
Dimension is Compression

Maŕıa López-Valdés∗† Elvira Mayordomo∗†

June 24, 2012

Abstract

Effective fractal dimension was defined by Lutz (2003) in order to
quantitatively analyze the structure of complexity classes. Interesting con-
nections of effective dimension with information theory were also found, in
fact the cases of polynomial-space and constructive dimension can be pre-
cisely characterized in terms of Kolmogorov complexity, while analogous
results for polynomial-time dimension haven’t been found.

In this paper we remedy the situation by using the natural concept
of reversible time-bounded compression for finite strings. We completely
characterize polynomial-time dimension in terms of polynomial-time com-
pressors.

1 Introduction

Effective fractal dimension was defined in [19] in order to quantitatively analyze
the structure of complexity classes with the immediate motivation of overcom-
ing the limitations of resource-bounded measure, a generalization of classical
Lebesgue measure [18]. Important applications in Computational Complexity
have been found including circuit-size complexity, polynomial-time degrees, the
size of NP, zero-one laws, and oracle classes (see [21, 13, 9] for a summary of
the main results).

In parallel, the connections of this effective dimension with algorithmic in-
formation started being patent, as it could be suspected from earlier results
by Ryabko [25, 26], Staiger [27, 28], and Cai and Hartmanis [6]. The cases
of constructive, recursive and polynomial-space dimension were characterized
precisely as the best case asymptotic compression rate when using plain, re-
cursive, and polynomial-space-bounded Kolmogorov complexity, respectively
[23, 20, 11], and the low resource-bounds of finite-state and pushdown devices
have been connected to the corresponding compression algorithms [8, 1]. See
[24] for an overall survey.

∗Dept. de Informática e Ingenieŕıa de Sistemas, Instituto de Investigación en Ingenieŕıa de
Aragón (I3A), Universidad de Zaragoza, Zaragoza, SPAIN. {marlopez, elvira}@unizar.es
†This work was supported by the Spanish Ministry of Science and Innovation (Projects

TIN2008-06582-C03-02, TIN2011-27479-C04-01)

1

But the case of polynomial-time bounds remained elusive [14]. This is not
strange since computing even approximately the value of time-bounded Kol-
mogorov complexity seems to require an exponential search. The main differ-
ence with space-bounded Kolmogorov complexity is reversibility, in this later
case the encoding phase can be performed within similar space-bounds.

In this paper we look at the usual notion of compression algorithm for finite
strings. A polynomial-time compression scheme is just a pair of encoder and
decoder algorithms, both working in polynomial-time. We consider encoders
that do not completely start from scratch when working on an extension of a
previous input. This last condition is formalized in Section 3 with a conditional-
entropy like inequality.

We exactly characterize polynomial-time (or p) -dimension as the best case
asymptotic (that is, i.o.) compression ratio attained by these polynomial-time
compression schemes. Dually, strong polynomial-time-dimension [3] corresponds
to the worst case asymptotic compression ratio. The proof of these results uses
and interesting generalization of arithmetic coding (see [7] for an introduction
to arithmetic coding and its history).

Several results on the polynomial-time dimension of complexity classes can
be now interpreted as compressibility results. For example, the (characteristic
sequences of) languages in a class of p-dimension 1 cannot be i.o. compressed
by more that a sublinear amount. Here we obtain results on the compressibility
of complete and autoreducible languages.

Buhrman and Longprè have given a characterization of p-measure in terms of
compressibility in [5], but in that case the compressors are restricted to extenders
and the encoder is required to give several alternatives, one of them being the
correct output. In the light of our present results we can view effective dimension
as an information content measure for infinite strings, whereas resource-bounded
measure can only distinguish the extreme case of non measure 0 classes that are
the most incompressible ones.

2 Preliminaries

The Cantor space C is the set of all infinite binary sequences. If w ∈ {0, 1}∗
and x ∈ {0, 1}∗ ∪C, w v x means that w is a prefix of x. For each w ∈ {0, 1}∗
we define the w-cylinder, Cw = {x ∈ C|w v x}.

For 0 ≤ i ≤ j, we write x[i . . . j] for the string consisting of the i-th through
the j-th bits of x. We use λ for the empty string. We write s0, s1, s2, . . . for the
standard enumeration of {0, 1}∗. We write next(x) for the string following x in
the standard enumeration, i.e., next(sn) = sn+1. x < y denotes that string x
precedes y in the same standard enumeration.

Let E= DTIME(2O(n)).
Definition. Let s ∈ [0,∞).

1. An s-gale is a function d : {0, 1}∗ → [0,∞) satisfying

d(w) = 2−s[d(w0) + d(w1)]

2

for all w ∈ {0, 1}∗.

2. A martingale is a 1-gale, that is, a function d : {0, 1}∗ → [0,∞) satisfying

d(w) =
d(w0) + d(w1)

2

for all w ∈ {0, 1}∗.

Definition. Let s ∈ [0,∞) and d be an s-gale.

