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Abstract

In central catadioptric systems 3D lines are projected into conics. In this paper we present a new
approach to extract conics in the raw catadioptric image, which correspond to projected straight lines in the
scene. Using the internal calibration and two image points we are able to compute analytically these conics
which we name hypercatadioptric line images. We obtain the error propagation from the image points to
the 3D line projection in function of the calibration parameters. We also perform an exhaustive analysis on
the elements that can affect the conic extraction accuracy. Besides that, we exploit the presence of parallel
lines in man-made environments to compute the dominant vanishing points (VPs) in the omnidirectional
image. In order to obtain the intersection of two of these conics we analyze the self-polar triangle common
to this pair. With the information contained in the vanishing points we are able to obtain the 3D orientation
of the catadioptric system. This method can be used either in a vertical stabilization system required by
autonomous navigation or to rectify images required in applications where the vertical orientation of the
catadioptric system is assumed. We use synthetic and real images to test the proposed method. We evaluate
the 3D orientation accuracy with a ground truth given by a goniometer and with an inertial measurement
unit (IMU). We also test our approach performing vertical and full rectifications in sequences of real images.

1. Introduction

Omnidirectional cameras are devices designed to capture images with a wide field of view. This character-
istic introduces a new approach in computer vision minimizing the possibility of fatal occlusions and helping
the tracking of features. Among these cameras we find the catadioptric systems, which are a combination of
a mirror and a camera. Some of these systems have the single viewpoint constraint. In Baker and Nayar [1]
an analysis of central catadioptric systems is presented describing which systems have the single view point
property. Among these we have the hypercatadioptric system which is composed of a hyperbolic mirror
and a perspective camera. In mobile robotics when a catadioptric system is used it is commonly observed
that it has a vertical orientation. This is because most robotic platforms used are wheel-based. Under this
configuration planar-motion is assumed simplifying the localization algorithms. In applications where line
tracking or line matching is performed [2, 3, 4] this assumption is useful since vertical lines are coplanar
with the optical axis becoming straight radial lines in the catadioptric image. When this assumption is
not satisfied, vertical lines are projected as conics in the catadioptric image. This situation requires the
development of new algorithms capable to deal with these conic projections. Another advantage of the wide
field of view in catadioptric systems is that visible segments of projected lines are very large. When we use
catadioptric systems in man-made environments we can observe sets of parallel and orthogonal lines. These
sets of lines encapsulate geometrical information which we exploit in this work. In particular, vanishing
points contain the orientation of the camera with respect to the reference coordinate system defined by the
main directions of the environment. However, dealing with line projections in catadioptric images becomes
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extraction of conics. In general, five points are required to determine uniquely a conic. When the internal
calibration of the central catadioptric system is known, only two points are needed to compute these conics,
which we particularly call Hypercatadioptric Line Images (HLIs).

Line extraction in omnidirectional catadioptric systems has been studied previously. In [5] an exhaustive
analysis of line images in paracatadioptric cameras is presented for calibration purposes. In [6], the space of
the equivalent sphere which is the unified domain of central catadioptric sensors combined with the Hough
transform is used. They also perform tests showing the influence of the calibration parameters in their
approach. In [7] Ying and Hu also use the Hough transform and two parameters on the unitary sphere to
detect the image lines. The accuracy on the detection of these two approaches depends on the resolution
of the Hough transform. The higher the accuracy, the more difficult it is to compute the lines. In [8] the
randomized Hough transform is used to overcome the singularity present in [6, 7], which speeds up the
extraction of conics. This scheme is compared in converge mapping to a RANSAC approach. In [9, 10] an
scheme of split and merge is proposed to extract the image lines present in a connected component. The
connected components are computed in two steps. The first step consists of detecting the edges using the
Canny operator. The second step is a process of chaining which builds the connected components.

