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Image Sequences
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Abstract—We propose a novel method for visual place recognition using
bag of words obtained from FAST+BRIEF features. For the first time, we
build a vocabulary tree that discretizes a binary descriptor space, and
use the tree to speed up correspondences for geometrical verification.
We present competitive results with no false positives in very different
datasets, using exactly the same vocabulary and settings. The whole
technique, including feature extraction, requires 22ms per frame in a
sequence with 26300 images, being one order of magnitude faster than
previous approaches.

Index Terms—Place Recognition, Bag of Words, SLAM, Computer
Vision.

I. I NTRODUCTION

One of the most significant requirements for long-term visual
SLAM (Simultaneous Localization and Mapping) is robust place
recognition. After an exploratory period, when areas non-observed
for long are re-observed, standard matching algorithms fail. When
they are robustly detected, loop closures provide correct data asso-
ciation to obtain consistent maps. The same methods used for loop
detection can be used for robot relocation after track lost, due for
example to sudden motions, severe occlusions or motion blur. In [1]
we concluded that, for small environments, map-to-image methods
achieve nice performance, but for large environments, image-to-image
(or appearance-based) methods such as FAB-MAP [2] scale better.
The basic technique consists in building a database from the images
collected online by the robot, so that the most similar one can be
retrieved when a new image is acquired. If they are similar enough,
a loop closure is detected.

In recent years, many algorithms that exploit this idea have
appeared [2]–[6], basing the image matching on comparing them as
numerical vectors in the bag-of-words space [7]. Bags of words result
in very effective and quick image matchers [8], but they are not a
perfect solution for closing loops, due mainly to perceptual aliasing
[6]. For this reason, a verification step is performed later by checking
the matching images to be geometrically consistent, requiring feature
correspondences. The bottleneck of the loop closure algorithms is
usually the extraction of features, which is around ten times more
expensive in computation cycles than the rest of steps. This may
cause SLAM algorithms to run in two decoupled threads: one to
perform the main SLAM functionality, and the other just to detect
loop closures, as in [5].

In this paper, we present a novel algorithm to detect loops and
establishing point correspondences between images in real time, with
a conventional CPU and a single camera. Our approach is based on
bag of words and geometrical check, with several important novelties
that make it much faster than current approaches. The main speed
improvement comes from the use of a slightly modified version of
the BRIEF descriptor [9] with FAST keypoints [10], as explained in
Section III. The BRIEF descriptor is a binary vector where each bit
is the result of an intensity comparison between a given pair of pixels
around the keypoint. Although BRIEF descriptors are hardly invariant
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to scale and rotation, our experiments show that they are very robust
for loop closing with planar camera motions, the usual case in mobile
robotics, offering a good compromise between distinctiveness and
computation time.

We introduce a bag of words that discretizes a binary space, and
augment it with a direct index, in addition to the usual inverse index,
as explained in Section IV. To the best of our knowledge, this is the
first time a binary vocabulary is used for loop detection. The inverse
index is used for fast retrieval of images potentially similar to a given
one. We show a novel use of the direct index to efficiently obtain
point correspondences between images, speeding up the geometrical
check during the loop verification.

The complete loop detection algorithm is detailed in Section V.
Similarly to our previous work [5,6], to decide that a loop has been
closed, we verify the temporal consistency of the image matches
obtained. One of the novelties in this paper is a technique to prevent
images collected in the same place from competing among them when
the database is queried. We achieve this by grouping together those
images that depict the same place during the matching.

Section VI contains the experimental evaluation of our work, in-
cluding a detailed analysis of the relative merits of the different parts
in our algorithm. We present comparisons between the effectiveness
of BRIEF and two versions of SURF features [11], the descriptor
most used for loop closing. We also analyze the performance of the
temporal and geometrical consistency tests for loop verification. We
finally present the results achieved by our technique after evaluating
it in five public datasets with0.7–4 Km long trajectories. We
demonstrate that we can run the whole loop detection procedure,
including the feature extraction, in52ms in 26300 images (22ms on
average), outperforming previous techniques by more than one order
of magnitude.

A preliminary version of this work was presented in [12]. In the
current paper we enhance the direct index technique and extend the
experimental evaluation of our approach. We also report results in
new datasets and make a comparison with the state-of-the-art FAB-
MAP 2.0 algorithm [13].

