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Abstract. Lutz (2000) has recently proved a new characterization of Hausdorff
dimension in terms of gales, which are betting strategies that generalize martin-
gales. We present here this characterization and give three instances of how it can
be used to define effective versions of Hausdorff dimension in the contexts of
constructible, finite-state, and resource-bounded computation.

1 Introduction

Resource-bounded measure, a generalization of classical Lebesgue mea-
sure, was developed by Lutz in 1991 [Lut92] in order to investigate the
internal structures of complexity classes. This line of research has proven
to be very fruitful [ASM97], [Lut97], [LMO1], but there are certain in-
herent limitations to the information that resource-bounded measure can
provide. These limitations, also present in classical Lebesgue measure,
come from the fact that measure cannot make quantitative distinctions
inside a measure 0 set, and also from the Kolmogorov zero-one law
([Dai01], [Lut98]) that implies that for most sets of interest in computa-
tional complexity and recursion theory the measure is 0, 1 or undefined.
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Hausdorff dimension was defined as an augmentation of Lebesgue
measure theory [Haul9]. Every subset of a given metric space is assigned
a dimension. We are interested in the metric space being the Cantor space
C consisting of all infinite binary strings. In this case the dimension of
each set X C C is a real number dimy (X) € [0, 1]. Hausdorff dimen-
sion is monotone, dimy () = 0, dimy(C) = 1, and intermediate values
occur for many interesting sets. Also, if dimy(X) < 1 then X is a mea-
sure 0 subset of C, so Hausdorff dimension can quantitatively distinguish
among measure 0O sets.

Hausdorff dimension was originally defined topologically ([Haul9],
[Fal85]). Lutz [Lut00a] recently proved a new characterization of Haus-
dorff dimension in terms of gales or supergales, which are betting strate-
gies that generalize martingales. The class of gales that “succeed” on the
sequences in a set X C C determines the dimension of X. Therefore
a natural generalization of Hausdorff dimension arises by restricting the
class of admissible gales or supergales. This is useful when we want a
nontrivial dimension inside a countable set such as the set of all decid-
able sequences.

In this paper we present three effectivizations of Hausdorff dimen-
sion. The first one is constructive dimension ([LutO0Ob], [Lut02]), de-
fined by restricting to constructive (lower semicomputable) supergales,
the second is finite-state dimension ([DLLMOL1]), defined by the natural
finite-state effectivization, and the third one is resource-bounded dimen-
sion, in which a particular complexity time-bound is enforced on gales.

Hausdorff dimension has also been related to measures of informa-
tion content. Ryabko ([Rya86], [Rya93], [Rya94]), Staiger ([Sta93],
[Sta98]) and Cai and Hartmanis [CH94] have all proven results that relate
Hausdorff dimension with Kolmogorov complexity. This line of thought
is also present in effective dimension. Constructive dimension can be
fully characterized in terms of Kolmogorov complexity ([May02]) and
finite state dimension is definable in terms of sequence compressibility
[DLLMO1]. We present here these two results supporting the intuition
that dimension is a measure of information density.

In section 2 we introduce a few preliminary definitions. Section 3
contains Lutz’s characterization of Hausdorff dimension, with the key
concepts of gale and supergale. Section 4 presents constructive dimen-
sion of sets and sequences. Section 5 contains finite-state dimension, and
section 6 is a brief sketch of resource-bounded dimension.
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2 Prdiminaries

We work in the set {0, 1}* of all (finite, binary) strings and in the Cantor
space C of all (infinite, binary) sequences. We write |w| for the length
of a string w € {0,1}*. The empty string is denoted \. For S € C
andi,j € N, 7 > j, we write S[i..j] for the string consisting of the 7'
through 5" bits of S, stipulating that S[0..0] is the leftmost bit of S. For
each w € {0,1}*, wisaprefix of S ifw = S[0..]w| — 1] orw = A.

We will freely identify each language A C {0, 1}* with its character-
istic sequence x4 € C.

We will refer to the low levels of the arithmetical hierarchy of sets of
sequences, specifically to sets in 1%, ¥, and II5. The definition can be
found in [Rog67].

