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1 Introduction

Hausdorff dimension assigns a dimension value to each subset of an arbitrary
metric space. In Euclidean space, this concept coincides with our intuition that
smooth curves have dimension 1 and smooth surfaces have dimension 2, but
from its introduction in 1918 [23] Hausdorff noted that many sets have non-
integer dimension, what he called “fractional dimension”. The development
and applications of Fractal Geometry quickly outgrew the field of Geometry
and spread through many other areas [19, 56, 15, 16, 17, 13, 12, 49]. In the
1980s Tricot [73] and Sullivan [71] independently developed a dual of Hausdorff
dimension called packing dimension that is now widely used.

In this paper we will focus on the use of fractal dimensions in the Cantor
space of infinite sequences over a finite alphabet. The results obtained since
the 1990’s, and in particular the effectivizations of dimension that we will re-
view in this paper, have introduced the powerful tools of fractal geometry into
Computational Complexity and Information Theory.

In 2000 Lutz [45] proved a new characterization of Hausdorff dimension for
the case of Cantor space that was based on gales. This characterization was the
beginning of a whole range of effective versions of dimensions naturally based
on bounding the computing power of the gale. Gales are a generalization of
martingales which are strategies for betting on the successive bits of infinite
binary sequences with fair payoffs. Martingales were introduced by Ville [74] in
1939 (also implicit in [38, 39]) and used by Schnorr [61, 62, 63, 64] in his work
on randomness. In the 1990s, Ryabko [59, 60] and Staiger [69] proved several
connections of Hausdorff dimension and martingales, that included relating the
Hausdorff dimension of a set X of binary sequences to the growth rates achiev-
able by computable martingales betting on the sequences in X (see section 4
for more details).

The introduction of resource-bounded dimension by Lutz [45] had the imme-
diate motivation of overcoming the limitations of resource-bounded measure, a
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generalization of classical Lebesgue measure, in the quantitative analysis of com-
plexity classes [43]. The resulting concepts of effective dimension have turned
out to be robust, since they have been shown to admit several equivalent def-
initions that relate them to well-studied concepts in computation, and they
have proven very fruitful in investigating not only the structure of complex-
ity classes but also in the modeling and analysis of sequence information and
more recently, back in fractal geometry. See [30] for an updated bibliography
on effective dimension.

There is a recent survey on the applications of effective dimension to the
study of complexity classes by Hitchcock et al. [28]. The purpose of this paper
will be centered in the Information Theory connections. In fact, as it could
be suspected from earlier results by Ryabko [57, 58], Staiger [68, 69], and Cai
and Hartmanis [3], effective dimensions have very clear interpretations in terms
of information content or compressibility of a sequence. Considering different
bounds on computing power that range from finite memory to constructibility,
including time-bounded and space-bounded computations, effective dimensions
capture what can be considered the inherent information content of a sequence
in the corresponding setting. We will present in this paper all known character-
izations of effective dimension that support this thesis.

We start by developing very general definitions of dimension, including an
extension of scaled dimension to a general metric space. Scaled dimension allows
a rescaling of dimension that can give more meaningful results for dimension 0
sets, for instance. It was introduced in [27] for the particular case of Cantor
space with the usual metric, based on the uniform probability distribution. We
think this more general definition will allow further insight into the interest of
scaled dimension with different metrics.

Next we review the different notions of effective dimension, starting with
finite-state dimension in which computation is restricted to finite-state devices.
In this setting compression has been widely studied as a precursor of the Lempel-
Ziv algorithm [37]. Dai et al. [6] proved that finite-state dimension can be
characterized in terms of information-lossless finite-state compressors, and Doty
and Moser [10] remarked that a Kolmogorov-complexity like characterization is
also possible from earlier results by Sheinwald, Lempel, and Ziv [67].

In section 4 we will develop constructive dimension that corresponds to the
use of lower semicomputable strategies, and that has good properties inherited
from the existence of a universal constructible semimeasure. Lutz introduced
this notion in [46]. Athreya et al. [1] introduced the dual constructive strong
dimension. We present a characterization of both notions of constructive di-
mension in terms of Kolmogorov complexity, present a correspondence prin-
ciple stating that constructive dimension coincides with Hausdorff dimension
for sufficiently simple sets, and summarize the main results. The open ques-
tion of whether positive dimension sequences can substitute Martin-Löf random
sequences as the randomness source of a computation has received recent atten-
tion from different areas. We present the main known results here and refer the
reader to [11] and [51] for more information (these two references use the term
“effective dimension” for Lutz’s constructive dimension).
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Our last section concerns resource-bounds on time and space. Polynomial-
space bounded dimension has been well studied in terms of information content
[25], but polynomial-time dimension seems harder to grasp. We know very little
about time-bounded Kolmogorov complexity, but a compressibility characteriza-
tion of polynomial-time dimension has been obtained in [41] via polynomial-time
compression algorithms. We should consider polynomial-time dimension as an
interesting alternative to time-bounded Kolmogorov Complexity expecting that
we can import robustness properties from fractal dimension.

There are many related topics we chose not to cover in this paper, mainly
due to lack of space for a proper development. Let us mention very interesting
recent results on effective dimension on Euclidean space ([21], [47]) that would
require a paper on its own.

2 Fractal dimensions and gale characterizations

In this section we first review the classical Hausdorff and packing dimensions
and then we introduce scaled dimension for a general metric space. We present
the characterizations of these notions in terms of gales for the case of Cantor
space. This characterization is crucial in the definition of effective dimensions
that we will introduce in the rest of the paper.

2.1 Hausdorff and packing dimensions

Let ρ be a metric on a set X . We use the following standard terminology. The
diameter of a set X ⊆ X is diam(X) = sup {ρ(x, y) | x, y ∈ X } (which may be
∞). For each x ∈ X and r ∈ R, the closed ball of radius r about x is the set
B(x, r) = {y ∈ X | ρ(y, x) ≤ r}, and the open ball of radius r about x is the
set Bo(x, r) = {y ∈ X | ρ(y, x) < r}. A ball is any set of the form B(x, r) or
Bo(x, r). A ball B is centered in a set X ⊆ X if B = B(x, r) or B = Bo(x, r)
for some x ∈ X and r ≥ 0.