1. We say that d succeeds on a sequence S ∈ C if

lim sup
n→∞

d(S[0 . . . n]) =∞

The success set of d is S∞[d] = {S ∈ C | d succeeds onS}

2. We say that d succeeds strongly on a sequence S ∈ C if

lim inf
n→∞

d(S[0 . . . n]) =∞

The strong success set of d is S∞str[d] = {S ∈ C | d succeeds strongly on S}

Definition. We say that a function d : {0, 1}∗ → [0,∞) is p-computable if

there is a function d̂ : {0, 1}∗ × N→ Q such that d̂(w, r) is computable in time

polynomial in |w|+ r and |d̂(w, r)− d(w)| ≤ 2−r holds for all w and r.
We say that a function d : {0, 1}∗ → [0,∞) ∩ Q is exactly p-computable if

d(w) is computable in time polynomial in |w|.
Definition. Let X ⊆ C,

1. The p-dimension of X is

dimp(X) = inf

{
s ∈ [0,∞)

∣∣∣∣ there is a p-computable s-gale d s.t.
X ⊆ S∞[d]

}
2. The strong p-dimension of X is

Dimp(X) = inf

{
s ∈ [0,∞)

∣∣∣∣ there is a p-computable s-gale d s.t.
X ⊆ S∞str[d]

}
By the exact computation lemma in [19] p-computable and exactly p-computable

gales are interchangeable in the two definitions above.

Theorem 2.1 Let X ⊆ C,

dimp(X) = inf

{
s ∈ [0,∞)

∣∣∣∣ there is an exactly p-computable s-gale d s.t.
X ⊆ S∞[d]

}

Dimp(X) = inf

{
s ∈ [0,∞)

∣∣∣∣ there is an exactly p-computable s-gale d s.t.
X ⊆ S∞str[d]

}
For a complete introduction and motivation of effective dimension and effec-

tive strong dimension see [21].

3

3 Compressors that do not start from scratch

In this section we develop the notion of compressors that “do not start from
scratch” in the sense that when encoding successively longer extensions of an
input, the outputs are restricted in the way we make precise below. The extreme
case of this behavior is when the compressor is a mere extender, that is, C(w)
is always a prefix of C(wu). We consider here a much weaker restriction than
extension.
Definition. A pair of functions (C,D) (C the encoder, D the decoder) C,D :
{0, 1}∗ × N→ {0, 1}∗ is a polynomial-time compressor if:

(i) C and D can be computed in polynomial-time on their corresponding
input length.

(ii) For all w ∈ {0, 1}∗, D(C(w), |w|) = w.

In this paper, we can make all encoders prefix-free in each length, that is,
C({0, 1}n) is a prefix-free set for each n. Notice that for the applications in this
paper, that use asymptotic compression rates, this restriction is not significant
since for each encoder there is a prefix free one with the same compression rate.

Notice that in the previous definition there is no restriction whatsoever on
the behavior of C, the encoder, when working on two inputs that are one an
extension of the other. For instance, we can have |C(wu)| � |C(w)| and C(wu)
can have no common prefix with C(w). In definition 3 we introduce a restriction
on the compressor that has an effect on the variety of C(wu) for different u,
that will be controlled by |C(w)|.
Definition. A polynomial-time compressor (C,D) does not start from scratch
if for all ε > 0 there exist c > 0 such that for all but finitely many w ∈ {0, 1}∗
there exists k ≤ c log(|w|), k > 0, such that∑

|u|≤k

2−|C(wu)| ≤ 2εk2−|C(w)|. (1)

We will consider only compressors that do not start from scratch.
Notice that when there is a constant k such that

∑
|u|≤k 2−|C(wu)| ≤ (k +

1) · 2−|C(w)|, condition (1) is trivial, while in general
∑
|u|≤k 2−|C(wu)| can be as

large as k + 1, so condition (1) is a proper restriction on compressors.
We first remark that if C(w) and C(wu) have a long common prefix then C

fulfills condition (1).

Lemma 3.1 Polynomial-time compressors for which C(w) and C(wu) have a
common prefix of length at least |C(w)| − O(log(|w|)) (for all w, u ∈ {0, 1}∗)
don’t start from scratch.

4

Proof. Using that (C(w), |w|) is injective,

∑
|u|≤k

2−|C(wu)| ≤
k∑
i=0

2−|C(w)|+M log(|w|)−i · 2i · (k + 1)

= (k + 1)22−|C(w)|+M log(|w|)

≤ 2−|C(w)|+M log(|w|)+2 log(k+1).

2

We next present two easy examples of compressors not starting from scratch,
including Lempel-Ziv algorithms.

Example 3.2 For the following polynomial-time compressor lemma 3.1 holds

1. An extender, that is, for all w,w′ ∈ {0, 1}∗

w v w′ ⇒ C(w) v C(w′).

In fact, if C is an extender, then C satifies the common prefix condition
in lemma 3.1 and therefore it is a compressor that does not start from
scratch.

2. Lempel-Ziv data compression algorithm for its two most common variants
[16, 17]. Notice that they are not extenders.

1. LZ78 version. Let w ∈ {0, 1}∗ and w = w1w2 . . . wnv where w1, w2, . . . , wn
are the phrases obtained by the Lempel-Ziv parsing. Then for u ∈
{0, 1}∗, Lempel-Ziv parsing of wu will share the first n−1 phrases of
w parsing and may differ in phrase wn. This later phrase will be en-
coded with dlog n+ 1e+ 1 bits, therefore LZ78(w) and LZ78(wu) have
a common prefix of length at least |LZ78(w)| − (dlog n + 1e + 1) ≥
|LZ78(w)| − 3 log |w|.