We will also mention sequences in X9, that is, r.e. sequences, se-
quences in 19, that is, co-r.e. sequences, and sequences in A9, that is,
sequences that are decidable relative to the halting oracle.

A function f : {0,1}* — R is lower semicomputable if its lower
graph Graph™(f) = {(x, s) € {0,1}* x [0,00) | s < f(x)} is recur-
sively enumerable.

A real number « is computable if there is a computable function f :
N — Qsuch that forall r € N, |f(r) — «| < 27". A real number «
is A9-computable if there is a function f : N — Q that is computable
relative to the halting oracle such that forall r € N, |f(r) —a| < 27".

Let¢: N — N. A function f : {0,1}* — R is computable in time
(space) t if there is a function f : {0,1}* x N — Q that can be computed
by a Turing Machine in time (space) ¢ and such that for all z € {0, 1}*,
reN,|f(z,r)— flz)] <27

K(z), the Kolmogorov complexity of a finite binary sequence z, is the
length of the shortest description of = (the full definition and properties
can be found in the book by Li and Vitanyi [LV97]).

We use the logspace-uniform version of the bounded-depth circuit
complexity class AC, ([Joh90]).

For each f : N — N, SIZE(f) is the set of languages A C {0,1}*
such that for all n € N there is an n-input boolean circuit of at most f(n)
gates that recognizes A N {0, 1}".

We define the frequency of a nonempty string w € {0,1}* to be
the ratio freq(w) = %) where #(b, w) denotes the number of occur-
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rences of the bit b in w. For each a € [0, 1], we define the set

FREQ(«a) = {S eC nll_g)lo freq(S[0.n — 1)) = a}.

The binary Shannon entropy function A : [0, 1] — [0, 1] is defined as

1 1
=zxlog—+ (1 —x)!
M) = alog -+ (1 — ) log —,

with #(0) = H (1) = 0 to ensure continuity at 0 and 1.

3 Lutz Characterization of Hausdor ff Dimension

This section reviews the gale characterization of classical Hausdorff di-
mension, which motivates our development.

Definition 1. [Lut00a] Let s € [0, oc)

1. An s-supergale is a function d : {0,1}* — [0, 00) that satisfies the
condition
d(w) > 27° [d(w0) + d(wl)] (%)

forall w € {0,1}".

2. An s-gale is an s-supergale that satisfies condition (x) with equality
forall w € {0,1}".

3. A supermartingale is a 1-supergale.

4. A martingale is a 1-gale.

Intuitively, an s-supergale is a strategy for betting on the successive
bits of a sequence S € C. For each prefix w of S, d(w) is the capital
(amount of money) that d has after betting on the bits w of S. When
betting on the next bit b of a prefix wb of S (assuming that b is equally
likely to be 0 or 1), condition (x) tells us that the expected value of d(wb)
—the capital that d expects to have after this bet —is (d(w0)+d(w1))/2 <
257 1d(w). If s = 1, this expected value is at most d(w) — the capital
that d has before the bet — so the payoffs are at most “fair.” If s < 1,
this expected value is less than d(w), so the payoffs are “less than fair.”
Similarly, of s > 1, the payoffs can be “more than fair.”

Note: We will use in section 4 the concept of g-martingale, where
G is a real number in [0, 1]. In this case when betting on the next bit
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b of a prefix wb or S we assume that 3 is the probability of b being
1. Specifically, a g-martingale is a function d : {0,1}* — [0,00) that
satisfies the condition

d(w) = (1 = ) d(w0) + Fd(wl)

forall w € {0, 1}*. Note that for 5 = 1/2 we obtain the above definition.
Of course the objective of an s-supergale is to win a lot of money.

Definition 2. [Lut00a] Let d be an s-supergale, where s € [0, o).

1. We say that d succeeds on a sequence S € C if

limsupd(S[0..n — 1]) = oc.

n—0o0

2. The success set of d is

S*ld] = {S €eC ‘ d succeeds on S}.

3. For X C C,G(X) is the set of all s € [0, 00) such that there is an
s-gale d for which X C S*°[d].

4. For X C C,G(X) is the set of all s € [0, 00) such that there is an
s-supergale d for which X C S*[d)].

Note that if s, s’ € [0,00) then for every s-supergale d, the func-
tion d’' : {0,1}* — [0, 00) defined by d'(w) = 26 ~9)I*ld(w) is an s'-
supergale.