For each δ > 0, we let Cδ be the set of all countable collections B of balls
such that diam(B) ≤ δ for all B ∈ B, and we let Dδ be the set of all B ∈ Cδ
such that the balls in B are pairwise disjoint. For each X ⊆ X and δ > 0, we
define the sets

Hδ(X) =

{
B ∈ Cδ

∣∣∣∣∣ X ⊆ ⋃
B∈B

B

}
,

Pδ(X) = {B ∈ Dδ | (∀B ∈ B)B is centered in X } .

If B ∈ Hδ(X), then we call B a δ-cover of X. If B ∈ Pδ(X), then we call B a
δ-packing of X. For X ⊆ X , δ > 0 and s ≥ 0, we define the quantities

Hs
δ (X) = inf

B∈Hδ(X)

∑
B∈B

diam(B)s,

P sδ (X) = sup
B∈Pδ(X)

∑
B∈B

diam(B)s.
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Since Hs
δ (X) and P sδ (X) are monotone as δ → 0, the limits

Hs(X) = lim
δ→0

Hs
δ (X),

P s0 (X) = lim
δ→0

P sδ (X)

exist, though they may be infinite. Let

P s(X) = inf

{ ∞∑
i=0

P s0 (Xi)

∣∣∣∣∣ X ⊆
∞⋃
i=0

Xi

}
. (2.1)

It is routine to verify that the set functions Hs and P s are outer measures
[16]. The quantities Hs(X) and P s(X) – which may be infinite – are called
the s-dimensional Hausdorff (outer) ball measure and the s-dimensional pack-
ing (outer) ball measure of X, respectively. The optimization (2.1) over all
countable partitions of X is needed because the set function P s0 is not an outer
measure.
Definition. Let ρ be a metric on a set X , and let X ⊆ X .

1. (Hausdorff [23]). The Hausdorff dimension of X with respect to ρ is

dim(ρ)(X) = inf {s ∈ [0,∞) | Hs(X) = 0} .

2. (Tricot [73], Sullivan [71]). The packing dimension of X with respect to ρ
is

Dim(ρ)(X) = inf {s ∈ [0,∞) | P s(X) = 0} .

When X is a Euclidean space Rn and ρ is the usual Euclidean metric on
Rn, dim(ρ) and Dim(ρ) are the ordinary Hausdorff and packing dimensions, also
denoted by dimH and dimP , respectively.

2.2 Scaled dimensions

This subsection introduces the notion of scaled dimension for a general metric
space. Our treatment is based on [27], that presents only the case of Cantor
space and uses directly gales in the definition.

The notions of Hausdorff and packing dimensions introduced above depend
on the expression “diam(B)s” that is used both in s-Haussdorff and s-packing
measures (see definitions of Hs

δ (X) and P sδ (X) above). Here we consider alter-
native functions on s and the diameter.
Definition. A scale is a function h(x, s), h : [0,∞) × [0,∞) → [0,∞), with
the following two properties:

1. For every s ∈ [0,∞), h( , s) is nondecreasing.

2. For every s, ε ∈ [0,∞), limx→0
h(x,s+ε)
h(x,s) = 0.
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From each scale h we define scaled Hausdorff and packing measures gener-
alizing the definitions in subsection 2.1.

For X ⊆ X , δ > 0 and s ≥ 0, we define the quantities

SHh,s
δ (X) = inf

B∈Hδ(X)

∑
B∈B

h(diam(B), s),

SPh,sδ (X) = sup
B∈Pδ(X)

∑
B∈B

h(diam(B), s).

Since SHs
δ(X) and SP sδ (X) are monotone as δ → 0, the limits

SHh,s(X) = lim
δ→0

SHh,s
δ (X),

SPh,s0 (X) = lim
δ→0

SPh,sδ (X)

exist, though they may be infinite. Let

SPh,s(X) = inf

{ ∞∑
i=0

SPh,s0 (Xi)

∣∣∣∣∣ X ⊆
∞⋃
i=0

Xi

}
. (2.2)

In this case it is also routine to verify that the set functions SHh,s and SPh,s

are outer measures. The optimization (2.2) over all countable partitions of X
is needed because the set function SPh,s0 is not an outer measure.

Rogers introduced in [56] the generalized notion of Hausdorff measure using a
function f(diam(B)) in the place of diam(B)s in the definition of Hausdorff mea-
sure. More recently Roger’s approach was revisited by Reimann and Stephan
[55] in the context of algorithmic randomness. In those references the authors
didn’t consider dependence on a second parameter s or a dimension concept in
this context.

Our first property is that for each X ⊆ X there is at most one s for which
0 < SHh,s(X) <∞.

Proposition 2.1 Let X ⊆ X , let h be a scale, and s ∈ [0,∞).

1. If 0 < SHh,s(X) <∞ then for every ε > 0, SHh,s+ε(X) = 0.

2. If 0 < SPh,s(X) <∞ then for every ε > 0, SPh,s+ε(X) = 0.

Proof. The property follows from the fact that limx→0
h(x,s+ε)
h(x,s) = 0, in the

definition of scale. 2

Definition. Let ρ be a metric on a set X , let X ⊆ X , and let h be a scale.

1. The h-scaled dimension of X with respect to ρ is

dim(h),(ρ)(X) = inf
{
s ∈ [0,∞)

∣∣ SHh,s(X) = 0
}
.

2. The h-scaled packing dimension of X with respect to ρ is

Dim(h),(ρ)(X) = inf
{
s ∈ [0,∞)

∣∣ SPh,s(X) = 0
}
.
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The basic properties of scaled-dimensions are monotonicity and countable
stability, that also hold for Hausdorff and packing dimension [16].

Proposition 2.2 Let h be a scale.

1. For every x ∈ X , Dim(h),(ρ)({x}) = dim(h),(ρ)({x}) = 0.

2. For every X ⊆ X , 0 ≤ dim(h),(ρ)(X) ≤ Dim(h),(ρ)(X).

3. Let Xi ⊆ X for each i ∈ N,

dim(h),(ρ)(∪iXi) = sup
i

dim(h),(ρ)(Xi), and

Dim(h),(ρ)(∪iXi) = sup
i

Dim(h),(ρ)(Xi).

4. For every X,Y ⊆ X with X ⊆ Y ,

dim(h),(ρ)(X) ≤ dim(h),(ρ)(Y ).

and
Dim(h),(ρ)(X) ≤ Dim(h),(ρ)(Y ).

