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Abstract

A robust method to compute homographies using lines in two uncalibrated
images is presented and tested. Line features can usually be extracted and
matched more accurately than points and they can be used in cases where
there are partial occlusions. Lines and points are dual features to compute
homographies, but some particular problems related to the representation and
the normalization of data, avoiding singularities, must be considered in practice.
Some experiments related to the robust selection of matched lines belonging
to a plane have been used to test the presented method. The results show
that the robust technique turns out stable and useful, and it opens interesting
uncalibrated applications particularly in robot perception and navigation.

1 Introduction

In this paper a robust estimation method is used to compute homographies using
corresponding lines in two uncalibrated images. Perspective images of planar scenes
are usual in perception of man made environments, and the camera model to work
with them is well known. Points or lines on the world plane or in one image of the
world plane are mapped to points or lines in the other image by a plane to plane
homography, also known as a plane projective transformation. A homography is
represented by a 3x3 matrix, which allows computing geometrical measurement of
the world, directly in the image [1].

Using lines instead of points has been considered by many researches. Straight
lines can be extracted more accurately than points in noisy images, they are also
easier to match than the latter, and may be used in cases where occlusions occur.
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To compute homographies, points and lines are dual geometric entities, however
line-based algorithms are generally more difficult than point-based ones [2]. Thus,
some particular problems related to data representation and normalization must be
considered in practice, because singularities or ill conditioning may occur. In this
paper, we present a formulation to compute homographies from corresponding lines
in two images that makes use of classical normalization of point data [3], and that
avoids singularities.

On the other hand, robust estimators are actually unquestionable techniques to
obtain results in real situation where outliers and spurious data are present, and
many researches make use of them [4]. In this paper the least median of squares
method [5] has been tested and used. It provides as output not only the solution in
a robust way, but also a list of data that are in disagreement with it, which allows
to reject bad matches.

Two main motivations underlie our work. Firstly we search a robust method to
improve matching of lines [6]. Secondly, we try to segment planar regions of the
scene using two uncalibrated images, which can be very useful for 3D perception
and robot navigation in man made environments [7].

2 Points, lines and homographies

A point in the projective plane is represented by three Cartesian coordinates, p =
(1,29, 23)T, which represents a ray through the origin in the 3D space [8]. Only
the direction of the ray is relevant, so all points written as Ap = (Ax1, Aza, Ax3)” are
equivalent. The classical Cartesian coordinates of the point (x,y) can be obtained
intersecting the ray with a special plane perpendicular to x3 axis and located at unit
distance along x3. This is equivalent to scale p as, p = (z,v, I)T. Projected points
in an image are represented in this way, considering this special plane as the image
plane. As normal cameras have a limited field of view, the special case 3 = 0,
which corresponds with a ray parallel to the image plane, cannot be observed, and
therefore observed points have always x3 # 0.

The representation of a line in the projective plane is obtained from the analytic
representation of a plane through the origin: nix1 + noxe + ngxrs = 0. The equation
coefficients n = (n1,n2,n3)7 correspond to the homogeneous coordinates of the
projective line. Again An is the same line than n. The case ng = 0 corresponds to a
line through the origin of the virtual image plane. As cameras have a limited field
of view, observed lines have usually ns close to 0.

The projective equation of a line can be represented in different ways because n
and p may be interchanged without affecting the equation, which shows the duality



of points and lines. Thus, n-p=n’p =p’n=0.

A projective transformation between two projective planes (1 and 2) can be rep-
resented by a linear transformation po = T1p;. If the transformation is represented
in Cartesian coordinates it results non-linear.

Since points and lines are dual in the projective plane, the transformation of
the line coordinates is also linear. Considering the equation previously presented,
anpl = 0 and if a point pq, is transformed as po = T91p1 then, anT2_11p2 =0.

Besides, as the transformed line equation is n ps = 0, the transformed line coor-

T
dinates are, no = {T;ll] n;. Therefore, lines and points are similarly transformed
but the transformation matrix of lines is the transpose of the inverse of the matrix
defining the point transformation [8].

