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Abstract

We address the robust matching of lines between two views, when camera motion
is unknown and dominant planar structures are viewed. The use of viewpoint non
invariant measures gives a lot of non matched or wrong matched features. The inclusion
of projective transformations gives much better results with short computing overload.
We use line features which can usually be extracted more accurately than points and
they can be used in cases where there are partial occlusions. In the first stage, the
lines are matched to the weighted nearest neighbor using brightness and geometric-
based image parameters. From them, robust homographies can be computed, which
allows to reject wrong matches and to add new good matches. When two or more
planes are observed, the corresponding homographies can be computed and they can
be used to obtain also the fundamental matrix, which gives constraints for the whole
scene. The simultaneous computation of matches and projective transformations is
extremely useful in many applications. It can be seen that the proposal works in
different situations requiring only a simple and intuitive parameter tuning.

Keywords: Machine vision, matching, lines, homographies, uncalibrated vision,
plane segmentation, multi-plane scene.

1 Introduction

We address the problem of robust matching of lines in two images when the camera motion is
unknown. Using lines instead of points has been considered in other works [1]. Straight lines
can be accurately extracted in noisy images, they capture more information than points,
specially in man-made environments, and they may be used when occlusions occur. The
invariant regions used to match images, as the well known SIFT [2], often fails due to lack
of textures in man made environments with homogeneous surfaces [3]. Fortunately in this
kind of scenes line segments are available to match them. However, line matching is more
difficult than point matching because the end points of the extracted lines is not reliable.
Besides that, there is not geometrical constraint, like the epipolar, for lines in two images.
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The putative matching of features based on image parameters has many drawbacks, giving
nonmatched or wrong matched features.

Previously, the problem of wide baseline matching has been addressed establishing a
viewpoint invariant affinity measure [4]. We use the homography in the matching process
to select and to grow previous matches which have been obtained combining geometric
and brightness image parameters. Scenes with dominant planes are usual in man made
environments, and the model to work with multiple views of them is well known. Points or
lines on the world plane projected in one image are mapped to the corresponding points or
lines in the other image by a plane-to-plane homography [5]. As known, there is no geometric
constraint for infinite lines in two images of a general scene, but the homography is a good
constraint for scenes with dominant planes or small baseline image pairs, although they have
large relative rotation.

Robust estimation techniques are currently unquestionable to obtain results in real sit-
uations where outliers and spurious data are present [6, 7]. In this work the least median
of squares and the Ransac methods have been used to estimate the homography. They pro-
vide not only the solution in a robust way, but also a list of previous matches that are in
disagreement with it, which allows to reject wrong matches. To compute the homographies,
points and lines are dual geometric entities, however line-based algorithms are generally less
usual than point-based ones [8]. Thus, some particular problems related to data representa-
tion and normalization must be considered in practice. We compute the homographies from
corresponding lines in two images making use of classical normalization of point data [9].

The simultaneous computation of matches and projective transformation between images
is useful in many applications and the search of one homography is right if the scene features
are on a plane or for small baseline image pairs. Although this transformation is not exact
in general situations, the practical results are also good when the distance from the camera
to the scene is large enough with respect to the baseline. For example, this assumption
gives very good results in robot homing [10], where image disparity is mainly due to camera
rotation, and therefore a sole homography captures the robot orientation, that is the most
useful information for a robot to correct its trajectory.

Our proposal can also be applied in photogrammetry for automatic relative orientation
of convergent image pairs. In this context, points are the feature mostly used [11], but lines
are plentiful in urban scenes. We have put into practice our proposal with aerial images and
images of buildings, obtaining satisfactory results.

If the lines are in several planes, the corresponding homographies can be iteratively
obtained. From them, the fundamental matrix, which gives a general constraint for the
whole scene, can be computed [12]. We have also made experiments to segment several
scene planes when they exist, obtaining line matching in that situation. This segmentation
of planes could be very useful to make automatically 3D model of urban scenes.