In particular, every countable set has zero scaled-dimension for any scale.
Notice that for h0(x, s) = xs, dim(h0),(ρ)(X) = dim(ρ)(X) and Dim(h0),(ρ)(X) =

Dim(ρ)(X).
We can compare the scaled dimensions for different scales.

Proposition 2.3 Let h, h′ be scales such that h(x, s) ≤ h′(x, s) for every s and
for every x ∈ [0, ε), where ε > 0 may depend on s. Then for every X ⊆ X ,

dim(h),(ρ)(X) ≤ dim(h′),(ρ)(X)

and
Dim(h),(ρ)(X) ≤ Dim(h′),(ρ)(X).

Proof. The property follows from the definition of scaled Hausdorff and packing
measures. 2

The next property concerns the scaled dimension of the whole space.

Proposition 2.4 Let X be a metric space such that 0 < Hdim(X )(X ) <∞. Let
h be a scale, let s ∈ [0,∞).
If h(x, s) = Ω(xdim(X )) then dim(h)(X ) ≥ s.
If h(x, s) = O(xdim(X )) then dim(h)(X ) ≤ s.

Lutz et al. consider in [27] the following scales, that are useful for dimension
values up to 1.
Definition. For every x ∈ [0,∞), s ∈ [0,∞) we define

1. h0(x, s) = xs.
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2. For each i ≥ 0,

hi+1(x, s) = 2
− 1

hi(−1/ log(x),s) if x ≤ 1/2, s < 1
hi+1(x, s) = 2−1/hi(1,s) if x > 1/2, s < 1
hi+1(x, s) = xs if s ≥ 1

3. For each i > 0,

h−i(x, s) =
{
x/hi(x, 1− s) if s < 1
xs if s ≥ 1

For s < 1, the above defined scales are below the inverse of the logarithm,
and for every k, hk is asymptotically below hk+1. This provides a fine family
of scales that for instance can be used to distinguish different circuit size rates
[27].

Proposition 2.5 For every k ∈ Z, the above defined hk is a scale.

Notation. For each k ∈ Z, we denote dim(hk),(ρ)(X) as dim(k),(ρ)(X) and
Dim(hk),(ρ)(X) as Dim(k),(ρ)(X).

The relationship between scales hk is the following.

Proposition 2.6 Let k ∈ Z. Then for every X ⊆ X ,

dim(k),(ρ)(X) ≤ dim(k+1),(ρ)(X)

and
Dim(k),(ρ)(X) ≤ Dim(k+1),(ρ)(X).

2.3 Gale characterizations

We now focus our attention on sequence spaces. Let Σ be a finite alphabet with
|Σ| ≥ 2. We will consider the following metric on Σ∞

ρ(S, T ) = inf
{
|Σ|−|w| | w v S and w v T

}
for all S, T ∈ Σ∞.

We fix the above ρ and denote dim(ρ)(X) and Dim(ρ)(X) as dim(X) and
Dim(X), for X ⊆ Σ∞. Similarly for scaled dimension we use dim(h)(X) and
Dim(h)(X) for dim(h),(ρ)(X), Dim(h),(ρ)(X). Recently Lutz and Mayordomo
have considered alternative metrics on Σ∞ with interesting applications to di-
mension in Euclidean space [47].

Lutz [45] characterized Hausdorff dimension in terms of gales, presented
next.
Definition. [45] Let Σ be a finite alphabet with |Σ| ≥ 2 and let s ∈ [0,∞).
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1. An s-gale is a function d : Σ∗ → [0,∞) that satisfies the condition

d(w) = |Σ|−s
∑
a∈Σ

d(wa) (2.3)

for all w ∈ Σ∗.

2. A martingale is a 1-gale.

In fact Lutz [45] considered also supergales, that are functions for which
equality (2.3) is substituted by the inequality

d(w) ≥ |Σ|−s
∑
a∈Σ

d(wa).

Supergales give additional flexibility and in most interesting cases can be sub-
stituted by gales in the definitions and characterizations of different dimensions
and effective dimensions. For the sake of readability we will restrict to gales in
this paper.

The following observation shows how gales are affected by variation of the
parameter s.

Observation 2.7 [46]. Let s, s′ ∈ [0,∞) and let d, d′ : Σ∗ → [0,∞). Assume
that

d(w)|Σ|−s|w| = d′(w)|Σ|−s
′|w|

holds for all w ∈ Σ∗. Then d is an s-gale if and only if d′ is an s′-gale.

For example, a function d : Σ∗ → [0,∞) is an s-gale if and only if the
function d′ : Σ∗ → [0,∞) defined by d′(w) = |Σ|1−s|w|d(w) is a martingale.

Martingales were introduced by Lévy [39] and Ville [74]. They have been
used extensively by Schnorr [62, 63, 65] and others in investigations of ran-
domness, by Lutz [42, 44] and others in the development of resource-bounded
measure, and by Ryabko [60] and Staiger [69] regarding exponents of increase.
Gales are a convenient generalization of martingales introduced by Lutz [45, 46]
in the development of effective fractal dimensions.

Intuitively, an s-gale d is a strategy for betting on the successive symbols in
a sequence S ∈ Σ∞. We regard the value d(w) as the amount of money that a
gambler using the strategy d will have after betting on the symbols in w, is w
is a prefix of S. If s = 1, then the s-gale identity (2.3) ensures that the payoffs
are fair in the sense that the conditional expected value of the gambler’s capital
after the symbol following w, given that w has occurred, is precisely d(w), the
gambler’s capital after w. If s < 1, then (2.3) says that the payoffs are less than
fair. If s > 1, then (2.3) says that the payoffs are more than fair. Clearly, the
smaller s is, the more hostile the betting environment is.

There are two important notions of success for a gale.
Definition. Let d be an s-gale, where s ∈ [0,∞), and let S ∈ Σ∞.

1. We say that d succeeds on S, and we write S ∈ S∞[d], if
lim supt→∞ d(S[0..t− 1]) =∞.
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2. We say that d succeeds strongly on S, and we write S ∈ S∞str[d], if
lim inft→∞ d(S[0..t− 1]) =∞.

The following theorem gives useful characterizations of the classical Haus-
dorff and packing dimensions on sequence spaces. The Hausdorff dimension part
was proven by Lutz [45] and the packing dimension part was proven by Athreya
et al. in [1].