II. RELATED WORK

Place recognition based on appearance has obtained great attention
in the robotics community because of the excellent results achieved
[4,5,13,14]. An example of this is the FAB-MAP system [13], which
detects loops with an omnidirectional camera, obtaining a recall of
48.4% and 3.1%, with no false positives, in trajectories 70 Km
and 1000 Km in length. FAB-MAP represents images with a bag
of words, and uses a Chow Liu tree to learn offline the words’
co-visibility probability. FAB-MAP has become the gold standard
regarding loop detection, but its robustness decreases when the
images depict very similar structures for a long time, which can
be the case when using frontal cameras [5]. In the work of Angeli
et al. [4], two visual vocabularies (for appearance and color) are
created online in an incremental fashion. The two bag-of-words
representations are used together as input of a Bayesian filter that
estimates the matching probability between two images, taking into
account the matching probability of previous cases. In contrast to
these probabilistic approaches, we rely on a temporal consistency
check to consider previous matches and enhance the reliability of
the detections. This technique has proven successful in our previous
works [5,6]. Our work also differs from the ones above in that we
use a bag of binary words for the first time, as well as propose a
technique to prevent images collected close in time and depicting the
same place from competing between them during the matching, so
that we can work at a higher frequency.
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To verify loop closing candidates, a geometrical check is usually
performed. We apply an epipolar constraint to the best matching
candidate as done in [4], but we take advantage of a direct index to
calculate correspondence points faster. Konolige et al. [3] use visual
odometry with a stereo camera to create in real time a view map of the
environment, detecting loop closures with a bag-of-words approach
as well. Their geometrical check consists in computing a spatial
transformation between the matching images. However, they do not
consider consistency with previous matches, and this leads them to
apply the geometrical check to several loop closing candidates.

In most loop closing works [4]–[6,14] the features used are
SIFT [15] or SURF [11]. They are popular because they are invariant
to lighting, scale and rotation changes and show a good behavior in
view of slight perspective changes. However, these features usually
require between100 and700ms to be computed, as reported by the
above publications. Apart from GPU implementations [16], there are
other similar features that try to reduce this computation time by,
for example, approximating the SIFT descriptor [17] or reducing
the dimensionality [18]. The work of Konolige et al. [3] offers a
qualitative change, since it uses compact randomized tree signatures
[19]. This approach calculates the similarity between an image patch
and other patches previously trained in an offline stage. The descriptor
vector of the patch is computed by concatenating these similarity
values, and its dimensionality is finally reduced with random ortho-
projections. This yields a very fast descriptor, suitable for real-time
applications [19]. Our work bears a resemblance with [3] in that we
also reduce the execution time by using efficient features. BRIEF
descriptors, along with other recent descriptors as BRISK [20] or
ORB [21], are binary and require very little time to be computed. As
an advantage, their information is very compact, so that they occupy
less memory and are faster to compare. This allows a much faster
conversion into the bag-of-words space.

III. B INARY FEATURES

Extracting local features (keypoints and their descriptor vectors) is
usually very expensive in terms of computation time when comparing
images. This is often the bottleneck when these kinds of techniques
are applied to real-time scenarios. To overcome this problem, in this
work we use FAST keypoints [10] and the state-of-the-art BRIEF
descriptors [9]. FAST keypoints are corner-like points detected by
comparing the gray intensity of some pixels in a Bresenham circle
of radius 3. Since only a few pixels are checked, these points are
very fast to obtain proving successful for real-time applications.

For each FAST keypoint, we draw a square patch around them
and compute a BRIEF descriptor. The BRIEF descriptor of an image
patch is a binary vector where each bit is the result of an intensity
comparison between two of the pixels of the patch. The patches are
previously smoothed with a Gaussian kernel to reduce noise. Given
beforehand the size of the patch,Sb, the pairs of pixels to test are
randomly selected in an offline stage. In addition toSb, we must set
the parameterLb: the number of tests to perform (i.e., the length
of the descriptor). For a pointp in an image, its BRIEF descriptor
vectorB(p) is given by:

B
i(p) =

{

1 if I(p+ ai) < I(p+ bi)
0 otherwise

∀i ∈ [1..Lb] (1)

whereBi(p) is the i-th bit of the descriptor,I(·) the intensity of
the pixel in the smoothed image, andai andbi the 2D offset of the
i-th test point with respect to the center of the patch, with value in
[

−Sb

2
. . .

Sb

2

]

×
[

−Sb

2
. . .

Sb

2

]

, randomly selected in advance. Note
that this descriptor does not need training, just an offline stage to
select random points that hardly takes time. The original BRIEF de-
scriptor proposed by Calonder et al. [9] selects each coordinate of the

Fig. 1. Example of vocabulary tree and direct and inverse indexes that
compose the image database. The vocabulary words are the leaf nodes of
the tree. The inverse index stores the weight of the words in the images in
which they appear. The direct index stores the features of the images and their
associated nodes at a certain level of the vocabulary tree.

test pointsai andbi according to a normal distributionN (0, 1

25
S2
b ).

However, we found that using close test pairs yielded better results
[12]. We select each coordinatej of these pairs by sampling the
distributionsaj

i ∼ N (0, 1

25
S2
b ) and b

j
i ∼ N (aj

i ,
4

625
S2
b ). Note that

this approach was also proposed by [9], but not used in their final
experiments. For the descriptor length and the patch size, we chose
Lb = 256 andSb = 48, because they resulted in a good compromise
between distinctiveness and computation time [12].

The main advantage of BRIEF descriptors is that they are very
fast to compute (Calonder et al. [9] reported17.3µs per keypoint
whenLb = 256 bits) and to compare. Since one of these descriptors
is just a vector of bits, measuring the distance between two vectors
can be done by counting the amount of different bits between them
(Hamming distance), which is implemented with anxor operation.
This is more suitable in this case than calculating the Euclidean
distance, as usually done with SIFT or SURF descriptors, composed
of floating point values.