After this introduction, we present in §2 the matching of lines using geometric and
brightness parameters. The robust estimation of homographies from lines is explained in §3.
After that, we present in §4 the process to obtain the final matches using the geometrical
constraint given by the homography. Then we present the multi-plane method §5, and the
useful case of having only vertical features §6. Experimental results with real images are
presented in §7. Finally, §8 is devoted to expose the conclusions. A previous version of
this matcher was presented in [13], but now we have completed and extended the work
showing the multi plane method and the special case of having only vertical lines. We also
include experiments made with the new software version which implements different robust
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Figure 1: Left: Segmentation of the image into regions which have similar orientation of
brightness gradient, LSR. Right: Zoom of the LSRs extracted on real image. From the LSR,
we obtain the line with its geometric description and also attributes related to its brightness
and contrast used for the line matching.

techniques.

2 Basic matching

As said, the initial matching of straight lines in the images is made to the weighted nearest
neighbor. These lines are extracted using our implementation of the method proposed by
Burns [14], which computes spatial brightness gradients to detect the lines in the image.
Pixels having the gradient magnitude larger than a threshold are grouped into regions of
similar direction of brightness gradient. These groups are named Line Support Regions
(LSR). A least-squares fitting into the LSR is used to obtain the line, and the detector gives
not only the geometrical parameters of the lines, but also several attributes related to their
brightness and some quality attributes, that provide very useful information to select and
identify the lines (Fig. 1).

We use not only the geometric parameters, but also the brightness attributes supplied
by the contour extractor. So, agl and c (average grey level and contrast) in the LSR, are
combined with geometric parameters of the segments such as midpoint coordinates (xm, ym),
the line orientation θ (in 2π range with dark on the right and bright on the left) and its
length l.

In several works, the matching is made over close images. In this field, correspondence
determination by tracking geometric information along the image sequence has been pro-
posed as a good solution [15]. We determine correspondences between lines in two images
of large disparity in the uncalibrated case. Significant motion between views or changes on
light conditions of the viewed scenes makes that few or none of the defined line parameters
remain invariant between images. So, for example, approaching motions to the objects gives
bigger lines which are also going out the image. Besides that, measurement noise introduces
more problems to the desired invariance of parameters.

Now, it must be stated that a line segment is considered to select the nearest neighbor, but
assuming higher uncertainty along the line than across it. However, to compute afterwards
projective transformations between images, only the infinite line information is considered.
This provides an accurate solution being robust to partial occlusions without assuming that
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the tips of the extracted line are the same.

2.1 Similarity measures

In the matching process two similarity measures are used: a geometric measure and a bright-
ness measure. We name rg the difference of geometric parameters between both images (1, 2)

rg =




xm1 − xm2

ym1 − ym2

θ1 − θ2

l1 − l2


 .

As previously [15], we define the R matrix to express the uncertainty due to measurement
noise in the extraction of features in each image

R =




σ2
⊥S2 + σ2

‖C
2 σ2

⊥CS − σ2
‖CS 0 0

σ2
⊥CS − σ2

‖CS σ2
⊥C2 + σ2

‖S
2 0 0

0 0 2σ2
⊥

l2
0

0 0 0 2σ2
‖




.

where C = cos θ y S = sin θ. Location uncertainties of segment tips along the line
direction and along the orthogonal direction are represented by σ‖ and σ⊥ respectively.

Additionally we define the P matrix to represent the uncertainty on the difference of the
geometric parameters due to camera motion and unknown scene structure

P =




σ2
xm

0 0 0
0 σ2

ym
0 0

0 0 σ2
θ 0

0 0 0 σ2
l


 ,

where σi, (i = xm, ym, θ, l) represents the uncertainty of variation of the geometric
parameters of the image segment.