Theorem 2.8 ([45] and [1]) For all X ⊆ Σ∞,

dim(X) = inf {s ∈ [0,∞) | there is an s-gale d with X ⊆ S∞[d]} ,

and

Dim(X) = inf {s ∈ [0,∞) | there is an s-gale d with X ⊆ S∞str[d]} .

The effectivization of both Hausdorff and packing (or strong) dimension will
be based on Theorem 2.8. By restricting the set of gales that are allowed to dif-
ferent classes of computable gales, we will obtain effective versions of dimension
that will be meaningful in different subclasses of Σ∞. This will be developed in
the following sections.

Eggleston [14] proved the following classical result on the Hausdorff dimen-
sion of a set of sequences with a fixed asymptotic frequency.

The frequency of a nonempty binary string w ∈ {0, 1}∗ is the ratio freq(w) =
#(1,w)
|w| , where #(b, w) denotes the number of occurrences of the bit b in w. For

each α ∈ [0, 1], we define the set

FREQ(α) =
{
S ∈ {0, 1}∞

∣∣∣ lim
n→∞

freq(S [0..n− 1]) = α
}
.

The binary Shannon entropy function H : [0, 1] → [0, 1] is defined as H(x) =
x log 1

x + (1− x) log 1
1−x , with H(0) = H(1) = 0.

Theorem 2.9 [14] For each real number α ∈ [0, 1],

dimH(FREQ(α)) = H(α).

We will reformulate this last result in the contexts of the dimensions defined
in sections 3, 4, and 5.

We finish this section with the fact that scaled-dimension in Σ∞ admits a
similar characterization.

The notion of scaled-gales is introduced in [27].
Definition. Let Σ be a finite alphabet with |Σ| ≥ 2, let h be a scale and let
s ∈ [0,∞). An h-scaled s-gale (briefly, an s(h)-gale) is a function d : Σ∗ → [0,∞)
that satisfies the condition

h(|Σ|−|w|, s) d(w) = h(|Σ|−(|w|+1), s)
∑
a∈Σ

d(wa)

for all w ∈ Σ∗.
Notice that our definition of gale (Definition 2.3) corresponds to the scale

h0(x, s) = xs, so an s(h0)-gale is just an s-gale.
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Observation 2.10 Let h, h′ be scales, let s, s′ ∈ [0,∞) and let d : Σ∗ → [0,∞).
d is an s(h)-gale if and only if

d′(w) =
h(|Σ|−|w|, s)
h′(|Σ|−|w|, s′)

d(w)

is an s′(h
′)-gale.

Success and strong success are defined as follows.
Definition. Let d be an s(h)-gale, where h is a scale, s ∈ [0,∞), and let
S ∈ Σ∞. We say that d succeeds on S, and we write S ∈ S∞[d], if
lim supt→∞ d(S[0..t − 1]) = ∞. We say that d succeeds strongly on S, and we
write S ∈ S∞str[d], if
lim inft→∞ d(S[0..t− 1]) =∞.

Lutz et al. defined scaled-dimension in Cantor space directly using gales in
[27]. Here we introduced a more general concept of scaled-dimension for any
metric space and now characterize the Cantor space case.

Theorem 2.11 For all X ⊆ Σ∞,

dim(h)(X) = inf
{
s ∈ [0,∞)

∣∣∣ there is an s(h)-gale d with X ⊆ S∞[d]
}
,

and

Dim(h)(X) = inf
{
s ∈ [0,∞)

∣∣∣ there is an s(h)-gale d with X ⊆ S∞str[d]
}
.

For space reasons, we prefer not to include a full proof of Theorem 2.11
here. The proof can be done by nontrivially adapting the proofs of both parts
of Theorem 2.8 that can be found in [45] and [1], respectively.

Our last property identifies the scales for which Cantor space has dimension
1.

Proposition 2.12 Let h be a scale such that h(x, s) = Ω(x) for every s < 1
and h(x, s) = O(x) for every s > 1. Then

dim(h)(Σ∞) = Dim(h)(Σ∞) = 1.

For every k ∈ Z,
dim(k)(Σ∞) = Dim(k)(Σ∞) = 1.

Proof. The property follows from Proposition 2.4. 2

2.4 Effective dimensions

We are mainly interested in subsets of sequences that have some computability
or partial computability property, which implies that we will deal with countable
sets. Since a countable set of sequences has dimension 0, the classical definitions
of (scaled)-Hausdorff and packing dimensions are not useful in this context.
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The gale characterizations in Theorems 2.11 and 2.8 provide a natural way to
generalize them as follows.
Definition. Let Γ be a class of functions. Let X ⊆ Σ∞, the Γ-dimension of
X is

dimΓ(X) = inf {s ∈ [0,∞) | there is an s-gale d ∈ Γ with X ⊆ S∞[d]} ,

and the Γ-strong dimension of X is

DimΓ(X) = inf {s ∈ [0,∞) | there is an s-gale d ∈ Γ with X ⊆ S∞str[d]} .

In the rest of the paper we will use different classes Γ, ranging from con-
structive to finite state computable functions, and investigate the properties of
the corresponding Γ-dimensions inside different sequence sets. The existence of
correspondence principles, introduced later on, will also imply that the effec-
tive dimension coincides with the classical Hausdorff dimension on sufficiently
simple sets.

For scaled-dimensions it is convenient that the scale itself is “computable”
inside Γ in order to obtain meaningful results. Given a scale h, we will say
that h is Γ-computable if the function dh : N × [0,∞) → [0,∞), dh(k, s) =
h(|Σ|−k−1, s)/h(|Σ|−k, s) is in Γ. The definitions of dim(h)

Γ and Dim(h)
Γ are

similar to those of Γ-dimensions, but use s(h)-gales in Γ.

3 Finite-State Dimension

Our first effectivization of Hausdorff dimension will be the most restrictive of
those presented here, we will go all the way to the level of finite-state computa-
tion. In this section we use gales computed by finite-state gamblers to develop
the finite-state dimensions of sets of infinite sequences and individual infinite
sequences. Finite-state dimension was introduced by Dai et al. in [6] and its
dual, strong finite-state dimension, is from [1]. The definition has proven to
be robust because it has been shown to admit equivalent definitions in terms
of information-lossless finite-state compressors [6, 1], finite-state decompression
[10], finite-state predictors in the log-loss model [26, 1], and block-entropy rates
[2]. In each case, the definitions of dimFS(S) and DimFS(S) are exactly dual,
differing only that a limit inferior appears in one definition where a limit su-
perior appears in the other. These two finite-state dimensions are thus, like
their counterparts in fractal geometry, robust quantities and not artifacts of a
particular definition. In addition, the sequences S satisfying dimFS(S) = 1 are
precisely the normal sequences ([2], also follows from [66]).