It was shown in [LutO0a] that the following definition is equivalent to
the classical definition of Hausdorff dimension in C.

Definition 3. The Hausdorff dimension of aset X C C is
dimy (X) = inf G(X) = inf G(X).

See [Fal85] for a good overview of classical Hausdorff dimension, in-
cluding the original topological definition based on open covers by balls
of diminishing radii [Hau19].

The gale characterization of Hausdorff dimension that we have pre-
sented can be generalized by restricting the class of gales or supergales
that are allowed. We will follow this idea in the rest of the paper.

Eggleston [Egg49] proved the following classical result on the Haus-
dorff dimension of a set of sequences with a fixed asymptotic frequency.
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Theorem 1. [Egg49] For each real number o € [0, 1],
dimg (FREQ(«)) = H(«).

We will reformulate this last result in the contexts of the dimensions
defined in sections 4, 5, and 6.

4 Constructive Dimension

In this section we present the first effective version of of Hausdorff di-
mension that is defined by restricting the class of supergales to those that
are lower semicomputable. We first give the definitions of constructive
dimension of a set and constructive dimension of a sequence, and then
we relate them and give their main properties. We finish the section sum-
marising the main results on constructive dimension. The results in this
section are mainly from [LutOOb] and [Lut02], also including those in
[May02] and [Hit02].

An s-supergale is constructive if it is lower semicomputable. We de-
fine constructive dimension as follows.

Definition 4. [Lut02] Let X C C.

1. Geonsie(X) is the set of all s € [0, 00) such that there is a constructive
s-supergale d for which X C S*[d].
2. The constructive dimension of aset X C C is

cdim(X) = inf Goongtr (X).

3. The constructive dimension of an individual sequence S € C is
dim(S) = edim({S}).

By Lutz characterization of Hausdorff dimension (Definition 3), we
conclude that cdim(X) > dimy(X) for all X C C. But in fact much
more is true for certain classes, as Hitchcock shows in [Hit02]. For sets
that are low in the arithmetical hierarchy, constructive dimension and
Hausdorff dimension coincide.

Theorem 2. [Hit02] If X C Cisaunion of I19 sets, then

dimp(X) = cdim(X).
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We note that Theorem 6 below yields a new proof of Theorem 2 from
Theorem 5 of Staiger [Sta98].

Hitchcock also proves that this is an optimal result for the arithmetical
hierarchy, since it cannot be extended to sets in IT9.

For Hausdorff dimension, all singletons have dimension 0, and in fact
all countable sets have Hausdorff dimension 0. The situation changes dra-
matically when we restrict to constructive supergales, since a singleton
can have positive constructive dimension, and in fact can have any con-
structive dimension.

Theorem 3. [Lut02] For every o € [0, 1], thereisan S € C such that
dim(S) = a.

We note that Theorem 6 below yields a new proof of Theorem 3 from
Lemma 3.4 of Cai Hartmanis [CH94].

The constructive dimension of any set X C C is completely deter-
mined by the dimension of the individual sequences in the set.

Theorem 4. [Lut02] For all X C C,

cdim(X) = sup dim(z).
zeX

There is no analogue of this last theorem for Hausdorff dimension or
for any of the concepts we will define in sections 5 and 6. The key ingre-
dient in the proof of Theorem 4 is the existence of optimal constructive
supergales, that is, constructive supergales that multiplicatively dominate
any other constructive supergale. This is analogous to the existence of
universal tests of randomness in the theory of random sequences.

Theorem 2 together with Theorem 4 implies that the classical Haus-
dorff dimension of every 39 set X C C has the pointwise characteriza-
tion dimp (X') = sup ¢y dim(z).

Theorem 4 immediately implies that constructive dimension has the
countable stability property, which also holds for classical Hausdorff di-
mension.

Corollary 1. [Lut02] For all X, X, X,,--- C C,

cdim (U Xk> = sup cdim(Xp).

o keN
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Let a € [0, 1]. If we define DIM., = {5 eC ‘ dim(S) < a}, then
this is the largest set of constructive dimension «.