2. LZ77 version. Let w ∈ {0, 1}∗ and w = w1w2 . . . wnv where w1, w2, . . . , wn
is the exhaustive history of w. Then for u ∈ {0, 1}∗, the exhaus-
tive history of wu will share the first n − 1 phrases of w parsing
and may differ in phrase wn. This later phrase will be encoded with
2dlog |w|e+ 1 bits, therefore LZ77(w) and LZ77(wu) have a common
prefix of length at least |LZ77(w)| − (2dlog |w|e + 1) ≥ |LZ77(w)| −
3 log |w|.

Polynomial-time compressors (C,D) that are length increasing in the en-
coder C and for which we can control, for all w and all i ≥ 0, the number
of strings u satisfying |C(wu)| = |C(w)| + i, don’t start from scratch. More
formally,

Lemma 3.3 Polynomial-time compressors (C,D) that satisfy both of the fol-
lowing conditions don’t start from scratch.

5

i) For all w, u ∈ {0, 1}∗, |C(wu)| ≥ |C(w)|

ii) For all ε > 0 there exist c > 0 such that for all but finitely many w ∈ {0, 1}∗
there exists k ≤ c log(|w|) such that for all i ≥ 0

Ni = Ni(w, k) = #
{
u ∈ {0, 1}≤k

∣∣∣ |C(wu)| = |C(w)|+ i
}
≤ 2i+εk−log k

Proof. To prove this we assume the worse possible case, that is, in the left
hand sum of condition (1)

∑
|u|≤k 2−|C(wu)|, we have the maximum possible

number of terms with |C(wu)| the smallest possible. This means the we will
add 2−|C(w)| a total of (2kε−log k) times, 2−|C(w)|−1 a total of (21+kε−log k) times,
and similarly for each value of |u|, until we have finally added 2k+1 − 1 terms
in the left hand sum. Notice that this is possible since

k∑
i=0

2i+kε−log k ≥ 2k+1.

Therefore

∑
|u|≤k

2−|C(wu)| ≤
k∑
i=0

2i+kε−log k2−(|C(w)|+i)

= (k + 1)2εk−log k2−|C(w)|

≤ 22εk2−|C(w)|.

2

4 Main Theorem

In the main theorem we obtain an exact characterization of polynomial-time di-
mension in terms of polynomial-time compressors that don’t start from scratch.

Our characterization holds both for the best and worst asymptotic compres-
sion ratio, corresponding to p-dimension and strong p-dimension.

We formalize the notion of a.e. (almost everywhere) and i.o. (infinitely often)
compressibility for sets of infinite sequences as the asymptotic best (respectively
worse) compression ratio.
Definition. For α ∈ [0, 1] and X ⊆ C,

1. X is α-i.o. polynomial-time compressible if there is a polynomial-time
compressor (C,D) that does not start from scratch and such that for
every A ∈ X

lim inf
n

|C(A[0 . . . n− 1])|
n

≤ α

6

2. X is α-a.e. polynomial-time compressible if there is a polynomial-time
compressor (C,D) that does not start from scratch and such that for
every A ∈ X

lim sup
n

|C(A[0 . . . n− 1])|
n

≤ α

Definition. Let X ⊆ C,

1. X is i.o. polynomial-time incompressible if, for all α < 1, X is not α-i.o.
polynomial-time compressible.

2. X is a.e. polynomial-time incompressible if, for all α < 1, X is not α-a.e.
polynomial-time compressible.

We next state our main theorem.

Theorem 4.1 Let X ⊆ C,

dimp(X) = inf{α |X is α-i.o. polynomial-time compressible}
Dimp(X) = inf{α |X is α-a.e. polynomial-time compressible}

The proof of theorem 4.1 will be split between sections 5 and 6. In section
5 we transform each gale into a compressor that requires only a time increase
of a linear factor. In section 6 we show that compression is an upper bound on
dimension.

Hitchcock showed in [12] that p-dimension can be characterized in terms of
on-line prediction algorithms, using the well-studied log-loss prediction ratio.
Our result can thus be interpreted as a joining bridge between the performance
of polynomial-time prediction and compression algorithms, both in the best and
the worse case.

5 Compression is at most dimension

We first prove that a dimension upper bound gives a compression upper bound.

Theorem 5.1 Let X ∈ C,

dimp(X) ≥ inf{α |X is α-i.o. polynomial-time compressible},
Dimp(X) ≥ inf{α |X is α-a.e. polynomial-time compressible}.

To prove Theorem 5.1 we first transform each polynomial-time gale into a
simple version that requires little accuracy. Then we apply a generalization of
arithmetic coding [7] to this new gale.

We will use the following result.

7

Lemma 5.2 [22] Let d1 be a martingale. Let c : {0, 1}∗ → [0,+∞) be an exactly
p-computable function such that for each w ∈ {0, 1}∗, |c(w) − d1(w)| ≤ 2−|w|.
Let d2 be recursively defined as follows

d2(λ) = c(λ) + 2

d2(wb) = d2(w) +
c(wb)− c(wb̄)

2

Then d2 is an exactly p-computable martingale such that |d1(w)− d2(w)| ≤ 4.