In this section we present finite-state dimension and its characterizations
and summarize the main results on Eggleston theorem, existence of low com-
plexity sequences of any dimension, invariance of finite-state dimension under
arithmetic operations with rational numbers, and base dependence of the di-
mensions.
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We start by introducing the concept of finite-state gambler that is used to
develop finite-state dimension. Intuitively, a finite-state gambler is a finite-state
device that places a bet on each of the successive symbols of its input sequence.
Bets are required to be rational numbers in B = Q ∩ [0, 1].
Definition. A finite-state gambler (FSG) is a 4-tuple G = (Q, δ, β, q0), where

• Q is a nonempty, finite set of states,

• δ : Q× Σ→ Q is the transition function,

• β : Q× Σ → B is the betting function, with
∑
a∈Σ β(q, a) = 1 for every

q ∈ Q, and

• q0 ∈ Q is the initial state.

Dai et al. [6], consider an equivalent model, the k-account finite-state gam-
bler, in which the capital is divided into k separate accounts for a fixed k. This
model allows simpler descriptions and a smaller number of states in the gambler
definitions.

Our model of finite-state gambling that has been considered (in essentially
equivalent form) by Schnorr and Stimm [66], Feder [18], and others.

Intuitively, if a FSG G = (Q, δ, β, q0) is in state q ∈ Q and its current capital
is c ∈ (Q ∩ [0,∞)), then it places the bet β(q, a) ∈ B on each possible value of
the next symbol. If the payoffs are fair, then after this bet G will be in state
δ(q, a) and it will have capital |Σ| c β(q, a).

This suggests the following definition.
Definition. [6] Let G = (Q, δ, β, q0) be a finite-state gambler.

1. The martingale of G is the function dG : Σ∗ → [0,∞) defined by the
recursion

dG(λ) = 1,
dG(wa) = |Σ| dG,i(w)β(q, a)

for all w ∈ Σ∗ and a ∈ Σ.

2. For s ∈ [0,∞), the s-gale of an FSG G is the function d
(s)
G : Σ∗ → [0,∞)

defined by d
(s)
G (w) = |Σ|(s−1)|w|dG(w) for all w ∈ Σ∗. In particular, note

that d(1)
G = dG.

3. For s ∈ [0,∞), a finite-state s-gale is an s-gale d for which there exists an
FSG G such that d(s)

G = d.

We now use finite-state gales to define finite-state dimension.
Definition. [6, 1] Let X ⊆ Σ∞.

1. The finite-state dimension of set X is

dimFS(X) = inf {s ∈ [0,∞) | there is a finite-state s-gale d with X ⊆ S∞[d]}
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2. The strong finite-state dimension of set X is

DimFS(X) = inf {s ∈ [0,∞) | there is a finite-state s-gale d with X ⊆ S∞str[d]}

3. The finite-state dimension and strong finite-state dimension of a sequence
S ∈ Σ∞ are dimFS(S) = dimFS({S}) and DimFS(S) = DimFS({S})

In general, dimFS(X) and DimFS(X) are real numbers satisfying 0 ≤ dimH(X)
≤ dimFS(X) ≤ DimFS(X) ≤ 1 and Dim(X) ≤ DimFS(X). Finite-state dimen-
sion has a finite stability property.

Theorem 3.1 [6] For all X,Y ⊆ Σ∞,

dimFS(X ∪ Y ) = max {dimFS(X),dimFS(Y )} .

The proof of basic properties such as this theorem in [6] benefits greatly from
the use of multiple account FSGs, since the equivalence of multiple accounts and
our 1-account FSG seems to require an exponential blowup of states.

The main result in this section is that we can characterize the finite-state
dimensions of individual sequences in terms of finite-state compressibility. We
first recall the definition of an information-lossless finite-state compressor. (This
idea is due to Huffman [34]. Further exposition may be found in [35] or [36].)
Definition. A finite-state transducer is a 4-tuple C = (Q, δ, ν, q0), where Q
is a nonempty, finite set of states, δ : Q× Σ → Q is the transition function,
ν : Q× Σ→ Σ∗ is the output function, and q0 ∈ Q is the initial state.
For q ∈ Q and w ∈ Σ∗, we define the output from state q on input w to be the
string ν(q, w) defined by the recursion

ν(q, λ) = λ

ν(q, wa) = ν(q, w)ν(δ(q, w), a)

for all w ∈ Σ∗ and a ∈ Σ. We then define the output of C on input w ∈ Σ∗ to
be the string C(w) = ν(q0, w).
Definition. An information-lossless finite-state compressor (ILFSC) is a finite-
state transducer C = (Q, δ, ν, q0) such that the function f : Σ∗ → Σ∗ × Q,
f(w) = (C(w), δ(w)) is one-to-one.

That is, an ILFSC is an transducer whose input can be reconstructed from
the output and final state reached on that input.

Intuitively, C compresses a string w if |C(w)| is significantly less than |w|.
Of course, if C is IL, then not all strings can be compressed. Our interest here
is in the degree (if any) to which the prefixes of a given sequence S ∈ Σ∞ can
be compressed by an ILFSC. We will consider the cases of infinitely often (i.o.)
and almost everywhere (a.e.) compression ratio.
Definition.

1. If C is an ILFSC and S ∈ Σ∞, then the a.e. compression ratio of C on S
is

ρC(S) = lim inf
n→∞

|C(S [0..n− 1])|
n

.

13



2. The finite-state a.e. compression ratio of a sequence S ∈ Σ∞ is

ρFS(S) = inf {ρC(S)|C is an ILFSC} .

3. If C is an ILFSC and S ∈ Σ∞, then the a.e. compression ratio of C on S
is

RC(S) = lim sup
n→∞

|C(S [0..n− 1])|
n

.

4. The finite-state i.o. compression ratio of a sequence S ∈ Σ∞ is

RFS(S) = inf {RC(S)|C is an ILFSC} .