Thus, from those matrixes we introduce S = R1 +R2 +P to weigh the variations on the
geometric parameters of corresponding lines due to both, line extraction noise (R1 in the
first image and R2 in the second image) and unknown structure and motion.

Note in R that σ‖ is bigger than σ⊥. Therefore measurement noise of xm and ym are
coupled and the line orientation shows the direction where the measurement noise is bigger
(along the line). However, in P the orientation does not matter because the evolution of
the line between images is mainly due to camera motion, which is not dependent on the line
orientation in the image.

The matching technique in the first stage is made to the nearest neighbor. The similarity
between the parameters can be measured with a Mahalanobis distance as

dg = rg
TS−1rg.

The second similarity measure has been defined for the brightness parameters. In this
case we have

B =

[
σ2

agl 0
0 σ2

c

]
,
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where σagl and σc represent the uncertainty of variations of the average gray level and
the contrast of the line. Both depend on measurement noises and on changes of illumination
between the images.

Naming rb the variation of the brightness parameters between both images

rb =

[
agl1 − agl2

c1 − c2

]
,

the Mahalanobis distance for the similarity between the brightness parameters is

db = rb
TB−1rb.

2.2 Matching criteria

Two image lines are stated as compatible when both, geometric and brightness variations
are small. For one line in the second image to belong to the compatible set of a line in the
first image, the following tests must be satisfied.

• Geometric compatibility

Under assumption of Gaussian noise, the similarity distance for the geometric param-
eters is distributed as a χ2 with 4 degrees of freedom. Establishing a significance level
of 5%, the compatible lines must fulfill,

dg ≤ χ2
4(95%).

• Brightness compatibility

Similarly referring to the brightness parameters, the compatible lines must fulfill,

db ≤ χ2
2(95%).

A general Mahalanobis distance for the six parameters is not used because the correct
weighting of so different information as brightness based and location based in a sole dis-
tance is difficult and could easily lead to wrong matches. Thus, compensation between high
precision in some parameters with high error in other parameters is avoided.

A line in the first image can have more than one compatible line in the second image.
From the compatible lines, the line having the smallest dg is selected as putative match. The
matching is carried out in both directions from the first to second image and from second to
first. A match (n1,n2) is considered valid when the line n2 is the putative match of n1 and
simultaneously n1 is the putative match of n2.

In practice the parameters σj(j = ⊥, ‖, xm, ym, θ, l, agl, c) introduced in R,P,B must
be tuned according to the estimated image noise, expected camera motion and illumination
conditions, respectively.
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3 From lines to homographies

The representation of a line in the projective plane is obtained from the analytic representa-
tion of a plane through the origin: n1x1+n2x2+n3x3 = 0. The coefficients of n = (n1, n2, n3)

T

correspond to the homogeneous coordinates of the projective line. All the lines written as
λn are the same than n. Similarly, an image point p = (x, y, 1)T is also an element of the
projective plane and the equation pT · n = nT · p = 0 represents that the point p is on the
line n, which shows the duality of points and lines.

A projective transformation between two projective planes (1 and 2) can be represented
by a linear transformation H21, in such a way that p2 = H21p1. Considering the above

equations for lines in both images, we have n2 =
[
H−1

21

]T
n1. This homography requires

eight parameters to be completely defined, because it is defined up to an overall scale factor.
A pair of corresponding points or lines gives two linear equations in terms of the elements of
the homography. Thus, four pairs of corresponding lines assure a unique solution for H21, if
no three of them are parallel.