Using the previous lemma we show that very simple gales characterize p-
dimension.

Lemma 5.3 Let X ⊆ C. If dimp(X) = α then for all ε > 0 there is an
s ∈ (α, α + ε) and an exactly p-computable s-gale d with X ⊆ S∞[d] such that
for all w ∈ {0, 1}∗, there exists mw, nw ∈ N with nw ≤ |w|+ 1 and

d(w)2−|w|s = mw2−(nw+|w|)

Proof. If dimp(X) = α then for all ε > 0 there is an s ∈ (α, α + ε) and an
exactly p-computable s-gale d′, with d′(λ) = 1, that succeeds on X.
Let d1 be the martingale d1(w) = 2(1−s)|w|d′(w) and let c : {0, 1}∗ → [0,+∞)
be such that c(w) = m′w2−n

′
w where

n′w = min {n ∈ N | ∃m s.t. |m2−n − d1(w)| < 2−|w|}

m′w = min {m ∈ N | |m2−nw − d1(w)| < 2−|w|}

Notice that n′w ≤ |w|+ 1 because within an interval of length 2−|w| there exists
at at least least one dyadic number m2−n with n = |w|+ 1. Notice that for the
same reason c is exactly p-computable.

Let d2 obtained from d1 as in lemma 5.2. There exists mw, nw ∈ N such that
d2(w) = mw2−nw with nw ≤ |w| + 1. We prove this by induction, if |w| = 0
then d2(λ) = 3 = 3 · 2−0.

d2(wb) = d2(w) +
c(wb)− c(wb̄)

2

= mw2−nw +
m′wb2

−n′wb −m′
wb̄

2−n
′
wb̄

2

= 2−nwbmwb

where nwb = max{nw, n′w0 + 1, n′w1 + 1} ≤ |w|+ 2.
Using d2 we define an s-gale d as follows

d(w) = 2(s−1)|w|d2(w).

It is then clear that d is exactly p-computable and that for each w ∈ {0, 1}∗
we have that

8

(i) By definition, d(w)2−|w|s = 2−|w|d2(w) = mw2−(nw+|w|) is a dyadic num-
ber and nw ≤ |w|+ 1.

(ii) |d′(w)− d(w)| = 2(s−1)|w||d1(w)− d2(w)| ≤ 2(s−1)|w|4 so S∞[d′] = S∞[d].

2

That is, if dimp(X) < s, then there exists a p-computable s-gale d as in the
previous lemma. We define a polynomial-time compressor that doesn’t start
from scratch using this s-gale. Roughly speaking, the idea for the encoder C is
associate to each w ∈ {0, 1}∗ an interval of size proportionally related to d(w).
By the properties of d, the extreme points of such interval are dyadic rational
numbers. By using the following lemma, we encode each interval with a string
z. We will take C(w) = z.

Lemma 5.4 Let a, b be dyadic numbers. and let I = [a, b) be an interval of
length r ∈ [0, 1), then there exists a string z of length −dlog re + 1 such that
a ≤ 0.z < b and z can be computed in time polynomial in |z|.

Proof. Let n ∈ N be such that dlog re = −n. We divide the interval [0, 1)
in intervals of length 2−n−1. Notice that each of those intervals is exactly a
cylinder Cw with w ∈ {0, 1}n+1 (see figure 1).

Since
r

2
≤ 1

2n+1
=

2dlog re

2
< r,

we have that at least one of the endpoints of these intervals in inside the interval
(a, b). Furthermore, at most two of these interval endpoints can be within (a, b).
The largest such endpoint is the 0.z we are searching.

We will represent z so that Cz is the interval with left endpoint 0.z (see
Example 5.5). In order to do this, if z = z1z2 . . . zm, we have that

0.z = z12−1 + z22−2 + . . . zm2−m.

Let us see that we can compute z in polynomial time. To do this, we compute
z = z1z2 . . . zn+1 one bit at a time in the following way,

z1 =

{
0 if b ≤ 1/2.
1 if b > 1/2.

Once we know bits zi . . . zi we define zi+1 such that

zi+1 =

{
0 if b ≤ 0.z1 . . . zi1.
1 if b > 0.z1 . . . zi1.

We will obtain z with a ≤ 0.z < b and |z| = n+ 1 = −dlog re+ 1. 2

Example 5.5 Consider the following situation, a = 3 · 2−2 and b = 7 · 2−3. In
this case r = b− a = 2−3 and therefore dlog re = −3.

9

Figure 1: Example of the cylinders placement in [0, 1).

Figure 2: In this particular example, z = 1101.

We split interval [0, 1) into length 2−4 intervals, as can be seen in figure 2.
To compute z bitwise,

z1 = 1, since b > 1/2.

z2 = 1, since b > 0.z11 = 3/4.

z3 = 0, since b ≤ 0.z1z21 = 7/8.

z4 = 1, since b > 0.z1z2z31 = 13/16.

And therefore z = 1101 and |z| = −dlog re+ 1 = 4.

Proof of Theorem 5.1. We prove the first inequality; the proof for strong
dimension is analogous.