IV. I MAGE DATABASE

In order to detect revisited places we use an image database
composed of a hierarchical bag of words [7,8] and direct and inverse
indexes, as shown in Fig. 1.

The bag of words is a technique that uses a visual vocabulary
to convert an image into a sparse numerical vector, allowing to
manage big sets of images. The visual vocabulary is created offline
by discretizing the descriptor space intoW visual words. Unlike
with other features like SIFT or SURF, we discretize a binary
descriptor space, creating a more compact vocabulary. In the case
of the hierarchical bag of words, the vocabulary is structured as a
tree. To build it, we extract a rich set of features from some training
images, independently of those processed online later. The descriptors
extracted are first discretized intokw binary clusters by performing
k-medians clustering with the k-means++ seeding [22]. The medians
that result in a non binary value are truncated to0. These clusters
form the first level of nodes in the vocabulary tree. Subsequent levels
are created by repeating this operation with the descriptors associated
to each node, up toLw times. We finally obtain a tree withW leaves,
which are the words of the vocabulary. Each word is given a weight
according to its relevance in the training corpus, decreasing the weight
of those words which are very frequent and, thus, less discriminative.
For this, we use the term frequency – inverse document frequency
(tf-idf ), as proposed by [7]. Then, to convert an imageIt, taken at
time t, into a bag-of-words vectorvt ∈ R

W , the binary descriptors of
its features traverse the tree from the root to the leaves, by selecting
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at each level the intermediate nodes that minimize the Hamming
distance.

To measure the similarity between two bag-of-words vectorsv1

andv2, we calculate aL1-scores(v1,v2), whose value lies in[0..1]:

s(v1,v2) = 1−
1

2

∣

∣

∣

∣

v1

|v1|
−

v2

|v2|

∣

∣

∣

∣

(2)

Along with the bag of words, an inverse index is maintained. This
structure stores for each wordwi in the vocabulary a list of imagesIt
where it is present. This is very useful when querying the database,
since it allows to perform comparisons only against those images that
have some word in common with the query image. We augment the
inverse index to store pairs< It, vit > to quickly access the weight
of the word in the image. The inverse index is updated when a new
imageIt is added to the database, and accessed when the database
is searched for some image.

These two structures (the bag of words and the inverse index) are
often the only ones used in the bag-of-words approach for searching
images. However, as a novelty in this general approach, we also make
use of a direct index to conveniently store the features of each image.
We separate the nodes of the vocabulary according to their levell in
the tree, starting at leaves, with levell = 0, and finishing in the root,
l = Lw. For each imageIt, we store in the direct index the nodes at
level l that are ancestors of the words present inIt, as well as the
list of local featuresftj associated to each node. We take advantage
of the direct index and the bag-of-words tree to use them as a means
to approximate nearest neighbors in the BRIEF descriptor space.
The direct index allows to speed up the geometrical verification by
computing correspondences only between those features that belong
to the same words, or to words with common ancestors at levell. The
direct index is updated when a new image is added to the database,
and accessed when a candidate matching is obtained and geometrical
check is necessary.

V. L OOP DETECTION ALGORITHM

To detect loop closures, we use a method based on our previous
work [5,6] that follows the four stages detailed next.

A. Database query

We use the image database to store and to retrieve images similar to
any given one. When the last imageIt is acquired, it is converted into
the bag-of-words vectorvt. The database is searched forvt, resulting
in a list of matching candidates< vt, vt1 >, < vt, vt2 >, . . . ,
associated to their scoress(vt,vtj ). The range these scores varies
is very dependent on the query image and the distribution of words
it contains. We then normalize these scores with the best score we
expect to obtain in this sequence for the vectorvt, obtaining the
normalized similarity scoreη [6]:

η(vt,vtj ) =
s(vt,vtj )

s(vt,vt−∆t)
(3)

Here, we approximate the expected score ofvt with s(vt,vt−∆t),
wherevt−∆t is the bag-of-words vector of the previous image. Those
cases wheres(vt,vt−∆t) is small (e.g. when the robot is turning)
can erroneously cause high scores. Thus, we skip the images that do
not reach a minimums(vt,vt−∆t) or a required number of features.
This minimum score trades off the number of images that can be
used to detect loops with the correctness of the resulting scoreη.
We use a small value to prevent valid images from being discarded.
We then reject those matches whoseη(vt,vtj ) does not achieve a
minimum threshold, denotedα.

B. Match grouping

To prevent images that are close in time to compete among them
when the database is queried, we group them intoislands and
treat them as only one match. We use the notationTi to represent
the interval composed of timestampstni

, . . . , tmi
, and VTi

for an
island that groups together the matches with entriesvtni

, . . . ,vtmi
.