3.1 Computing homographies from corresponding lines

Here, we obtain the projective transformation of points (p2 = H21p1), but using matched
lines. To deduce it, we suppose the start (s) and end (e) tips of a matched line segment to
be ps1,pe1,ps2,pe2, which usually will not be corresponding points. The line in the second
image can be computed as the cross product of two of its points (in particular the observed
tips) as

n2 = ps2 × pe2 = p̃s2pe2, (1)

where p̃s2 is the skew-symmetric matrix obtained from vector ps2.
As the tips belong to the line we have, pT

s2n2 = 0; pT
e2n2 = 0. As the tips of the line in

the first image once transformed also belong to the corresponding line in the second image,
we can write, pT

s1H
T
21n2 = 0; pT

e1H
T
21n2 = 0. Combining with equation (1) it turns out,

pT
s1H

T
21p̃s2pe2 = 0 ; pT

e1H
T
21p̃s2pe2 = 0. (2)

Therefore each pair of corresponding lines gives two homogeneous equations to com-
pute the projective transformation, which can be determined up to a non-zero scale factor.
Developing them in function of the elements of the projective transformation, we have

(
Axs1 Ays1 A Bxs1 Bys1 B Cxs1 Cys1 C
Axe1 Aye1 A Bxe1 Bye1 B Cxe1 Cye1 C

)
h =

(
0
0

)
,

where h = (h11 h12 h13 h21 h22 h23 h31 h32 h33)
T is a vector with the elements of H21 , and

A = ys2 − ye2, B = xe2 − xs2 and C = xs2ye2 − xe2ys2.
Using four line correspondences, we can construct a 8× 9 matrix M. The solution for h

is the eigenvector associated to the least eigenvalue (in this case the null eigenvalue) of the
matrix MT M. If we have more than the minimum number of good matches, an estimation
method may be considered to obtain a better solution. Thus n matches give a 2n×9 matrix
M, and the solution h can be obtained using the singular value decomposition of this matrix
[5].
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It is known that a previous normalization of data avoids problems of numerical compu-
tation. As our formulation only uses image coordinates of observed tips, data normalization
proposed for points [9] has been used. In our case the normalization makes the x and y
coordinates to be centered in an image which has unitary width and height.

Equations (2) can be used as a residue to designate inliers and outliers with respect to
a candidate homography. In this case the residue is an algebraic distance and the relevance
of each line depends on its observed length, because the cross product of the segment tips is
related to its length.

Alternatively a geometric distance in the image can be used. It is obtained from the sum
of the squared distances between the segment tips and the corresponding transformed line

d 2 =
(pT

s1H
T
21p̃s2pe2)

2

(HT
21p̃s2pe2)2

x + (HT
21p̃s2pe2)2

y

+
(pT

e1H
T
21p̃s2pe2)

2

(HT
21p̃s2pe2)2

x + (HT
21p̃s2pe2)2

y

, (3)

where subindexes ()x and ()y indicate first and second component of the vector respectively.
Doing the same for both images and with both observed segments, the squared distance

with geometric meaning is:

d 2 =
(pT

s1H
T
21p̃s2pe2)

2 + (pT
e1H

T
21p̃s2pe2)

2

(HT
21p̃s2pe2)2

x + (HT
21p̃s2pe2)2

y

+
(pT

s2H
−T
21 p̃s1pe1)

2 + (pT
e2H

−T
21 p̃s1pe1)

2

(H−T
21 p̃s1pe1)2

x + (H−T
21 p̃s1pe1)2

y

(4)

3.2 Robust estimation

The least squares method assumes that all the measures can be interpreted with the same
model, which makes it very sensitive to outliers. Robust estimation tries to avoid the outliers
in the computation of the estimate.

From the existing robust estimation methods [6], we have initially chosen the least median
of squares method. This method makes a search in the space of solutions obtained from
subsets of minimum number of matches. If we need a minimum of 4 matches to compute
the projective transformation, and there are a total of n matches, then the search space will
be obtained from the combinations of n elements taken 4 by 4. As that is computationally
too expensive, several subsets of 4 matches are randomly chosen. The algorithm to obtain
an estimate with this method can be summarized as follows:

1. A Monte-Carlo technique is used to randomly select m subsets of 4 features.

2. For each subset S, we compute a solution in closed form HS.

3. For each solution HS, the median MS of the squares of the residue with respect to all
the matches is computed.

4. We store the solution HS which gives the minimum median MS.

A selection of m subsets is good if at least one of them has no outliers. Assuming
a ratio ε of outliers, the probability of one subset to be good can be obtained [16] as,
P = 1− [1− (1− ε)4]

m
. Thus assuming a probability (1−P ) of mismatch the computation,

the number of subset m to consider can be obtained. For example, if we want a probability
P = 0.99 of one of them being good, having ε = 35% of outliers, the number of subsets m
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should be 24. Having ε = 70% of outliers the number of subsets m should be 566 and a
minor quantile instead of the median must be selected. Anyway, a reduction of ten times in
the probability of mismatch the computation (P = 0.999) only yields a computational cost
of 0.5 times larger (m = 36 with ε = 35% and m = 849 with ε = 70%).

3.3 Rejecting wrong basic matches

Once the solution has been obtained, the outliers can be selected from those of higher residue.
Good matches can be selected between those of residue smaller than a threshold. As in [6] the
threshold is fitted proportional to the standard deviation of the error that can be estimated
[16] as,

σ̂ = 1.4826 [1 + 5/(n− 4)]
√

MS.

Assuming that the measurement error for in inliers is Gaussian with zero mean and
standard deviation σ, then the square of the residues is a sum of Gaussian variables and
follows a χ2

2 distribution with 2 degrees of freedom. Taking, for example, a 5% of probability
of rejecting a line being correct, the threshold will be fixed to 5.99 σ̂2.

4 Final matches

From here on, we introduce the geometrical constraint imposed by the estimated homography
to get a bigger set of matches. Our objective here is to obtain at the end of the process
more good matches, also eliminating wrong matches given by the basic matching. Thus
final matches are composed by two sets. The first one is obtained from the matches selected
after the robust computation of the homography passing additionally an overlapping test
compatible with the transformation of the segment tips. The second set of matches is
obtained taking all the segments not matched initially and those being rejected previously.
With this set of lines, a matching process similar to the basic matching is carried out.
However, now the matching is made to the nearest neighbor segment transformed with the
homography. The transformation is applied to the end tips of the image segments using the
homography H21 to find, not only compatible lines but also compatible segments in the same
line.

In the first stage of the matching process there was no knowledge of the camera motion.
However in this second step the computed homography provides information about expected
disparity and therefore the uncertainty of geometric variations can be reduced. So, a new
tuning of σxm , σym , σθ and σl, is considered. To automate the process, a global reduction of
these parameters has been proposed and tested in several situations, obtaining good results
with reductions of about 1/5.

As the measurement noise (σ‖ and σ⊥) has not changed, the initial tuning of these
parameters is maintained in this second step. Note that the brightness compatibility set is
the initially computed, and therefore it is not repeated.

5 Different planes

When lines are in different planes, the corresponding homographies can iteratively be com-
puted. Previously, we have explained how to determine a homography assuming that some
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of the lines are outliers. The first homography can be computed in this way assuming that
a certain percentage of matched lines are good matches and belong to a plane, and the
other matches are bad or they cannot be explained by this homography. We do not have
a priori knowledge about which plane of the scene is going to be extracted the first, but
the probability of a plane being chosen increases with the number of lines in it. The most
reasonable way to extract a second plane is eliminating the lines used to determine the first
homography. Here we are assuming that lines belonging to the first plane do not belong to
the second, which is true except for the intersection line between both planes. This idea of
eliminating lines already used will apply if more planes are extracted.

On the other hand, in the multi-plane case the percentage of outliers for each homography
will be high even all the matches are good. As the least median of squares method has a
breakdown point in 50% of outliers, we have used in this case the Ransac method [17] which
needs a tuning threshold, but works with a less demanding breakdown point.