Let X be such that dimp(X) < s with s rational, then by Lemma 5.3 there
exists d′ an exactly p-computable s-gale such that

i) X ⊆ S∞[d′].

ii) For each w ∈ {0, 1}∗, there exist mw, nw ∈ N+ with nw ≤ |w| + 1 such
that

d′(w)2−|w|s = mw2−(nw+|w|). (2)

Without loss of generality we can assume that d′(λ) = 1.

10

We define for each w ∈ {0, 1}∗,

d(w) = 2(1−s)|w|d′(w).

d is an exactly p-computable martingale such that,

i) For all A ∈ X, d(A[0 . . . n− 1]) > 2(1−s)n i.o. n

ii) By equation (2), for each w ∈ {0, 1}∗ there exists mw, nw ∈ N with nw ≤
|w|+ 1

d(w) = mw2−nw .

Let h : {0, 1}∗ → R be defined as follows.

h(w) :=
∑

|y|=|w|,y<w

d(y)2−|w|.

Notice that h(w) is a dyadic number m2−n with n ≤ 2|w| + 1, therefore by
Lemma 5.4 there is a z ∈ {0, 1}∗ such that |z| ≤ 2|w|+ 2 and

i) h(w) ≤ 0.z < h(next(w)), if w 6= 1|w|;

ii) h(w) ≤ 0.z < 1, if w = 1|w|.

In fact,

i) If w 6= 11 . . . 1, then

l = h(next(w))− h(w) = d(w)2−|w|.

ii) When w = 11 . . . 1,

l = 1− h(w) = 1−
∑
|y|=|w|
y<w

d(y)2−|w| = d(w)2−|w|.

Where the las equality if obtained by applying the definition of martingale
that establishes ∑

y∈{0,1}|w|
d(y) = 2|w|d(λ) = 2|w|.

Then in any case
l = d(w)2−|w| = mw2−nw−|w|.

And therefore,

−dlog le+ 1 = −dlogmwe+ nw + |w|+ 1 ≤ 2|w|+ 2.

Let zw be the first shortest string such that h(w) ≤ 0.z < h(next(w)) (see
figure 3). We define the encoder as C(w) = zw. It is clear that C can be

11

Figure 3: In this example, w is the sixth element of length |w| in lexicographical
order.

computed in polynomial time since zw is computed in time polynomial in the
length of zw (Lemma 5.4) and |zw| ≤ 2|w|+ 2.

To define our decoder D, let z ∈ {0, 1}∗ and n ∈ N, then to generate a string
of length n from (z, n), simulate the martingale starting at λ on successively
longer strings. Suppose we have generated the string w so far. If h(w0) ≤ 0.z <
h(w1), then append 0 to w, if h(w1) ≤ 0.z, then append 1 to w. Continue until
|w| = n. At the end of this process, we have the string w of length n such that
h(w) ≤ 0.z < h(next(w)).

We next show that the polynomial-time compressor (C,D) does not start
from scratch.

Notice that for each w the interval [h(w), h(next(w))) has length exactly
d(w)2−|w|. Then by lemma 5.4, there is a string z of length −dlog(2−|w|d(w))e+
1 ≤ |w| − dlog(d(w))e+ 1 such that h(w) ≤ 0.z < h(next(w)). So,

|zw| ≤ |w| − dlog(d(w))e+ 1.

To see that C satisfies condition (1), we will prove that C satisfies the two
conditions of remark 3.3.

i) It is clear that for all w, u ∈ {0, 1}∗, |C(wu)| ≥ |C(w)| because the interval
[h(wu), h(next(wu))) is included in [h(w), h(next(w))).

ii) Let ε > 0, w ∈ {0, 1}∗, i ∈ N, j ∈ N

N j
i = #

{
u ∈ {0, 1}∗

∣∣∣ |u| = j and |zwu| = |zw|+ i
}

We have that
(N j

i − 1)2−(|zw|+i) < d(w)2−|w|

N j
i < 1 + d(w)2−|w|+|zw|+i

12

but since |zw| ≤ |w| − dlog d(w)e+ 1,

N j
i < 1 + 2log(d(w))−dlog d(w)e2i+1 ≤ 1 + 2i+2.

Let k ∈ N and Ni = #
{
u ∈ {0, 1}≤k

∣∣∣ |C(wu)| = |C(w)|+ i
}

, then

Ni =

k∑
j=0

N j
i ≤

k∑
j=0

2i+3 ≤ 2i+kε−log k

for all but finitely many k.
Finally, let us see that (C,D) compresses X. For all A ∈ X,

|C(A[0 . . . n− 1])| = |zA[0...n−1]|
≤ n− dlog(d(A[0 . . . n− 1])e+ 1

≤ n− log(2(1−s)n) + 1

= sn+ 1

2

6 Dimension is at most compression

Next we prove that compressibility is an upper bound on dimension.