Therefore, several matches< vt, vtni
>, . . . , < vt, vtmi

> are
converted into a single match< vt, VTi

> if the gaps between
consecutive timestamps intni

, . . . , tmi
are small. The islands are

also ranked according to a scoreH:

H(vt, VTi
) =

mi
∑

j=ni

η(vt, vtj ) (4)

The island with the highest score is selected as matching group and
continue to the temporal consistency step. Besides avoiding clashes
between consecutive images, the islands can help establish correct
matches. IfIt andIt′ represent a real loop closure,It is very likely
to be similar also toIt′±∆t, It′±2∆t, . . . , producing long islands.
Since we defineH as the sum of scoresη, the H score favours
matches with long islands as well.

C. Temporal consistency

After obtaining the best matching islandVT ′ , we check it for
temporal consistency with previous queries. In this paper we extend
the temporal constraint applied in [5,6] to support islands. The
match< vt, VT ′ > must be consistent withk previous matches
< vt−∆t, VT1

>, . . . , < vt−k∆t, VTk
>, such that the intervals

Tj and Tj+1 are close to overlap. If an island passes the temporal
constraint, we keep only the match< vt, vt′ >, for the t′ ∈ T ′

that maximizes the scoreη, and consider it a loop closing candidate,
which has to be finally accepted by the geometrical verification stage.

D. Efficient geometrical consistency

We apply a geometrical check between any pair of images of a
loop closing candidate. This check consists in finding with RANSAC
a fundamental matrix betweenIt and It′ supported by at least 12
correspondences. To compute these correspondences, we must com-
pare the local features of the query image with those of the matched
one. There are several approaches to perform this comparison. The
easiest and slowest one is the exhaustive search, that consists in
measuring the distance of each feature ofIt to the features ofIt′ in
the descriptor space, to select correspondences later according to the
nearest neighbor distance ratio[15] policy. This is aΘ(n2) operation
in the number of features per image. A second technique consists in
calculating approximate nearest neighbors by arranging the descriptor
vectors in k-d trees [27].

Following the latter idea, we take advantage of our bag-of-words
vocabulary and reuse it to approximate nearest neighbors. For this
reason, when adding an image to the database, we store a list of pairs
of nodes and features in the direct index. To obtain correspondences
betweenIt and It′ , we look upIt′ in the direct index and perform
the comparison only between those features that are associated to the
same nodes at levell in the vocabulary tree. This condition speeds up
the correspondence computation. The parameterl is fixed beforehand
and entails a trade-off between the number of correspondences
obtained betweenIt andIt′ and the time consumed for this purpose.
Whenl = 0, only features belonging to the same word are compared
(as we presented in [12]), so that the highest speed-up is achieved, but
fewer correspondences can be obtained. This makes the recall of the
complete loop detection process decrease due to some correct loops
being rejected because of the lack of corresponding points. On the
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TABLE I
DATASETS

Dataset Camera Description
Total length Revisited length Avg. Speed Image size

(m) (m) (m · s−1) (px × px)
New College [23] Frontal Outdoors, dynamic 2260 1570 1.5 512×384
Bicocca 2009-02-25b [24] Frontal Indoors, static 760 113 0.5 640×480
Ford Campus 2 [25] Frontal Urban, slightly dynamic 4004 280 6.9 600×1600
Malaga 2009 Parking 6L [26] Frontal Outdoors, slightly dynamic 1192 162 2.8 1024×768
City Centre [2] Lateral Urban, dynamic 2025 801 - 640×480

other hand, whenl = Lw, the recall is not affected but the execution
time is not improved either.

We only require the fundamental matrix for verification, but note
that after calculating it, we could provide the data association between
the images matched to any SLAM algorithm that would run beneath,
with no extra cost.

VI. EXPERIMENTAL EVALUATION

We evaluate the different aspects of our proposal in the following
sections. In VI-A, we introduce the methodology we followed to
evaluate our algorithm. Next, we compare the reliability of BRIEF
and SURF in our system in VI-B. In VI-C we analyze the effect of
the temporal consistency of our algorithm, and in VI-D we check the
efficiency of our geometrical verification based on the direct index.
Finally, the execution time and the performance of our complete
system are evaluated in VI-E and VI-F.

A. Methodology

The aspects to evaluate loop detection results are usually assumed
to be of general knowledge. However, little detail is given in the
literature. Here, we explain the methodology we followed to evaluate
our system.

1) Datasets: We tested our system in five publicly available
datasets (see Table I). These present independent indoor and out-
door environments, and were collected at different speed by several
platforms, with in-plane camera motion. CityCentre is a collection
of images gathered at low frequency, with little overlap. The others
provide images at high frequency (8 – 20 Hz).

2) Ground truth: To measure the correctness of our results we
compare them with a ground-truth reference. Most of the datasets
used here do not provide direct information about loop closures, so
that we manually created a list of the actual loop closures. This list
is composed of time intervals, where each entry in the list encodes
a query interval associated with a matching interval.