Besides that, all the homographies obtained from an image pair are related between
them. This relation can be expressed with the fundamental matrix (F21) and the epipole
(e2), which is unique for an image pair, through the following equation:

F21 = [e2]×Hπ
21, (5)

[e2]× being the skew matrix corresponding to epipole e2 of the second image and Hπ
21 the

homography between first and second image through plane π. If at least two homographies
(Hπ1

21 ,H
π2
21) can be computed between both images corresponding to two planes (π1, π2), an

homology H = Hπ1
21 · (Hπ2

21)
−1, that is a mapping from one image into itself, exists.

It turns out that the homology has two equal eigenvalues [5]. The third one is related to
the motion and to the structure of the scene. These eigenvalues can be used to test when
two different planes have been computed, and then the epipole and the intersection of the
planes can be also obtained. The epipole is the eigenvector corresponding to the non-unary
eigenvalue of the homology and the other two eigenvectors define the intersection line of the
planes [18]. In case of small baseline or if there exist only one plane in the scene, the epipolar
geometry is not defined and only one homography can be computed. So possible homology
H will be close to identity, up to scale.

In practice, we propose a filter to notice the goodness of the homology using these ideas.
Firstly, we normalize the homology dividing by the median eigenvalue. If there are no two
unary eigenvalues, up to a threshold, then the computation of the second homography is
repeated. If the three eigenvalues are similar we search if the homology is close to iden-
tity. In this case two similar homographies would explain the scene or the motion, and
the fundamental matrix cannot be computed. In other case, two planes and two coherent
homographies are given as result of the process. From them the fundamental matrix can be
computed [12].

6 Particular case: Vertical lines

A special case of interest in some applications can be considered reducing in one dimension
the problem. For example, when robot moves at man made environments, the motion is on
a plane and vertical lines give enough information to carry out visual control. For vertical
lines, only the x coordinate is relevant to compute the homography, therefore the problem
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is simplified. The homography now has three parameters and each vertical line gives one
equation, therefore three vertical line correspondences are enough.

The matching is quite similar to the presented for the lines in all directions. In this
case the parameter referred to the orientation of the lines is discarded because it has no
sense, although the lines are grouped in two incompatible subsets, those having 90 degrees
of orientation and those with 270 degrees of orientation.

6.1 Estimation of the homography

In this case, as the dimension of the problem is reduced, only the xm coordinate is relevant
for the computation of the projective transformation H21. We can use the point based
formulation which is simpler because a vertical line can be projectively represented as a
point with (xm, 1) coordinates. Then, we can write, up to a scale factor

(
λ xm2

λ

)
=

(
h11 h12

h21 h22

) (
xm1

1

)

Therefore each pair of corresponding vertical lines having xm1 and xm2 coordinates re-
spectively provides one equation to solve the matrix H21

(
xm1 1 −xm1xm2 −xm2

)



h11

h12

h21

h22


 = 0.

With the coordinates of at least n = 3 vertical line correspondences we can construct
a n × 4 matrix M. The homography solution is the eigenvector associated to the least
eigenvalue of the MTM matrix.

As above before, we use a robust method to compute the projective transformation. With
vertical lines the problem is computationally simpler. For example with P = 0.99 and 70%
of outliers only 168 sets of 3 matches must be considered (in the general case we need 566
sets of 4 matches). As told before, the estimated homography is also used to obtain a better
set of matched lines.

7 Experimental Results

A set of experiments with different kind of images has been carried out to test the proposal.
The images correspond to different applications: Indoor robot homing, images of buildings,
and aerial images.

In the algorithms there are extraction parameters to obtain more or less line segments
according to its minimum length and minimum gradient. There are also parameters to match
the lines, whose tuning has turned out simple and quite intuitive. In the experiments we have
used the following tuning parameters σ⊥ = 1, σ‖ = 10, σagl = 8, σc = 4, σxm = 60, σym =
20, σθ = 2, σl = 10, or small variation with respect to them depending on expected image
disparity.