Theorem 5. [Lut02] For every o € [0, 1], the set DIM ., hasthe follow-
ing two properties.

1. cdim(DIM<,) = a.
2. Forall X C C,if cdim(X) < a, then X C DIM.,..

We note that Theorem 6 below yields a new proof of Theorem 5 (part
1) from Theorem 2 of Ryabko [Rya84].

The constructive dimension of a sequence can be characterized in
terms of the Kolmogorov complexities of its prefixes.

Theorem 6. ([May02]) For all A € C,

dim(A) o K(A[0un — 1)

n—00 n

This latest theorem justifies the intuition that the constructive dimen-
sion of a sequence is a measure of its algorithmic information density.
The relation of dimension and information content will appear again in a
different context in the next section, where the finite-state dimension of a
sequence (to be defined) is characterized in terms of its compressibility.

We now briefly state the main results proven so far on constructive
dimension, including the existence of A sequences of any AY dimen-
sion, the constructive version of Eggleston theorem, and the constructive
dimension of sequences that are random relative to a non-uniform distri-
bution.

An important result in the theory of random sequences is the exis-
tence of random sequences in AJ. We have the following analogue for
constructive dimension.

Theorem 7. [Lut02] For every Aj-computable real number o € [0, 1]
thereisa AY sequence S such that dim(S) = a.

And this cannot be improved to 9 or TI9 sequences since they all
have constructive dimension 0.
This is the constructive version of the classical Theorem 1 (Eggleston

[Egg49]).
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Theorem 8. [Lut02] If « is AJ-computable real number in [0, 1] then
cdim(FREQ(«)) = H(«).

An anonymous referee has pointed out that an alternative proof of
Theorem 8 can be derived from the newer Theorem 6 and earlier results
of Eggleston [Egg49] and Kolmogorov [ZL70]. In fact, this approach
shows that Theorem 8 holds for arbitrary o € [0, 1].

A sequence is (Martin-Lo6f) random [ML66] if it passes every algo-
rithmically implementable test of randomness. This can be reformulated
in terms of martingales as follows

Definition 5. [Sch71] A sequence A € C is (Martin-Lof) random if
there is no constructive supermartingale d such that A € S*°[d].

By this definition, random sequences have constructive dimension 1.
For nonuniform distributions we have the concept of 3-randomness, for
(3 any real number in (0, 1) representing the bias.

Definition 6. [Sch71] Let 5 € (0,1). A sequence A € C is (Martin-L&f)
random relative to (3 if there is no constructive -martingale d such that
A € S%[d].

Lutz relates randomness relative to a non-uniform distribution with
Shannon information theory.

Theorem 9. [Lut02] Let 5 € (0,1) be a computable real number. Let
A € C berandomrelativeto 5. Then dim(A) = H(3).

A more general result for randomness relative to sequences of coin-
tosses is obtained in [Lut02].

Very recently Lutz [Lut02] has introduced the concept of dimension
of finite binary strings, with very interesting connections with construc-
tive dimension. We cannot cover this topic here due to lack of space.

5 Finite-State Dimension

Our second effectivization of Hausdorff dimension will be the most re-
strictive of those presented here, we will go all the way to the level of
finite-state computation. In this section we use gales computed by multi-
account finite-state gamblers to develop the finite-state dimensions of
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sets of binary sequences and individual binary sequences. The theorem
of Eggleston is shown to hold for finite-state dimension. Every rational
number in [0, 1] is the finite-state dimension of a sequence in the low-
level complexity class AC,. The main theorem of this section shows that
the finite-state dimension of a sequence is precisely the infimum of all
compression ratios achievable on the sequence by information-lossless
finite-state compressors.

All the results in this section are from [DLLMO1].

We start by introducing the concept of finite-state gambler that is
used to develop finite-state dimension. Intuitively, a finite-state gambler
is a finite-state device that places % separate binary bets on each of the
successive bits of its input sequence. These bets correspond to & separate
accounts into which the gambler’s capital is divided. Bets are required to
be rational numbers in B = Qn [0, 1].