The following theorem says that finite-state dimension and finite-state com-
pressibility are one and the same for individual sequences.

Theorem 3.2 [6, 1] For all S ∈ Σ∞,

dimFS(S) = ρFS(S).

and
DimFS(S) = RFS(S).

Doty and Moser [10] remarked that finite-state dimension can be charac-
terized in terms of decompression by finite-state transducers based on earlier
results by Sheinwald, Lempel, and Ziv [67]. Notice that in this case finite-state
machines are not required to be information lossless.

Theorem 3.3 [10] For all S ∈ Σ∞,

dimFS(S) = inf
T finite-state
transducer

lim inf
n→∞

minπ∈Σ∗ {|π| | T (π) = S [0..n− 1]}
n

,

and

DimFS(S) = inf
T finite-state
transducer

lim sup
n→∞

minπ∈Σ∗ {|π| | T (π) = S [0..n− 1]}
n

.

Theorems 3.2 and 3.3 are instances of the existing relation between dimen-
sion and information. It is interesting to view them in comparison with other
information characterizations of effective dimension that we will develop in the
following sections. In the case of constructive dimension, the characterization is
based on general Kolmogorov Complexity, which can only be viewed as decom-
pression. For space bounds, dimension can be characterized either by space-
bounded compressors or by decompressors, whereas in the case of polynomial-
time dimension the known characterization requires to consider polynomial-time
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compressors that are also decompressible in polynomial time. The above results
show that finite-state dimension is similar to space-dimension in this matter and
apparently simpler than the time-bounded and constructive cases.

We now present a third characterization of finite-state dimension, this time
in terms of block-entropy rates.
Definition. Let w ∈ Σ∗, S ∈ Σ∞.

1. Let P (w, S[0..k|w| − 1]) = 1
k |{0 ≤ i < k |S[i|w|..(i+ 1)|w| − 1] = w}|.

2. The lth block-entropy rate of S is

Hl(S) = lim inf
k→∞

− 1
l log |Σ|

∑
|w|=l

P (w, S[0..kl − 1]) log(P (w, S[0..kl − 1]))

3. The block entropy rate of S is H(S) = inf l∈N Hl(S).

4. The lth upper block-entropy rate of S is

Hl(S) = lim sup
k→∞

− 1
l log |Σ|

∑
|w|=l

P (w, S[0..kl − 1]) log(P (w, S[0..kl − 1]))

5. The upper block-entropy rate of S is H(S) = inf l∈N Hl(S).

Theorem 3.4 [2] Let S ∈ Σ∞. DimFS(S) = H(S), and dimFS(S) = H(S).

The first part of Theorem 3.4 follows from [37] and [1].
We can also consider “sliding window” entropy, based on the number of

times each string w ∈ Σ∗ appears inside an infinite sequence S ∈ Σ∞ when
occurrences can partially overlap.
Definition. Let w ∈ Σ∗, S ∈ Σ∞.

1. Let P ′(w, S[0..n− 1]) = |w|
n |{0 ≤ i ≤ n− |w| |S[i..i+ |w| − 1] = w}|.

2. The lth entropy rate of S is

H ′l(S) = lim inf
n→∞

− 1
l log |Σ|

∑
|w|=l

P ′(w, S[0..n− 1]) log(P ′(w, S[0..n− 1]))

3. The entropy rate of S is H ′(S) = inf l∈N H
′
l(S).

4. The lth upper entropy rate of S is

H ′l(S) = lim sup
n→∞

− 1
l log |Σ|

∑
|w|=l

P ′(w, S[0..n− 1]) log(P ′(w, S[0..n− 1]))

5. The upper entropy rate of S is H ′(S) = inf l∈N H
′
l(S).
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The following characterization follows from the results in [37] and Theorem
3.4.

Theorem 3.5 Let S ∈ Σ∞. DimFS(S) = H ′(S), and dimFS(S) = H ′(S).

Notice that the definitions of entropy consider only frequency properties of
the sequence and do not involve finite-state machines, i.e. finite-state dimension
admits a “machine independent” characterization.

As a consequence of Theorem 3.4 and previous results in [6], the sequences
that have finite-state dimension 1 are exactly the (Borel) normal sequences.
Therefore finite-state dimension is base dependent.

Theorem 3.6 There exists a real number α ∈ [0, 1] and n,m ∈ N such that
the sequences S and S′ that represent α in bases n and m, respectively, have
different finite-state dimensions.

The proof of this last theorem is based on the existence of normal sequences
that are not absolutely normal, that is, existence of a real number α and two
bases n,m such that the representation of α in base n is a normal sequence
whereas the representation in base m is not normal (proven by Cassels in [5]).

Hausdorff and packing dimension are both base independent and it is known
[33] that polynomial-time dimension is also base independent.

We conclude this section with a summary of the other results on finite-state
dimension.

The theorem of Eggleston [14] (Theorem 2.9) holds for finite-state dimension.

Theorem 3.7 [6] For all α ∈ Q ∩ [0, 1],

dimFS(FREQ(α)) = H(α).

The following theorem says that every rational number r ∈ [0, 1] is the finite-
state dimension of a reasonably simple sequence.

Theorem 3.8 [6] For every r ∈ Q ∩ [0, 1] there exists S ∈ AC0 such that
dimFS(S) = r.

Doty et al. prove that finite-state dimension is invariant under arithmetical
operations with a rational number.

Theorem 3.9 [9] Let k ∈ N, q ∈ Q with q 6= 0, α ∈ R. Then

dimFS(Sq+α) = dimFS(Sqα) = dimFS(Sα)

where Sx is the representation of x in base k. The same result holds for DimFS

in the place of dimFS.

Scaled-dimension has not been used in the context of finite-state dimension.
Notice that only scales of the form xf(s) are finite-state-computable.

Finite-state dimension is a real-time effectivization of a powerful tool of
fractal geometry. As such it should prove to be a useful tool for improving our
understanding of real-time information processing.
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4 Constructive Dimension

Our next effective version of Hausdorff dimension is defined by restricting the
class of gales to those that are lower semicomputable. We give the definitions
of constructive dimension and constructive strong dimension of a set, and also
of a sequence, and we relate them and give their main properties, that make it
very powerful. We first have absolute stability, which means it can be applied
to an arbitrary union of sets. Then there is a precise characterization of the
dimension of a sequence in terms of the Kolmogorov complexity of its elements,
and finally in many interesting cases constructive dimension coincides with clas-
sical Hausdorff dimension. We also summarize the known relationships of this
concept with Martin-Löf random sequences.