3) Correctness measure:We measure the correctness of the loop
detection results with theprecisionandrecall metrics. The precision
is defined as the ratio between the number of correct detections and
all the detections fired, and the recall, as the ratio between the correct
detections and all the loop events in the ground truth. A match fired
by the loop detector is a pair of query and matching timestamps.
To check if it is a true positive, the ground truth is searched for an
interval that contains these timestamps. The number of loop events in
the ground truth is computed as the length of all the query intervals
in the ground truth multiplied by the frequency at which the images
of the dataset are processed. When a query timestamp is associated
to more than one matching timestamp in the ground truth because of
multiple traversals, only one of them is considered to compute the
amount of loop events.

4) Selection of system parameters:It is common practice to tune
system parameters according to the evaluation data, but we think
that using different data to choose the configuration of our algorithm
and to evaluate it demonstrates the robustness of our approach. We
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Fig. 2. Precision-recall curves achieved by BRIEF, SURF64 and U-SURF128
in the training datasets, without geometrical check.

then separate the datasets shown in Table I into two groups. We use
three of them that present heterogeneous environments with many
difficulties (NewCollege, Bicocca25b and Ford2) astraining datasets
to find the best set of parameters of our algorithm. The other two
datasets (CityCentre and Malaga6L) are used asevaluationdata to
validate our final configuration. In these cases, we only use our
algorithm as a black box with a predefined configuration.

5) Settings:Our algorithm is used with the same settings through-
out all the experiments. The same vocabulary tree was used to
process all the datasets. This was built withkw = 10 branches and
Lw = 6 depth levels, yielding one million words, and trained with
9M features acquired from 10K images of an independent dataset
(Bovisa 2008-09-01[24]). We used a threshold of 10 units in the
response function of FAST, and 500 in the Hessian response of SURF.
For each processed image, we kept only the 300 features with highest
response.

B. Descriptor effectiveness

A BRIEF descriptor encodes much less information than a SURF
descriptor, since BRIEF is not scale or rotation invariant. In order
to check if BRIEF is reliable enough to perform loop detection,
we compared its effectiveness with that of SURF. We selected two
versions of SURF features: 64-dimensional descriptors with rotation
invariance (SURF64) and 128-dimensional descriptors without rota-
tion invariance (U-SURF128). We selected them because they are the
usual choices for solving the loop detection problem [5,13].

We created vocabulary trees for SURF64 and U-SURF128 in the
same way we built it for BRIEF and ran our system on Bicocca25b
and NewCollege, processing the image sequences atf = 2 Hz. We
deactivated the geometrical verification, fixed the required temporal
consistency matchesk to 3, and varied the value of the normalized
similarity thresholdα to obtain the precision-recall curves shown in
Fig. 2. The first remark is that the curve of SURF64 dominates that
of U-SURF128 on both datasets. We can also see that BRIEF offers
a very competent performance compared with SURF. In Bicocca25b,
BRIEF outperforms U-SURF128 and is slightly better than SURF64.
In NewCollege, SURF64 achieves better results than BRIEF, but
BRIEF still gives very good precision and recall rates.
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Fig. 3. Examples of words matched by using BRIEF (pair on the left) and SURF64 descriptors (pair on the right).

To better illustrate the different abilities of BRIEF and SURF64
to find correspondences, we have selected some loop events from
the previous experiments. In Fig. 3 the features that are associated
to the same word of our vocabulary are connected with lines. These
are the only matches taken into account to compute the normalized
similarity score. In most cases, BRIEF obtains as many correct
word correspondences as SURF64, in spite of the slight perspective
changes, as shown in the first example (first row). In the second
example, only BRIEF is able to close the loop, since SURF64 does
not obtain enough word correspondences. These two examples show
that BRIEF finds correspondences in objects that are at a middle
or large distance, such as the signs on the wall or the trees in the
background. In general, distant objects are present in most of the
imagery of our datasets. Since the scale of the keypoints extracted
from distant objects hardly varies, BRIEF is suitable to match their
patches. In cases where objects are close to the camera, SURF64 is
more suitable because of its invariance to scale changes. However, we
observed very few cases where this happened. In the third example
of Fig. 3, the camera tilted, making the image appear rotated in
some areas. This along with the scale change prevented BRIEF from
obtaining word correspondences. In this case, SURF64 overcame
these difficulties and detected the loop.

Our results show that FAST features with BRIEF descriptors are
almost as reliable as SURF features for loop detection problems with
in-plane camera motion. As advantages, not only they are much faster
to obtain (13ms per image instead of 100–400ms), but they also
occupy less memory (32MB instead of 256MB to store a 1M word
vocabulary) and are faster to compare, speeding up the use of the
hierarchical vocabulary.