Definition 7. If k is a positive integer, then a k-account finite-state gam-
bler (k-account FSG) is a 5-tuple

G = (Q.6,5,q0,%)

where

— (@ is a nonempty, finite set of states,

—0:Q x{0,1} — Q is the transition function,

— 3 :Q — B is the betting function,

— qo € Q is the initial state, and

— ¢ = (co1,---,cox), the initial capital vector, is a sequence of non-
negative rational numbers.

A finite state gambler (FSG) is a k-account FSG for some positive integer
k.

The case £ = 1, where there is only one account, is the model of
finite-state gambling that has been considered (in essentially equivalent
form) by Schnorr and Stimm [SS72], Feder [Fed91], and others.

Intuitively, if a k-account FSG G = (Q, 6, 5, qo, @) is in state ¢ € Q
and its current capital vector is & = (cy,...,c,) € (QN[0,00))*, then
for each of its accounts i € {1,...,k}, it places the bet 3;(¢) € B. If
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the payoffs are fair, then after this bet G will be in state §(q, b) and its *
account will have capital

26 (1= B)(1 ~ ia)) + bBila)] = {2(1 e o

This suggests the following definition.

Definition 8. Let G = (Q, 9, 3, qo, ¢y) be a k-account finite-state gam-
bler.

1. Foreach 1 < i < k, the i** martingale of G is the function
dG,i : {07 1}* — [07 OO)
defined by the recursion

dG,i()\) = Co,i»
da,i(wb) = 2dg;(w)[(1 = b)(1 = Bi(0(w))) + b5i(6(w))]

forall w € {0,1}* and b € {0,1}.
2. The total martingale (or simply the martingale) of G is the function

k
dG - Z dgyi.
=1
3. For s € [0, 00), the s-gale of an FSG G is the function
d) : {0,1}* — [0, 00)

defined by
dS) (w) = 26Dl (w)

for all w € {0,1}*. In particular, note that d(Gl) = dg.
4. For s € [0,00), a finite-state s-gale is an s-gale d for which there

exists an FSG G such that dg’) = d.
We now use finite-state gales to define finite-state dimension.

Definition 9. Let X C C.



12 Elvira Mayordomo

1. Grs(X) is the set of all s € [0,00) such that there is a finite-state
s-gale d for which X C S*[d].
2. The finite-state dimension of set X is

3. The finite-state dimension of a sequence S € C is

In general, dimps(X) is a real number satisfying 0 < dimy(X) <
dimpg(X) < 1. Like Hausdorff dimension, finite-state dimension has the
stability property.

Theorem 10. For all X,Y C C,
dimpg(X UY) = max {dimps(X), dimps(Y)} .

Let us briefly digress on the role of multiple accounts in the FSG
model. The proof of Theorem 10 is based on the fact that if d; and d, are
finite-state s-gales then d; + d, is a finite-state s-gale, that is, finite-state
gales are closed under nonnegative, rational, linear combinations. But
multiple accounts are required for this closure property to hold, since
there exist 1-account finite-state s-gales d; and d, such that d; + d, is not
a 1-account finite-state s-gale.

Notwithstanding the usefulness of the above closure property, the
question remains whether multiple accounts are strictly necessary for a
theory of finite-state dimension. The next result shows that multiple ac-
counts are not strictly necessary if we are willing to accept a large blowup
in the number of states.

Theorem 11. For each n-state, k-account FSG G and each e € (0,1)
thereisann - k< -state, 1-account FSG G' such that for all s € [0, 1],

S*[d) € S*°[dyt).

The theorem of Eggleston [Egg49] (Theorem 1) holds for finite-state
dimension.

Theorem 12. For all « € Q N[0, 1],
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The following theorem says that every rational number » € [0, 1] is
the finite-state dimension of a reasonably simple sequence.

Theorem 13. For every r € Q N [0, 1] there exists S € AC, such that
dlmps(S) =Tr.

The main result in this section is that we can characterize the finite-
state dimensions of individual sequences in terms of finite-state com-
pressibility. We first recall the definition of an information-lossless finite-
state compressor. (This idea is due to Huffman [Huf59]. Further exposi-
tion may be found in [Koh78] or [Kur74].)