We have applied the algorithm presented for robot homing. In this application the robot
must go to previously learnt positions using a camera [10]. The robot corrects its heading
from the computed projective transformation between target and current images. In this
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Robot Rotation σxm Basic After H21 Final

2◦ 60 92 (1W) 78 (0W) 90 (0W)
4◦ 60 73 (5W) 56 (1W) 76 (0W)
6◦ 60 63 (4W) 47 (1W) 63 (0W)
8◦ 60 53 (6W) 31 (0W) 52 (0W)
10◦ 60 47 (9W) 35 (1W) 50 (0W)
12◦ 100 41 (9W) 30 (2W) 33 (1W)
14◦ 100 36 (12W) 24 (2W) 32 (1W)
16◦ 100 27 (9W) 17 (3W) 30 (1W)
18◦ 140 37 (14W) 24 (3W) 28 (1W)
20◦ 140 28 (10W) 17 (1W) 24 (0W)

Table 1: Number of matches with several robot rotation, indicating also the number of wrong
matches (W). First column show the robot rotation. Second shows the tuning of σxm used in
the matching. Third shows the basic matches. Forth shows the matches obtained after the
constraint imposed by the homography and fifth column shows the final matches. Here, the
matches that are good as lines but wrong as segments (they are not overlapped) are counted
as wrong matches.

experiment a set of robot rotations (from 2 to 20 degrees) has been made. The camera center
is about 30 cm. out of the axis of rotation of the robot and therefore this camera motion
has a short baseline. In the table 1 the number of matches in the successive steps with this
set of camera motions are shown. The number of lines extracted in the reference image is
112. Here, the progressive advantage of the simultaneous computation of the homography
and matching can be seen. When the image disparity is small, the robust estimation of the
homography does not improve the basic matching. However, with a disparity close to 70%
of the image size, the basic matching produces a high ratio of wrong matches (> 30%), that
are automatically corrected in the final matching. We observe that in this case the system
also works even between two images having a large image disparity.

To simplify, only the images corresponding to the 18 degrees of robot rotation are shown
(Fig. 2). A 38 % of wrong matches are given by the basic matching. At the final matching
stage, all the matches are good when considered as lines, although one of them can be
considered wrong as segment.

We have also used two aerial images with large baseline (Fig. 3). In photogrammetry
applications usually putative matching has a high ratio of spurious results. This is confirmed
in our case, where the basic matching has given a ratio of wrong matches higher than 50%,
which is the theoretical limit of least median of squares method. However, if we select a
smaller quantile of the squares of the residue instead of the median, the robust method works
properly. The results have been obtained with the Least 30-Quantile of Squares (Fig. 3).
The robust computation of the homography provides 55 matches, 11 of them being wrong as
segments but good as infinite lines. Among the 105 final matches, there are less than 3% of
wrong matches which correspond to contiguous cars. This means that the final matches are
duplicated with respect to the matches obtained with the homography. Note also that the
final matches selected are mainly located on the ground. There are some lines on the roofs
of the buildings but they are nearly parallel to the flight of the camera which is coherent
with the model of homography used.
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Figure 3: Two aerial images with large baseline. In the first row, the lines extracted are
superimposed to the images (approximately 300 lines/image). The second row shows the
basic matches (121 matches, 64 being wrong). Third row shows the matches at the final
stage (105 matches, 3 being wrong that are corresponding to contiguous cars).
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Figure 4: Two examples of image pairs with automatically matched vertical lines.

Basic.Matches Good Final.Matches Good
House 148 75% 114.6 (8.91) 99% (1%)
College 196 82% 156.7 (11.09) 96% (1%)

Table 2: Number of matches of scenes in Figs. 5 and 6. Only the lines on the two main
planes are considered. We have repeated the experiments fifty times using the same basic
matches, showing as final matches the mean values and, in brackets, the standard deviation.