C. Temporal consistency

After selecting the features, we tested the numberk of temporally
consistent matches required to accept a loop closure candidate. For
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f = 1 Hz, k = 0
f = 1 Hz, k = 3
f = 2 Hz, k = 0
f = 2 Hz, k = 3
f = 3 Hz, k = 0
f = 3 Hz, k = 3

Fig. 4. Precision-recall curves in Bicocca25b with no geometrical check,
for several values of similarity thresholdα, number of temporally consistent
matchesk and processing frequencyf .

this, we ran our system in the training datasets withf = 2 Hz, for
several values ofk andα and without any geometrical constraint. We
testedk for values between0 (i.e., disabling the temporal consistency)
and4. We observed a big improvement betweenk = 0 andk > 0 for
all the working frequencies. Ask increases, a higher recall is attained
with 100% precision, but this behavior does not hold for very high
values ofk, since only very long closures would be found. We chose
k = 3 since it showed a good precision-recall balance in the three
training datasets. We repeated this test in Bicocca25b for frequencies
f = 1 and 3 Hz as well, to check how dependent parameterk is
on the processing frequency. We show in Fig. 4 the precision-recall
curves obtained in Bicocca25b by varying the parameterα; for clarity,
only k = 0 and 3 are shown. This shows the temporal consistency
is a valuable mechanism to avoid mismatches, as previously seen in
[12]. We can also see thatk = 3 behaves well even for different
frequency values, so that we can consider this parameter stable.
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TABLE II
PERFORMANCE OF DIFFERENT APPROACHES TO OBTAIN

CORRESPONDENCES INNEWCOLLEGE

Technique Recall (%)
Execution time (ms / query)
Median Min Max

DI0 38.3 0.43 0.25 16.50
DI1 48.5 0.70 0.44 17.14
DI2 56.1 0.78 0.50 19.26
DI3 57.0 0.80 0.48 19.34
Flann 53.6 14.09 13.79 25.07
Exhaustive 61.2 14.17 13.65 24.68

D. Geometrical consistency

According to Fig. 4, we could select a restrictive value ofα to
obtain100% precision, but this would require to tune this parameter
for each dataset. Instead, we set a generic value and verify matches
with a geometrical constraint consisting in finding a fundamental
matrix between two imagesIt and It′ of a loop closing candidate.
Computing the corresponding points betweenIt andIt′ is the most
time-consuming step of this stage. We compared our proposal of
using the direct index to compute correspondences, coined DIl,
with the exhaustive search and a Flann-based approach [27]. The
parameterl stands for the level in the vocabulary tree at which
the ancestor nodes are checked. In the Flann approach, the Flann
library [27] (as implemented in the OpenCV library) is used to build
a set of kd-trees with the feature descriptors ofIt. This allows
to obtain for descriptors ofIt′ the approximate nearest neighbors
in It. After computing distances with any of these methods, the
nearest neighbor distance ratio, with a threshold of0.6 units, was
applied. Although both the Flann and the vocabulary tree approaches
are useful to approximate nearest neighbors, they are conceptually
different here: our vocabulary tree was created with training data, so
that the neighbor search is based on independent data, whereas the
kd-trees are tailored to eachIt′ .

We ran each of the methods in the NewCollege dataset withf = 2
Hz, k = 3, α = 0.3. We selected this dataset because it presents
the longest revisited trajectory and many perceptual aliasing cases.
In Table II we show the execution time of the geometrical check
per query, along with the recall of the loop detector in each case.
The precision was100% in all the cases. The time includes the
computation of corresponding points, the RANSAC loops and the
computation of the fundamental matrices. The highest execution time
of all the methods was obtained when the maximum number of
RANSAC iterations was reached. The exhaustive search achieves
higher recall than the other methods, which are approximate, but
exhibits the highest execution time as well. We see that the Flann
method takes nearly as long as the exhaustive search method. The
speed-up obtained when computing the correspondences is not worth
the cost of building a Flann structure per image. On the other hand,
DI0 presents the smallest execution time, but also the lowest recall
level. As we noticed before [12], selecting correspondences only
from features belonging to the same word is very restrictive when
the vocabulary is big (one million words). We finally chose the
method DI2 for our geometrical check since it showed a good balance
between recall and execution time.

E. Execution time

To measure the execution time, we ran our system in the NewCol-
lege dataset withk = 3, α = 0.3 and DI2. By setting the working
frequency tof = 2 Hz, a total of 5266 images were processed,
yielding a system execution time of16 ms per image on average and
a peak of less than38 ms. However, in order to test the scalability of
the system, we set the frequency tof = 10 Hz and obtained26292
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Fig. 5. Execution time in NewCollege with 26292 images.

TABLE III
EXECUTION TIME IN NEWCOLLEGE WITH 26292IMAGES

Execution time (ms / query)
Mean Std Min Max

Features
FAST 11.67 4.15 1.74 30.16
Smoothing 0.96 0.37 0.79 2.51
BRIEF 1.72 0.49 1.51 4.62

Bag of words

Conversion 3.59 0.35 3.27 8.81
Query 3.08 1.91 0.01 9.19
Islands 0.12 0.04 0.08 0.97
Insertion 0.11 0.02 0.06 0.28

Verification Correspondences
and RANSAC

1.60 2.64 0.61 18.55

Whole system 21.60 4.82 8.22 51.68

images. Even withk = 3, the system yielded no false positives. This
shows that the behavior of the temporal consistency parameterk is
stable even for high frequencies.