Definition 10. A finite-state compressor (FSC) is a 4-tuple

C= (Qa(sa Vaq())a
where

— (Q is a nonempty, finite set of states,

—0:Q x{0,1} — Q is the transition function,

- v:Q x{0,1} — {0,1}* is the output function, and
— qo € Q is the initial state.

For ¢ € @ and w € {0, 1}*, we define the output from state ¢ on input w
to be the string v/(¢, w) defined by the recursion

(g, A) = A
V(Qa Wb) = V(Q7 w)y(é(qv ’LU), b)

forall w € {0,1}* and b € {0,1}. We then define the output of C' on
input w € {0, 1}* to be the string

C(w) = v(qo, w).

Definition 11. An FSC C = (Q, 6, v, qo) is information-lossless (IL) if
the function

{0,1}* - {0,1}* x Q
w = (C(w),d(w))

Is one-to-one. An information-lossless finite-state compressor (ILFSC) is
an FSC that is IL.
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That is, an ILFSC is an FSC whose input can be reconstructed from
the output and final state reached on that input.

Intuitively, an FSC C' compresses a string w if |C'(w)] is significantly
less than |w|. Of course, if C'is IL, then not all strings can be compressed.
Our interest here is in the degree (if any) to which the prefixes of a given
sequence S € C can be compressed by an ILFSC.

Definition 12. 1. If C'isan FSC and S € C, then the compression ratio
of ConS'is

pc(S) = liminf C(510.n = 1])|

n—00 n

2. The finite-state compression ratio of a sequence S € C is
prs(S) = inf {pc(S)|C isan ILFSC} .

The following theorem says that finite-state dimension and finite-
state compressibility are one and the same for individual sequences.

Theorem 14. For all S € C,

Theorem 14 is a new instance of the relation of dimension and infor-
mation.

Finite-state dimension is a real-time effectivization of a powerful tool
of fractal geometry. As such it should prove to be a useful tool for im-
proving our understanding of real-time information processing.

6 Dimension in Complexity Classes

We now use resource-bounded gales to develop dimension in complexity
classes.

Let p be the class of polynomial time computable functions from
{0,1}* to R. Let pspace be the class of polynomial space computable
functions from {0, 1}* to R. Using these two classes we define p-dimen-
sion and pspace-dimension in the natural way.

Definition 13. [Lut00a] Let A be p or pspace. Let X C C.
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1. Ga(X) isthe set of all s € [0, c0) such that there is an s-gale d € A
for which X C S*[d].
2. The A-dimension of aset X C C isdima(X) = inf Ga(X).

Let E = DTIME(2'i"a") be the class of languages that can be recog-
nized in linear exponential time. Let ESPACE = DSPACE(2!in¢ar) be
that class of languages that can be recognized in linear exponential space.

The following result implies that p and pspace are the right dimension
bounds for the classes E and ESPACE, respectively.

Theorem 15. [Lut00a]

1. dim,(E) = 1.
2. dimygpace(ESPACE) = 1.

Therefore we can define dimension in the classes E and ESPACE as
follows.

Definition 14. [Lut00a] For each X C C,

1. dim(X|E) = dim, (X N E).
2. dim(X|ESPACE) = dimyspace(X N ESPACE).

These definitions endow the classes E and ESPACE with internal di-
mension structure. Several interesting results have already been proven
([LutOOa], [Hit01], [ASMRSO01]), indicating that dimension can give a
new insight to open questions in Computational Complexity, in particular
since many sets of interest in Computational Complexity have “fractal-
like” structures.

We mention two of these results.

Theorem 16. [LutO0a] For all a € Q,
dim(FREQ(«) | E) = dim,(FREQ(a)) = H(«).

Theorem 16 is proven in [Lut00a] for « a “p-computable” real num-
ber. Notice that we have proven Eggleston theorem in each of our formu-
lations (for appropriate restrictions of «). This indicates that, no matter
how we limit our power to compute dimension, a bounded asymptotic
frequency of the elements implies a restriction on the dimension of the
set.

We finish with a result on nonuniform classes that generalizes the
known fact ([Lut92]) that SIZE(%-) has measure 0 in ESPACE.
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Theorem 17. [LutOOa] For every real a € [0, 1],

dim <SIZE (a2—> ‘ ESPACE) _
n
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