Theorem 6.1 Let X ∈ C,

dimp(X) ≤ inf{α |X is α-i.o. polynomial-time compressible}
Dimp(X) ≤ inf{α |X is α-a.e. polynomial-time compressible}

Proof. We will prove the first inequality since the second one is analogous.
Let α be such that X is α-i.o. polynomial-time compressible and let (C,D)

be the (non starting from scratch) polynomial-time compressor witnessing this
fact. Let s > α be rational and ε > 0 such that s − α > 2ε. Let N be such
that condition (1) is true for each w ∈ {0, 1}≥N . For each of these w, let
k = k(w, ε) = O(log(|w|)) be the smallest one such that∑

|u|≤k

2−|C(wu)| ≤ 2εk2−|C(w)|

Let w = w1 . . . wn with |w1| = N and |wi| = k(w1 . . . wi − 1, ε) for i > 0.
We define function d as follows

d(wu) := d(w) 2−|C(wu)|∑
|v|≤k 2−|C(wv)| 2

s|u| if |u| = k(w, ε),

d(wũ) :=
∑
ũvu,|u|=k d(wu)2s(|ũ|−|u|) if |ũ| < k(w, ε).

Let us see that d is an s-gale. For that we will distinguish several cases

13

i) Let w = w1 . . . wnũ, where wi is as before. We denote w̃ = w1 . . . wn. Let
us consider in this case that 0 < |ũ| < k(w̃, ε) and |ũ|+ 1 < k(w̃, ε). Then,

[d(w0) + d(w1)]2−s = [d(w̃ũ0) + d(w̃ũ1)]2−s

= [
∑
ũ0vu
|u|=k

d(w̃u)2s(|ũ|+1−|u|)

+
∑
ũ1vu
|u|=k

d(w̃u)2s(|ũ|+1−|u|)] · 2−s

=
∑
ũvu
|u|=k

d(w̃u)2s(|ũ|−|u|) = d(w),

ii) Let us suppose now that w is exactly of the form w1 . . . wn. In this case,
we have that

[d(w0) + d(w1)]2−s = [
∑
0vu
|u|=k

d(wu)2(1−|u|)s

+
∑
1vu
|u|=k

d(wu)2(1−|u|)s] · 2−s

= 2−ks
∑
|u|=k

d(wu).

Since |u| = k we have that

d(wu) = d(w)
2−|C(wu)|∑
|v|≤k 2−|C(wv)| 2

s|u|

and therefore

[d(w0) + d(w1)]2−s = 2−ks
∑
|u|=k

d(w)
2−|C(wu)|∑
|v|≤k 2−|C(wv)| 2

s|u|

= d(w)

∑
|u|=k 2−|C(wu)|∑
|v|≤k 2−|C(wv)|

≤ d(w).

iii) For the last case, let us suppose that w = w1 . . . wnũ, where wi is as
before. We denote w̃ = w1 . . . wn. Let us consider in this case that 0 <
|ũ| < k(w̃, ε) and |ũ|+ 1 = k(w̃, ε). Then

d(w) = d(w̃ũ) =
∑
ũvu
|u|=k

d(w̃u)2s(|ũ|−|u|)

= [d(w0) + d(w1)]2−s.

14

Therefore d is an s-gale. In addition d is polynomial-time computable. In
fact the number of additive terms that appear in the definition of d is at most
2k(w,ε)+1 and since k(w, ε) = O(log(|w|)) we have that the number of terms is
polynomial in the input length. Each term in the definition of d is polynomial-
time computable.

On the other hand if we expand d definition we have that if w = w1w2 . . . wn
with |w1| = N and |wi| = k(w1 . . . wi−1, ε), then,

d(w) = d(w1)2s(|w|−N)
n−1∏
h=1

2−|C(w1...wh+1)|∑
|v|≤k(w1...wh,ε)

2−|C(w1...whv)| .

By condition (1),

d(w) ≥ d(w1)2(ε−s)N2|C(w1)|2(s−ε)|w|2−|C(w)|

≥ a2(s−ε)|w|2−|C(w)|

where a is the minimum of

d(w1)2|C(w1)|2(ε−s)N

for w1 ∈ {0, 1}N .
Let us see that d succeeds on X. For that let A ∈ X. Then by hypothesis

lim inf
n

|C(A[0 . . . n− 1])|
n

≤ α

thus there is a sequence of natural numbers (bn)n∈N that satisfies

lim
n

|C(A[0 . . . bn − 1])|
bn

≤ α.

I.e., there are infinitely many n’s for which

|C(A[0 . . . bn − 1])| ≤ bn(α+ ε). (3)

Let (an)n∈N be defined as

a1 = k0 = N,

ai+1 = ai + ki for i > 1,

where ki = k(A[0 . . . ai − 1], ε), that is, ki = O(log ai).
Then

d(A[0 . . . ai − 1]) ≥ a2(s−ε)ai2−|C(A[0...ai−1])|.

For each n, let m ∈ N be such that am < bn ≤ am+1 (see figure 4).
Since bn − am ≤ km we have that by condition (1)

2−|C(A[0...bn−1])| ≤ 2kmε2−|C(A[0...am−1])|,

15

Figure 4: Position of ai’s in relation with bn and ki within sequence A.

and therefore

|C(A[0 . . . am − 1])| ≤ |C(A[0 . . . bn − 1])|+ kmε.