The execution time consumed per image in that case is shown in
Fig. 5. This was measured on a Intel Core i7 @2.67GHz machine.
We also show in Table III the required time of each stage for
this amount of images. Thefeaturestime involves computing FAST
keypoints and removing those with low corner response when there
are too many, as well as smoothing the image with a Gaussian
kernel and computing BRIEF descriptors. Thebag-of-wordstime is
split into four steps: the conversion of image features into a bag-
of-words vector, the database query to retrieve similar images, the
creation and matching of islands, and the insertion of the current
image into the database (this also involves updating the direct and
inverse indexes). Theverification time includes both computing
correspondences between the matching images, by means of the direct
index, and the RANSAC loop to calculate fundamental matrices.

We see that all the steps are very fast, including extracting the
features and the maintenance of the direct and inverse indexes. This
allows to obtain a system that runs in22ms per image, with a peak
of less than52ms. The feature extraction stage presents the highest
execution time; most of it, due to the overhead produced when there
are too many features and only the best300 ones must be considered.
Even so, we have achieved a reduction of more than one order of
magnitude with respect to other features, such as SIFT or SURF,
removing the bottleneck of these loop closure detection algorithms.
In the bag-of-words stage, the required time of managing the islands
and the indexes is negligible, and the conversion of image features
into bag-of-words vectors takes as long as the database query. Its
execution time depends on the number of features and the size of
the vocabulary. We could reduce it by using a smaller vocabulary,
since we are using a relatively big one (1M words, instead of10–
60K [5,14]). However, we found that a big vocabulary produces more
sparse inverse indexes associated to words. Therefore, when querying,
fewer database entries must be traversed to obtain the results. This
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TABLE IV
PARAMETERS

FAST threshold 10
BRIEF descriptor length (Lb) 256
BRIEF patch size (Sb) 48
Max. features per image 300
Vocabulary branch factor (kw) 10
Vocabulary depth levels (Lw) 6
Min. score with previous image (s(vt,vt−∆t)) 0.005
Temporally consistent matches (k) 3
Normalized similarity score threshold (α) 0.3
Direct index level (l) 2
Min. matches after RANSAC 12
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Fig. 6. Final precision-recall curves in the training datasets withf = 2 Hz,
with the selected working pointα = 0.3.

reduces the execution time strikingly when querying, trading off, by
far, the time required when converting a new image. We conclude that
big vocabularies can improve the computation time when using large
image collections. Furthermore, note that querying a database with
more than 26K images takes9 ms only, suggesting this step scales
well with tens of thousands images. The geometrical verification
exhibits a long execution time in the worst case, but as we saw in
the previous section, this rarely occurs, whereas the75% of the cases
require less than1.6ms.

Our results show that we can reliably detect loops against databases
with 26K images in 52ms (22ms on average). This represents
an improvement of one order of magnitude with respect to the
300–700ms required by algorithms based on SIFT or SURF [4]–
[6,13,14]. For example, the state-of-the-art algorithm FAB-MAP 2.0
[13] needs423ms for extracting SURF,60ms for conversion into
bag of words,10ms for retrieving matching candidates against 25K
images, and120ms (worst case) for RANSAC geometric verification.
Our algorithm also outperforms the extremely efficient loop detector
developed by Konolige et al. [3], based on compact randomized tree
signatures. According to their figure 6, the method requires around
300ms to perform the complete loop detection against a database
with 4K images.

F. Performance of the final system

In previous sections we showed the effect of the parameters of
our system in the correctness of the results. For our algorithm we
chose the generic parametersk = 3, α = 0.3, and the DI2 method
for computing correspondences, since they proved effective under
several kinds of environments in the training datasets. A summary
with the parameters of the algorithm and the vocabulary is shown
in Table IV. In Fig. 6 we show the precision-recall curves obtained
in these datasets with these parameters, processing the sequences at
f = 2 Hz. In Table V we show the figures of those curves with
the final configuration. We achieved a high recall rate in the three
datasets with no false positives.

TABLE V
PRECISION AND RECALL OF OUR SYSTEM

Dataset # Images Precision (%) Recall (%)
NewCollege 5266 100 55.92
Bicocca25b 4924 100 81.20
Ford2 1182 100 79.45
Malaga6L 869 100 74.75
CityCentre 2474 100 30.61

TABLE VI
PRECISION AND RECALL OFFAB-MAP 2.0

Dataset # Images Min. p Precision (%) Recall (%)
Malaga6L 462 98% 100 68.52
CityCentre 2474 98% 100 38.77

