-
fiers. For a detailed discussion of technical considerations, most importantly regard-
ing process size and job scheduling, see [1].

5 Results and Performance Analysis

Let us start with a simple estimation of complexity. As described above, our sys-
tem divides the input alignment into h haplogroups in the first step, and then, each
haplogroup is divided into g genes. In the following step, m models are analyzed
for each gene, selecting the best one and finally, r bootstraps are executed for the
selected model. Consequently, the number of jobs involved in our system totals
h× (g× (m+ r+3)+2)+2.

We have tested the system with an alignment of 4895 complete sequences of real
human mitochondrial DNA (mtDNA) produced by the ZARAMIT project for com-
prehensive phylogenetic studies [3]. Here we have h= 26 (the number of non-empty
haplogroups in a basic classification), g = 38 (the 37 genes in human mtDNA, plus
the control region), and m = 88 (the set of models included in the current version
0.1.1 of the application jModelTest [12] and most frequently used in the system-
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Table 1 Results of system execution in the cluster with different number of bootstraps.

No. of
bootstraps No. of jobs CPUs

available
CPUs used

(mean)
Sequential cost

(days)
Cluster cost

(days) Speedup

15 104782 400 200 291 3 97
200 287562 600 250 799 12 66.6

atics studies). Replacing these values in the equation above we obtain a total of
988× r+89962 jobs.

Feasibility tests (r = 15) and full-scale tests (r = 200, well in the range [100,1000]
of typical bootstrap figures for studies in systematics) have been performed. Table 1
summarizes real and sequential (estimated) time costs of system runs and other rele-
vant data. Note that for estimating the sequential cost of the system we have assumed
that each job needs 4 minutes to schedule its execution on average.

Now, we shall estimate the running time when maximum parallelism is achieved,
that is, when all jobs are executed simultaneously in separate cluster nodes. The
largest partition will provide the worst-case scenario; in our case, this corresponds
to gene MT-ND5 (1812 aligned base pairs) and haplogroup M (582 sequences). We
have computed all 88 models in a scientific workstation with Intel Core 2 Duo pro-
cessor and 8 GB of RAM, to determine which model is the costliest in terms of time
in the aforementioned gene and haplogroup. TVM+I+G was the worst, with a cost
of 1 hour. Therefore, the critical path of our system should cost about 2 hours and
20 minutes (including intermediate jobs and scheduling time). This means that in a
sufficiently large cluster, our system will take just that amount of time to complete
the whole phylogenetic study.

To complete the evaluation of partial speedups commenced in [4], we have com-
pared model selection in our system with the cost of jModelTest, the most commonly
used (sequential) software. With just a subset of 200 sequences of our main align-
ment, jModelTest took more than 17 hours to run all 88 models, while our system
took just above 1 hour. More detailed results will be presented shortly.

6 Conclusions

We have developed a system where a divide and conquer methodology has been
applied to design workflows (employing the black-box principle of transparency)
that integrate model selection and phylogenetic reconstruction, and so can deal with
extensive phylogenetic analysis in an efficient way. The system has been tested with
very large datasets of mtDNA and accepts any type of biological data as inputs. In
addition, the criteria for input partitioning can be customized in order to reflect the
nature of inputs; of course, the number of bootstraps can be modified as well. The
system yields speedups higher than 50 compared to its sequential equivalent in large
phylogenetic studies; we have obtained great improvements in the model selection
phase alone compared with common specific-purpose tools like jModelTest.
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Finally, for future developments we will aim for improvements of the speedup
achieved, which appears to degrade with problem size. We will also seek ways to
integrate input retrieval and alignment process as preliminary steps in our system.
Further improvements on the computational cost are expected due to the inner par-
allelism of this kind of processes.
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workflow and provenance support for assembling the tree of life. In: Freire, J., Koop, D.,
Moreau, L. (eds.) Provenance and Annotation of Data and Processes, pp. 70–77. Springer,
Heidelberg (2008)

6. Couvares, P., Kosar, T., Roy, A., Weber, J., Wenger, K.: Workflow management in Condor.
In: Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M. (eds.) Workflows for e-Science, pp.
357–375. Springer, Heidelberg (2006)

7. Degnan, J.H., Rosenberg, N.A.: Gene tree discordance, phylogenetic inference and the mul-
tispecies coalescent. Trends Ecol. Evol. 24, 332–340 (2009)

8. Georgakopoulos, D., Hornick, M., Sheth, A.: An overview of workflow management: from
process modeling to workflow automation infrastructure. Distrib. Parallel Dat. 3, 119–153
(1995)

9. Holder, M.T., Lewis, P.O.: Phylogeny estimation: traditional and Bayesian approaches. Nat.
Rev. Genet. 4, 275–284 (2003)

10. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T., Glover,
K., Pocock, M.R., Wipat, A., Li, P.: Taverna: a tool for the composition and enactment of
bioinformatics workflows. Bioinformatics 20, 3045–3054 (2004)

11. Olsen, G.J., Matsuda, H., Hagstrom, R., Overbeek, R.: fastDNAml: a tool for construction of
phylogenetic trees of DNA sequences using maximum likelihood. Comput. Appl. Biosci. 10,
41–48 (1994)

12. Posada, D.: jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256
(2008)

13. Stamatakis, A., Ludwig, T., Meier, H.: RAxML-III: a fast program for maximum likelihood-
based inference of large phylogenetic trees. Bioinformatics 21, 456–463 (2005)

14. Sullivan, J., Joyce, P.: Model selection in phylogenetics. Annu. Rev. Ecol. Evol. Syst. 36,
445–466 (2005)