A homography or a plane projective transformation requires eight parameters to
be completely defined, because there is an overall scale factor. A corresponding point
or line gives two linear equations in terms of the elements of the homography matrix.
The most common and simplest method to compute an homography supposes an
element of the matrix to be no zero, solving for the other eight elements. In principle
four corresponding points or lines assure a unique solution for T1o, if no three of the
image points are collinear, or if no three of the image lines are parallel. To have an
accurate solution it is interesting to have the features as separate in the image as
possible.

3 Computing Homographies from Lines

Using corresponding points, two equations for each ¢ match are usually written as,
(N2, \iyoi, Mi)T = To1 (14,914, 1)T [8]. As points and lines are dual, this equation
could be used to compute the projective transformation from lines. However, using
lines it is not suitable to put n as n = (ns,ny, 1), because observed lines with real
images are close to the singularity (n, = 0).

In our work, we obtain the projective transformation of points po = To1p1 but
using matched line segments. To deduce it, we suppose the start and end tips of a
matched line segment to be ps1, Pe1, Ps2, Pe2, Which usually will not be corresponding
points. The line in the image can be computed as the cross product of two of its
points (in particular the observed tips) as,

Ny = P2 X Pe2 = Ps2Pe2 (1)

where pgo is the skew-symmetric matrix,



0 -1 Ys2
Ps2 = 1 0 —Ts2
—Ys2 Ts2 0

As the tips belong to the line we have, pony = 0; plny = 0. And as the
transformed tips also belong to the corresponding line, we can write, psTnglng =0;
pli;TL ny = 0. With the equation (1) we have,

Therefore each couple of corresponding line segments gives two homogeneous
equations to compute the projective transformation, which can be determined up
to a non-zero scale factor. Developing them in function of the elements of the
homography matrix, we have

Axsl Aysl A Bxsl Bysl B Oxsl Cysl C t = 0
Al’el Ayel A B‘rel Byel B Cxel Cyel C N 0

where t = (t11 t12 t13 to1 taa tos t31 tao t33)T is a vector with the elements of the ho-
mography matrix, and A = ys2 — Ye2, B = Tea — Tso and C = T oWz — Teals2.

Using four corresponding lines, we can construct a 8x9 matrix M. Then, the
solution corresponds with the eigenvector associated to the least eigenvalue (in this
case the null eigenvalue) of the matrix M’ M.

In order to have a reliable transformation, more than the minimum number of
matches and an estimation method must be considered. The previous formulation is
valid using as residue the algebraic distance corresponding to these equations. In this
case the residue will be related to the distance from the tips of the observed segment
to the corresponding transformed line, and the relevance of each line depends on
its observed length because the cross product of the segment tips is related to the
segment length.

It is known that a previous normalization of data is suitable to avoid numerical
computation problems. As our formulation only uses image coordinates of observed
tips of lines, the data normalization proposed for points [3] has been directly used.

4 Robust estimation

The least squares method assumes that all the measures can be interpreted with
the same model. This makes the method to be very sensitive to out of norm data.
Robust estimation tries to avoid outliers in the computation of the estimate.



From the existing robust estimation methods [9], we have chosen the least median
of squares method. This method makes a search in the space of solutions obtained
from subsets of minimum number of matches. If we need a minimum of 4 matches
to compute the projective transformation, and there are a total of n matches, then
the search space will be obtained from the combinations of n elements taken 4 by 4.
As it is too big, several subsets of 4 matches are randomly chosen. The algorithm
to obtain an estimate with this method can be summarized as follows:

1. A Monte-Carlo technique is used to randomly select m subsets of 4 features.
2. For each subset S, we compute a solution in closed form Tg.