In order to check the reliability of our algorithm with new datasets,
we used Malaga6L and CityCentre as evaluation datasets. For these,
we used our algorithm as a black box, with the default configuration
given above and the same vocabulary. For Malaga6L, we processed
the sequence atf = 2 Hz, and for CityCentre, we used all the
images, since these are already taken far apart. We also compared
our algorithm with the state-of-the-art FAB-MAP 2.0 algorithm [13],
configured by default as it is available in its authors’ website1. Given
a query image, FAB-MAP returns a vector with the probabilityp
of being at the same place than some previous image. Only those
matches withp higher than a threshold are accepted. This parameter
must be set by the user. We chosep ≥ 98% because it showed
the highest recall for100% precision in these datasets. Table V and
Table VI show the results in the evaluation datasets. For sake of
fairness, we remark on how this comparison was performed: FAB-
MAP 2.0 software does not apply any geometrical constraint to
the returned matches by default, so we applied a verification stage
similar to ours, consisting in computing a fundamental matrix with
the exhaustive search method. The input for FAB-MAP 2.0 must
be a sequence of disjoint images. For Malaga6L, we fed it with
images taken at frequency1 Hz. We also tried0.25 and0.5 Hz, but
1 Hz yielded better results. For CityCentre, we used all the available
images. Finally, FAB-MAP 2.0 provides a vocabulary of 11K words
of 128 float values, built from outdoor disjoint images, whereas our
vocabulary contains 1M words of 256 bits, created from a sequence
of images.

As shown in Table V, our algorithm with the parameters by default
is able to achieve large recall with no false positives in both evaluation
datasets. Our recall level is similar to that yielded by FAB-MAP 2.0,
but with lower execution time. In the Malaga6L dataset, all the loops
are correct in spite of the illumination difficulties and the depth of
the views. The results in CityCentre differ between our method and
FAB-MAP 2.0 because the change between loop closure images is
bigger than that in other datasets. This hinders the labor of the DI2

technique because features are usually more distinct and are separated
in early levels in the vocabulary tree. Note that this highlights the
little invariance of BRIEF, since others as SURF may be able to
produce more similar features between the images. Anyhow, we see
that our method is still able to find a large amount of loop events in
this dataset. This test shows that our method can work fine out of
the box in many environments and situations, and that it is able to
cope with sequences of images taken at low or high frequency, as
long as they overlap. We can also remark that the same vocabulary
sufficed to process all the datasets. This suggests that the source of
the vocabulary is not so important when it is big enough.

We show in Fig. 7 the detected loops in each dataset. No false

1http://www.robots.ox.ac.uk/∼mobile
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detections were fired. The trajectory in NewCollege is based on
partially corrected GPS data, so that some paths are inaccurately
depicted. Note that part of the vehicle where the camera is mounted
is present in all the images of Ford2; we removed the features that lay
on it. We see that detecting55.92% of the loop events is enough to,
for example, widely cover all the loop areas in a long trajectory as that
of NewCollege. On the right hand side of Fig. 7, we show examples of
correct loop detections in the training and evaluation datasets, with
the final corresponding features. These examples make the limited
scale invariance of BRIEF descriptors apparent. Most of the features
matched are distant, as we noticed in Section VI-B. The scale change
that BRIEF tolerates is shown in the correspondences that are close to
the camera in NewCollege and Bicocca25b, and those on the cars in
Malaga6L. However, BRIEF cannot handle such a large scale change
as that produced on the car in CityCentre, where all correspondences
were obtained from distant features. On the other hand, whenever
features are matched in background objects, a loop can be detected
despite medium translations. This is visible in CityCentre and Ford2,
where the vehicle moved along different lanes of the road.

VII. C ONCLUSIONS

We have presented a novel technique to detect loops in monocular
sequences. The main conclusion of our work is that binary fea-
tures are very effective and extremely efficient in the bag-of-words
approach. In particular, our results demonstrate that FAST+BRIEF
features are as reliable as SURF (either with 64 dimensions or with
128 and without rotation invariance) for solving the loop detection
problem with in-plane camera motion, the usual case in mobile
robots. The execution time and memory requirements are one order
of magnitude smaller, without requiring special hardware.

The reliability and efficiency of our proposal have been shown on
five very different public datasets depicting indoor, outdoor, static
and dynamic environments, with frontal or lateral cameras. Depart-
ing from most previous works, to avoid over-tuning, we restricted
ourselves to present all results using the same vocabulary, obtained
from an independent dataset, and the same parameter configuration,
obtained from a set of training datasets, without peeking on the
evaluation datasets. So, we can claim that our system offers robust
and efficient performance in a wide range of real situations, without
any additional tuning.

The main limitation of our technique is the use of features that
lack rotation and scale invariance. It is enough for place recognition
in indoor and urban robots, but surely not for all-terrain or aerial
vehicles, humanoid robots, wearable cameras, or object recognition.
However, our demonstration of the effectiveness of the binary bag-
of-words approach paves the road for the use of new and promising
binary features such as ORB [21] or BRISK [20], which outperform
the computation time of SIFT and SURF, maintaining rotation and
scale invariance.

As a final contribution to the community, the implementation of
our algorithm is publicly available online2.
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Fig. 7. Loops detected by our system in the five datasets (fromup to down: NewCollege, Bicocca25b, Ford2, Malaga6L, CityCentre), with some examples
of correct loops detected in scenes with motion blur and slight scale and perspective change. On the right hand side, linesdepict final corresponding features.
On the left hand side, the trajectory of the robot is depictedwith thin black lines in new places, and with thick red lines in revisited areas. There are no false
positives in any case.