Then for all but finitely many n,

d(A[0 . . . am − 1]) ≥ a2(s−ε)am2−|C(A[0...am−1])|

≥ a2(s−ε)am2−(|C(A[0...bn−1])|−kmε

≥ a2(s−ε)am2−bnα−bnε−kmε

= a2(s−α−2ε)am+(α+ε)(am−bn)−kmε

≥ a2(s−α−2ε)am−km(2ε+α)

And d succeeds on X since i) km = O(log am) and ii) s − α > 2ε. We have
thus proven that dimp(X) ≤ s. Since we took and arbitrary ε > 0 we can take
s > α arbitrarily and conclude the result.

2

Notice that in the last proof we didn’t need the decoder to be polynomial-
time computable. This gives us the following stronger characterization and
corollary.
Definition. A polynomial-time encoder C that does not start from scratch is
a polynomial-time computable and injective function C : {0, 1}∗ → {0, 1}∗ that
satisfies condition (1).
Definition. For α ∈ [0, 1] and X ⊆ C,

1. X is α-i.o. one-way polynomial-time compressible if there is a polynomial-
time encoder C that does not start from scratch and such that for every
A ∈ X

lim inf
n

|C(A[0 . . . n− 1])|
n

≤ α

2. X is α-a.e. one-way polynomial-time compressible if there is a polynomial-
time encoder C that does not start from scratch and such that for every
A ∈ X

lim sup
n

|C(A[0 . . . n− 1])|
n

≤ α

16

Theorem 6.2 Let X ⊆ C,

dimp(X) = inf{α |X is α-i.o. one-way polynomial-time compressible}
Dimp(X) = inf{α |X is α-a.e. one-way polynomial-time compressible}

Corollary 6.3 Let C be a polynomial-time encoder that does not start from
scratch. Then there exist (C ′, D′) a polynomial-time compressor that does not
start from scratch and such that for every A ∈ C

lim inf
n

C ′(A[0 . . . n− 1])

n
≤ lim inf

n

C(A[0 . . . n− 1])

n

lim sup
n

C ′(A[0 . . . n− 1])

n
≤ lim sup

n

C(A[0 . . . n− 1])

n

Invertibility phenomena similar to this last corollary have been investigated
for other families of compressors, for instance in [15] Huffman works on inversion
of finite-state compressors.

7 Applications of the Main Result

In this section we obtain interesting consequences of our characterization for
the polynomial-time compressibility of complete and autoreducible sets from
previously known p-dimension results.

Notice that in this section we identify each language A with its characteristic
sequence χA, therefore compressibility of a class always means compressibility
of the corresponding characteristic sequences. Recall that E= DTIME(2O(n)).

We start by showing that no polynomial-time compressor works on all many-
one complete sets.

Theorem 7.1 The class of polynomial-time many-one complete sets for E is
i.o. polynomial-time incompressible.

Proof. Ambos-Spies et al. prove in [2] that the class has p-dimension 1.
2

Next we consider degp
m(A), the class of sets that are equivalent to A by

≤P
m-reductions. The compression ratio of degp

m(A) and degp
m(B), for A≤P

mB, is
related by the following theorem.

Theorem 7.2 Let A,B be sets in E such that A≤P
mB, then

1. The i.o. p-compression ratio of degp
m(A) is at most the i.o. p-compression

ratio of degp
m(B).

2. The a.e. p-compression ratio of degp
m(A) is at most the a.e. p-compression

ratio of degp
m(B).

17

Proof. Ambos-Spies et al. prove 1. in [2] for p-dimension. Athreya et al. prove
in [3] the strong dimension result for 2. 2

We next consider the property of autoreducibility. A set A is autoreducible if
A can be decided by using A as an oracle but without asking query x on input x.
We obtain incompressibility results both in the case of polynomial-time many-
one autoreducibility and for the complement of i.o. p-Turing autoreducible sets.
Therefore for each polynomial-time bound there are i.o. incompressible sets that
are ≤P

m-autoreducible and other that are not even i.o. ≤P
T-autoreducible.

Theorem 7.3 The class of polynomial-time many-one autoreducible sets are
i.o. polynomial-time incompressible.

Proof. Ambos-Spies et al. prove in [2] that the class has p-dimension 1.
2

Theorem 7.4 The class of sets that are NOT i.o. polynomial-time Turing
autoreducible are i.o. polynomial-time incompressible.

Proof. Beigel et al. prove in [4] that the class has p-dimension 1. 2

We next show that there exist polynomial-time many-one degrees with every
possible value for both a.e. and i.o. compressibility.

Theorem 7.5 Let x, y be computable reals such that 0 ≤ x ≤ y ≤ 1. Then
there is a set A in E such that the i.o. p-compression ratio of degp

m(A) is x and
the a.e. p-compression ratio of degp

m(A) is y.

Proof. Athreya et al. prove in [3] the result for p-dimension and strong p-
dimension. 2

This last theorem includes the extreme case for which the i.o. compression
ratio is 0 whereas the a.e. ratio is 1.

Finally, the hypothesis “NP has positive p-dimension” can be interpreted in
terms of incompressibility. This hypothesis has interesting consequences on the
approximation algorithms for MAX3SAT.