An s-gale d is constructive if it is lower semicomputable, that is, its lower
graph {(w, z) | z < d(w)} is c.e. We define constructive dimension as follows.
Definition. [46, 1] Let X ⊆ Σ∞.

1. The constructive dimension of a set X ⊆ Σ∞ is

cdim(X) = inf {s ∈ [0,∞) | there is a constructive s-gale d with X ⊆ S∞[d]} .

2. The constructive strong dimension of a set X ⊆ Σ∞ is

cDim(X) = inf {s ∈ [0,∞) | there is a constructive s-gale d with X ⊆ S∞str[d]} .

3. The (constructive) dimension and strong dimension of an individual se-
quence S ∈ Σ∞ are dim(S) = cdim({S}) and Dim(S) = cDim({S}).

By the gale characterizations of Hausdorff dimension (Theorem 2.8), we
conclude that cdim(X) ≥ dimH(X) for all X ⊆ Σ∞. But in fact much more
is true for certain classes, as Hitchcock shows in [24]. For sets that are low
in the arithmetical hierarchy, constructive dimension and Hausdorff dimension
coincide.

Theorem 4.1 [24] If X ⊆ Σ∞ is a union of Π0
1 sets, then dimH(X) = cdim(X).

Hitchcock also proves that this is an optimal result for the arithmetical
hierarchy, since it cannot be extended to sets in Π0

2. It is open whether such
a correspondence principle holds for strong constructive dimension and packing
dimension.

For Hausdorff dimension, all singletons have dimension 0 and in fact all
countable sets have Hausdorff dimension 0. The situation changes dramati-
cally when we restrict to constructive gales, since a singleton can have positive
constructive dimension, and in fact can have any constructive dimension.

Theorem 4.2 [46] For every α ∈ [0, 1], there is an S ∈ Σ∞ such that dim(S) =
α.

A sequence is c-regular if its (constructive) dimension and strong dimensions
coincide. In fact these two dimensions can have any arbitrary two values.
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Theorem 4.3 [1] For every α, β ∈ [0, 1] with α ≤ β, there is an S ∈ Σ∞ such
that dim(S) = α and Dim(S) = β.

An interesting example of a c-regular sequence is θsA that generalizes Chaitin’s
Ω and has been defined by Tadaki [72] and Mayordomo [50]. θsA has dimension
and strong dimension s.

The constructive dimension of any set X ⊆ Σ∞ is completely determined by
the dimension of the individual sequences in the set.

Theorem 4.4 [46, 1] For all X ⊆ Σ∞,

cdim(X) = sup
x∈X

dim(x),

and
cDim(X) = sup

x∈X
Dim(x).

There is no analogue of this last theorem for Hausdorff dimension or for
any of the concepts defined in sections 3 and 5. The key ingredient in the
proof of Theorem 4.4 is the existence of optimal constructive supergales, that
is, constructive supergales that multiplicatively dominate any other constructive
supergale. This is analogous to the existence of universal tests of randomness
in the theory of random sequences.

Theorem 4.1 together with Theorem 4.4 implies that the classical Haus-
dorff dimension of every Σ0

2 set X ⊆ Σ∞ has the pointwise characterization
dimH(X) = supx∈X dim(x).

Theorem 4.4 immediately implies that constructive and strong constructive
dimensions have the absolute stability property. Classical Hausdorff and pack-
ing dimensions have only countable stability.

Corollary 4.5 [46, 1] For any I

cdim

(⋃
i∈I

Xi

)
= sup

i∈I
cdim(Xi).

cDim

(⋃
i∈I

Xi

)
= sup

i∈I
cDim(Xi).

The (constructive) dimension of a sequence can be characterized in terms of
the Kolmogorov complexities of its prefixes. Notice that Kolmogorov complexity
is defined as the shortest binary description.

Theorem 4.6 ([50]) For all A ∈ Σ∞,

dim(A) = lim inf
n→∞

K(A [0..n− 1])
n log |Σ|
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This latest theorem justifies the intuition that the constructive dimension of
a sequence is a measure of its algorithmic information density. Several authors
have studied the close relation of Hausdorff dimension to measures of infor-
mation content. Ryabko [57, 58], Staiger [68, 69], and Cai and Hartmanis [3]
proved results relating Hausdorff dimension to Kolmogorov complexity. Ryabko
[60] and Staiger [69] studied computable exponents of increase, that correspond
to computable dimension [45], defined in terms of computable gales and that is
strictly above constructive dimension. See [46] for a complete chronology.

We note that Theorem 4.6 yields a new proof of Theorem 4.1 above from
Theorem 5 of Staiger [69]. Also, Theorem 4.6 yields a new proof of Theorem
4.2 below from Lemma 3.4 of Cai Hartmanis [3].

A dual result holds for constructive strong dimension as proven in [1], that
is, for any A ∈ Σ∞,

Dim(A) = lim sup
n→∞

K(A [0..n− 1])
n log |Σ|

.

Alternative characterizations of constructive dimension in terms of variations
of Martin-Löf tests and effectivizations of Hausdorff measure have been given
by Reimann and Stephan [54] and Calude et al. [4]. Doty has considered Turing
reduction compression ratio in [8].

We now briefly state the main results proven so far on constructive dimen-
sion, including the existence of sequences of any dimension, the constructive
version of Eggleston theorem, and the constructive dimension of sequences that
are random relative to a non-uniform distribution.

This is the constructive version of the classical Theorem 2.9 (Eggleston [14]).

Theorem 4.7 [46] If α is ∆0
2-computable real number in [0, 1] then

cdim(FREQ(α)) = H(α).

An alternative proof of Theorem 4.7 can be derived from Theorem 4.6 and
earlier results of Eggleston [14] and Kolmogorov [75]. In fact, this approach
shows that Theorem 4.7 holds for arbitrary α ∈ [0, 1].

A binary sequence is (Martin-Löf) random [48] if it passes every algorithmi-
cally implementable test of randomness. This can be reformulated in terms of
martingales as follows
Definition. [62] A sequence A ∈ {0, 1}∞ is (Martin-Löf) random if there is no
constructive martingale d such that A ∈ S∞[d].