We also show two examples of matched vertical lines with an homography of reduced
dimension (Fig. 4). In both cases the percentage of good final matches is close to 100%.
Using vertical lines, we have developed a real time implementation for robotic applications
in man made environments [10].

Other experiments have been carried out to match lines which are in several planes,
segmenting simultaneously the planes (Figs. 5, 6). In Table 2 we show the number of
matches and the ratio of good matches for 50 repetitions of the robot computation. In this
case, once an homography has been computed, the robust homography computation and
the growing of matches process has been iteratively repeated twice. As it can be seen, the
number and quality of the final matches is very good. The homology filter just commented
in section 5 has been used to detect situations where a second plane is not obtained and
therefore a sole homography can be computed, or when the homographies do not give a
right homology due to noise or bad extraction. It can be seen that some lines of the second
plane have been selected by the first homography (Fig. 6). The reason is that these lines
are nearly coincident with epipolar lines and they can be selected by any homography being
compatible with the fundamental matrix.

The method also work with rotated images. In this case σθ must be changed according
to the image disparity. We show an example of a rotated image pair of short baseline where
a sole homography gives very good results (Fig. 7).
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Figure 5: Images of the house. First row: basic matches. Second row: final matches
corresponding to the first homography. Third row: final matches corresponding to second
homography (Original images from KTH, Stockholm).

16



1

2 3

4

567
8

9
10

11
12

1314

15

16
17

18
19

2021

22

23

24

25

26272829
3031

32333435

3637

38 39
4041 42

4344
45

46

47 4849

50 5152 53 54
5556

5758

59 60

61
62

63

64
65

66

676869

70
71

72

73
7475 76

77
78

79
80 81

82

83

84 8586 8788 8990 9192
93

1

2
3

4

567

8

9

10

1112
1314

15

1617

18 192021

22

23

24

25

26272829
3031

323334
35

3637

38 39
4041 42

4344
45

46

47
4849

50
5152 53 545556

5758

59 60

61

62

63
64

65

66

6768
69

70

71

72

7374 75
76

77
78

7980
81

82

83

84
8586

8788
8990 91

92

93

1
2

3
45

6

7
89 10

11

12

13
14
15

1617
18

19

20

2122
2324

25
26

27 28 29

30 313233 34

35 36 37
38

39

4041

42

43

44

45

46

47

48

49

50 51

52535455

565758 59
60

61

62

63

64
65

66

67
68

69

70

71

72

73

74

1 2
3 4

5 6
7

8
9

10

11
12

13
1415

1617
18

19

20

2122
2324

25
26

27 28
29

30 313233 34

3536 3738

39

4041

42

43

44

45

46

47

48

49

50 51

52535455

565758 59
6061

62

63

64

65

66

6768

69

70

71

72

73

74

Figure 6: Images of the college. First row: basic matches. Second row: final matches
corresponding to first homography. Third row: final matches corresponding to second ho-
mography (Original images from VGG, Oxford).
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Figure 7: Pair of rotated short baseline images and final line correspondences.
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8 Conclusions

We have presented and tested a method to automatically obtain matches of lines simultane-
ously to the robust computation of homographies in image pairs. The robust computation
works especially well to eliminate outliers which may appear when the matching is based
on image properties and there is no information of scene structure or camera motion. The
homographies are computed from lines extracted and the use of lines has advantages with
respect to the use of points. The geometric mapping between uncalibrated images provided
by the homography turns out useful to grow matches and to eliminate wrong matches.

All the work is automatic with only some previous tuning of parameters related to the
expected global image disparity. As is seen in the experiments, the proposed algorithm works
with different types of scenes. With planar scenes or in situations where disparity is mainly
due to rotation, the method gives good results with only one homography. However, it is
also possible to compute several homographies when several planes are in the scene, which
are iteratively segmented. In this case, the fundamental matrix can be computed from lines
through the homographies, obtaining a constraint for the whole scene. Currently we are
working with other image invariants to improve the first stage of the process.
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