3. For each solution Tg, the median Mg of the squares of the residue with respect
to all the matches is computed.

4. We store the estimation of parameters Tg which gives the minimum Mg.

A selection of m subsets is good if at least one of them has no outliers. Assuming
a ratio e of outliers, the probability of one of them been good can be obtained as
5], P=1—[1—(1—¢€)*™. For example, if we want a probability P = 0.999 of one
of them being good, having ¢ = 35% of outliers, the number of subsets m should be
34.

Once the solution has been obtained, the outliers can be selected from those of
maximum residue. Good matches can be selected between those of residue smaller
than a threshold. In [9] the threshold is fitted proportional to the standard deviation
of the residue, which is estimated as 6 = 1.48[1 + 5/(n — 4)] /Ms.

When the bad matches have been rejected, a better solution can be obtained
with the selected matches by the least squares method, as explained above.

5 Experimental Results

The method presented could be used to improve classical matching techniques [6],
allowing also to compute a geometric relation between images. From it, many ap-
plications in robot navigation or scene reconstruction could be achieved.

In order to test the capacity of selection and accuracy of the robust method, we
firstly have carried out experiments to select the lines belonging to a planar surface.
These experiments have shown the influence of the arguments of the algorithm and
have proved the goodness of the robust technique to eliminate outliers.



Figure 1: Results of the selection of lines belonging to a plane. In the figure we show
both images and the matched lines selected by the robust method.

In the first experiment we show the results of the computation of the projective
transformation from a set of lines and the segmentation of planes. To carry out it,
we have used two images where the main object is the plane cover of a box (Fig. 1).

We have manually selected 35 good matches (27 of them (77%) correspond to the
box), and some spurious matches which always have been automatically discarded
by the robust method. The 27 matches belonging to the box have been perfectly
selected, 6 have been rejected as not belonging to the plane. Besides that, 2 matches
(those of the upper right corner) have been also selected although they do not
belong to the box. This is because the epipolar plane is nearly the same as the
projection plane of both lines and therefore any associated depth is compatible with
the observations. In figure 1 we can see the results of the segmentation.

We have made also a Monte-Carlo experiment repeating for one hundred runs
the computation of the homography. In figure 2 we show the mean absolute error
for the 27 lines belonging to the box regardless of whether they have been selected
or not. Taking 34 sets of 4 lines the error is about 1 pixel, but in 4 runs the error
is higher (6 pixels) and then the homography is badly computed. However with 72
sets, which represents a probability of 99,9% of taking a good set of 4 lines, when
there exist 45% of outliers, the mean residue is in every run less than 1.1 pixels.

We present also a second experiment to show the influence of the threshold of
outliers detection (it is function of the standard deviation of residue) when segment-
ing images (Fig. 3). In this case there is rotation and translation between images.
In the experiments, 22 matches belong to the door and 11 to the wall. We have
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Figure 2: One hundred runs taking 34 (top) and 72 (bottom) initial sets of 4 lines
respectively. We show the mean residue obtained with the lines belonging to the
box, regardless of whether they have been selected or not.

b) c)

Figure 3: a)b) Images used with the initial good matches c) Selected lines in the
plane of the door

2)

chosen 72 sets of 4 lines to compute the homography.

The result is quite good (Fig. 3) because all the matches not belonging to the
door are discarded except one that is nearly parallel to the epipolar line. We have
also carried out one hundred runs to test the influence of the threshold from which
the lines are selected to compute the homography, using 26 and /2 as threshold.

The mean error for the lines in the plane of the door is lower when a smaller
threshold is used, showing that the transformation obtained in second case (6/2) is
better. Therefore we conclude that it is better to compute the projective transfor-
mation from few but good matches. However, in this case (6/2), as the threshold is
more demanding, some short lines belonging to the door have been also rejected.
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Conclusions

We have presented and tested a robust method to compute homographies using
lines in two images. This provides a mapping between uncalibrated images, which
is specially useful for close images or for images of planar surfaces. The experiments
show that the robust technique turns out useful to select good matches and to
compute image transformations, even in presence of outliers. We are now applying
these ideas in robust matching and automatic correction of trajectories for robot
navigation in man made environments.
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