By definition, random sequences have constructive dimension 1. For nonuni-
form distributions we have the concept of β-randomness, for β any real number
in (0, 1) representing the bias.
Definition. [62] Let β ∈ (0, 1).

1. A β-martingale is a function d : {0, 1}∗ → [0,∞) that satisfies the condi-
tion

d(w) = (1− β) d(w0) + β d(w1)

for all w ∈ {0, 1}∗.
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2. A sequence A ∈ {0, 1}∞ is (Martin-Löf) random relative to β if there is
no constructive β-martingale d such that A ∈ S∞[d].

Lutz relates randomness relative to a non-uniform distribution to Shannon
information theory.

Theorem 4.8 [46] Let β ∈ (0, 1) be a computable real number. Let A ∈ {0, 1}∞
be random relative to β. Then dim(A) = H(β).

A more general result for randomness relative to sequences of coin-tosses
is obtained in [46], and extended in [1], where constructive and constructive
strong dimension of such a random sequence are shown to be the lower and
upper average entropy of the bias, respectively.

A very recent line of research is the comparison of positive dimension se-
quences with (Martin-Löf) random sequences (relative to bias 1/2) in terms of
their computing power. The main issue is whether positive dimension sequences
can substitute random sequences as randomness sources [51]. Doty [7], based on
earlier results by Ryabko [57, 58], has proven that a sequence of positive dimen-
sion is Turing equivalent to a sequence of strong dimension arbitrarily close to
1. Nies and Reimann [53] and Stephan [70] study the existence of weak-truth-
table degrees or lower cones of arbitrary dimension. Gu and Lutz [22] show
that positive dimension sequences can substitute randomness in the context of
probabilistic polynomial-time computation.

We end this section by going back to scaled-dimension. We think that con-
structive dimension can benefit specially from the flexibility provided by using
different scales.

Let h be a scale such that (i) h(x, 1) = Θ(x) (ii) dh : N × [0,∞) → [0,∞),
dh(k, s) = h(|Σ|−k−1, s)/h(|Σ|−k, s) is a computable function. Given a sequence
S we define

dim(h)(S) = inf
{
s ∈ [0,∞)

∣∣∣ there is a constructive s(h)-gale d with S ∈ S∞[d]
}
.

The results in [32] can be extended as follows.

Theorem 4.9 Let h be a scale as above and such that h(x, s) ≤ (log(1/x))−1−ε

for some epsilon (that may depend on s). Then the following are equivalent.

1. dim(h)(S) < s

2. K(S[0..n− 1]) < − log(h(|Σ|−n, s)) for infinitely many n.

There is a strong dimension version of Theorem 4.9 in which the Kolmogorov
complexity is bounded for almost every prefix of the sequence. In both cases
the upper bound on the scale can be substituted by differentiability of h.
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5 Resource-bounded dimension

In this section we briefly review the properties of resource-bounded dimension
more directly related to algorithmic information theory. For a recent summary
of dimension in complexity classes the reader may consult [28].

We will consider polynomial-time and polynomial-space dimensions. We
define p to be the class of polynomial time computable functions, pspace as the
class of polynomial space functions. Let ∆ be either p or pspace.
Definition. [45] Let X ⊆ Σ∞.

1. The ∆-dimension of a set X ⊆ Σ∞ is

dim∆(X) = inf {s ∈ [0,∞) | there is a s-gale d ∈ ∆ with X ⊆ S∞[d]} .

2. The ∆ strong dimension of a set X ⊆ Σ∞ is

Dim∆(X) = inf {s ∈ [0,∞) | there is a s-gale d ∈ ∆ with X ⊆ S∞str[d]} .

Let us mention that Eggleston theorem also holds for the resource-bounded
case [45], for each p-computable (pspace-computable) α, dimp(FREQ(α)) =
H(α) (dimpspace(FREQ(α)) = H(α)), and even for sublinear time-bounds [52].

Hitchcock [25] has characterized pspace-dimension in terms of space-bounded
Kolmogorov complexity as follows. Let KSf(n)(w) be the Kolmogorov complex-
ity of the string w when only space f(|w|) is allowed in the computation of w
from its description [40].

Theorem 5.1 ([25]) For all X ⊆ Σ∞,

dimpspace(X) = inf
c

sup
A∈X

lim inf
n→∞

KSn
c

(A [0..n− 1])
n log |Σ|

Dimpspace(X) = inf
c

sup
A∈X

lim sup
n→∞

KSn
c

(A [0..n− 1])
n log |Σ|

This result can also be extended to scaled-dimension.

Theorem 5.2 [32] For z ∈ {−1, 0, 1} the following are equivalent.

1. dim(z)
pspace(X) < s

2. There exists c such that for every S ∈ X,

KSn
c

(S[0..n− 1]) < − log(hz(|Σ|−n, s)) for infinitely many n.

Theorem 5.2 has a strong dimension version in which the Kolmogorov com-
plexity is bounded for almost every prefix of the sequence.

The case of polynomial-time dimension seems much harder, since time-
bounded Kolmogorov complexity has proven difficult to analyze. After attempts
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from Hitchcock and Vinodchandran in [29], the right approach seems to be the
consideration of polynomial time compressors that can also be inverted in poly-
nomial time. López-Valdés and Mayordomo [41] prove the following.
Definition. [41] Let (C,D) be polynomial-time algorithms with input and
output alphabet Σ and such that for every w ∈ Σ∗, D(C(w), |w|) = w. (C,D)
does not start from scratch if ∀ ε > 0 and for almost every w ∈ Σ∗ there exists
k = O(log(|w|)), k > 0, such that∑

|u|≤k

|Σ|−|C(wu)| ≤ |Σ|εk|Σ|−|C(w)|.

Let PC be the class of polynomial-time compressors that do not start from
scratch.

Theorem 5.3 [41] Let X ⊆ Σ∞,

dimp(X) = inf
(C,D)∈PC

sup
A∈X

lim inf
n

|C(A[0 . . . n− 1])|
n

,

Dimp(X) = inf
(C,D)∈PC

sup
A∈X

lim sup
n

|C(A[0 . . . n− 1])|
n

.

Connection of resource-bounded dimension with sequence analysis models
from computational learning has proven successful in [31], [26] and [20].

Acknowledgments. I thank an anonymous referee, Philippe Moser, and
David Doty for many helpful suggestions.
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