Theorem 7.6 If for some α > 0 NP is not α-i.o-compressible in polynomial-
time then any approximation algorithm A for MAX3SAT must satisfy at least
one of the following

1. For some δ > 0, A uses time at least 2n
δ

2. For all ε > 0, A has performance ratio less than 7/8 + ε (that is, A(x) <
(7/8 + ε) ·MAX3SAT(x)) on an exponentially dense set of satisfiable in-
stances.

Proof. Hitchcock proves in [10] that the consequence follows from NP having
positive p-dimension. 2

18

References

[1] P. Albert, E. Mayordomo, and P. Moser. Bounded pushdown dimension
vs lempel ziv information density. Technical Report TR07-051, ECCC:
Electronic Coloquium on Computational Complexity, 2007.

[2] K. Ambos-Spies, W. Merkle, J. Reimann, and F. Stephan. Hausdorff di-
mension in exponential time. In Proceedings of the 16th IEEE Conference
on Computational Complexity, pages 210–217, 2001.

[3] K. B. Athreya, J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Effective
strong dimension in algorithmic information and computational complexity.
SIAM Journal on Computing, 37:671–705, 2007.

[4] R. Beigel, L. Fortnow, and F. Stephan. Infinitely-often autoreducible sets.
In Proceedings of the 14th Annual International Symposium on Algorithms
and Computation, volume 2906 of Lecture Notes in Computer Science,
pages 98–107. Springer-Verlag, 2003.

[5] H. Buhrman and L. Longpré. Compressibility and resource bounded mea-
sure. SIAM Journal on Computing, 31(3):876–886, 2002.

[6] J. Cai and J. Hartmanis. On Hausdorff and topological dimensions of the
Kolmogorov complexity of the real line. Journal of Computer and Systems
Sciences, 49:605–619, 1994.

[7] T. M. Cover and J. A. Thomas. Elements of Information Theory. John
Wiley & Sons, Inc., New York, N.Y., 1991.

[8] J. J. Dai, J. I. Lathrop, J. H. Lutz, and E. Mayordomo. Finite-state di-
mension. Theoretical Computer Science, 310:1–33, 2004.

[9] R. Downey and D. Hirschfeldt. Algorithmic randomness and complexity.
Springer-Verlag, 2010.

[10] J. M. Hitchcock. MAX3SAT is exponentially hard to approximate if NP has
positive dimension. Theoretical Computer Science, 289(1):861–869, 2002.

[11] J. M. Hitchcock. Effective Fractal Dimension: Foundations and Applica-
tions. PhD thesis, Iowa State University, 2003.

[12] J. M. Hitchcock. Fractal dimension and logarithmic loss unpredictability.
Theoretical Computer Science, 304(1–3):431–441, 2003.

[13] J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. The fractal geometry of
complexity classes. SIGACT News Complexity Theory Column, 36:24–38,
2005.

[14] J. M. Hitchcock and N. V. Vinodchandran. Dimension, entropy rates, and
compression. In Proceedings of the 19th IEEE Conference on Computa-
tional Complexity, pages 174–183, 2004.

19

[15] D. A. Huffman. Canonical forms for information-lossless finite-state logical
machines. IRE Trans. Circuit Theory CT-6 (Special Supplement), pages
41–59, 1959. Also available in E.F. Moore (ed.), Sequential Machine: Se-
lected Papers, Addison-Wesley, 1964, pages 866-871.

[16] A. Lempel and J. Ziv. A universal algortihm for sequential data compres-
sion. IEEE Transaction on Information Theory, 23:337–343, 1977.

[17] A. Lempel and J. Ziv. Compression of individual sequences via variable
rate coding. IEEE Transaction on Information Theory, 24:530–536, 1978.

[18] J. H. Lutz. The quantitative structure of exponential time. In L. A. Hemas-
paandra and A. L. Selman, editors, Complexity Theory Retrospective II,
pages 225–254. Springer-Verlag, 1997.

[19] J. H. Lutz. Dimension in complexity classes. SIAM Journal on Computing,
32:1236–1259, 2003.

[20] J. H. Lutz. The dimensions of individual strings and sequences. Information
and Computation, 187:49–79, 2003.

[21] J. H. Lutz. Effective fractal dimensions. Mathematical Logic Quarterly,
51:62–72, 2005.

[22] E. Mayordomo. Contributions to the study of resource-bounded measure.
PhD thesis, Universitat Politècnica de Catalunya, 1994.

[23] E. Mayordomo. A Kolmogorov complexity characterization of constructive
Hausdorff dimension. Information Processing Letters, 84(1):1–3, 2002.

[24] E. Mayordomo. Effective fractal dimension in algorithmic information the-
ory. In New Computational Paradigms: Changing Conceptions of What is
Computable, pages 259–285. Springer-Verlag, 2008.

[25] B. Ya. Ryabko. Coding of combinatorial sources and hausdorff dimension.
Soviets Mathematics Doklady, 30:219–222, 1984.

[26] B. Ya. Ryabko. Noiseless coding of combinatorial sources. Problems of
Information Transmission, 22:170–179, 1986.

[27] L. Staiger. Kolmogorov complexity and Hausdorff dimension. Information
and Computation, 103:159–94, 1993.

[28] L. Staiger. A tight upper bound on Kolmogorov complexity and uniformly
optimal prediction. Theory of Computing Systems, 31:215–29, 1998.

20