A vanishing point (VP) is the point on the image where the projections of two or more parallel 3D
lines intersect. This point is the projection of a virtual 3D point located at infinity. That means that
coordinates of a VP on the image only changes when the camera is rotated. This property is exploited to
obtain the orientation of the camera with respect to a global reference system. The relationship between the
orientation of the camera and the vanishing points of perspective images has been deeply studied before[11].
Due to the wide field of view of omnidirectional cameras VPs are commonly located inside the catadioptric
image. For this reason VP-based techniques are interesting with omnidirectional cameras. In [10] VPs are
used with omnidirectional images to estimate the camera orientation. In [12] vanishing points are used in
omnidirectional sequences as orientation feature in an Extended Kalman Filter. A method of expectation
maximization is used in [13] to classify and detect VPs from edges on the Gaussian Sphere.

1.1. Contributions

In this paper we present a method to extract HLIs in the raw image in contrast to the approaches
presented in [6, 7, 8, 9] which execute the fitting on the unitary sphere. Our approach does not use the
Hough transform so the computing of the HLI is made directly from two image points. Extracting the HLIs
directly on the image, means that thresholds and fitting parameters are expressed in pixel units. An example
of this is the metric used to decide if a point belongs to a conic. Instead of using an algebraic distance we
propose an approximation to the geometrical distance on the image. A RANSAC voting scheme is used to
extract all the HLIs present in a single connected component. Contrary to [9], the extraction of one HLI
is performed in one step. We also perform an exhaustive analysis on the elements that can affect the HLIs
extraction accuracy. Since we work on the image it allows measuring the influence and behaviour caused
by calibration errors in pixels. This study is applicable to single HLIs in opposition to the study performed
in [6] which shows the influence of calibration parameters in a collection of projected lines. The way the
results are presented in [6] is conditioned by the Hough transform approach. To complete the analysis we
present the propagation error formulas from calibration parameters to the spatial representation of the 3D
line projection. Analogous formulation and analysis is performed with respect to the HLI defining points
on the image.

Once lines in the catadioptric images have been extracted, vanishing points are estimated by computing
the intersection of parallel lines. We propose a modification to the computation of the common self-polar
triangle [14] to compute the intersection between a pair of HLIs. The intersection of two HLIs is a particular
case in which the number of intersections between conics is reduced from four to two points. When this
intersection corresponds to images of parallel lines these points are the vanishing points. We compute all the
intersections between the HLIs present in the image. Then with a voting approach we robustly determine
which ones are the vanishing points. The Vertical Vanishing Point (VVP) allows us to determine two of
the three orientation angles with respect to an absolute reference. Using an analogous process we compute
the horizontal vanishing points (HVP )and as consequence the whole orientation of the catadioptric system.
This orientation can be used to perform a rectification of the omnidirectional image.
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Figure 1: Sphere camera model.
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Figure 2: Projection of a line under the sphere camera model.

The rest of the paper is distributed as follows. In section 2 we describe the unified theory to project
points and lines in catadioptric systems [15]. In section 3 we present a new approach to describe conics which
are projections of lines with two points and we show an algorithm to extract them from a hypercatadioptric
image. Section 4 presents an analysis of the influence of calibration on the extraction procedure and an
analysis of the uncertainty propagation in the HLI computation. Section 5 describes how to use these
conics to estimate vanishing points assuming dominant directions, in order to compute the orientation of
the camera. Some experiments are presented in section 6 to validate the proposed method. Finally, we
present the conclusions in section 7. Part of this work has been presented in [16] focused in orientation
computation and [17] centered in the evaluation of the conic extraction. Here, the proposed method is
revised and completed including an analytic study of the error propagation in the computation of the HLI.
Several experiments using synthetic and real images were also performed giving a deeper validation of the
method.

2. Projections in Central Catadioptric Systems

Under the sphere camera model [15] all central catadioptric systems can be modelled by a projection to

the unitary sphere followed by a perspective projection. The projection of a 3D point X = (X Y Z 1)
T
into

an omnidirectional image point x̂ can be performed as follows (Fig. 1). First, the 3D point is associated
with a ray x in the mirror reference system. This is done by P, a conventional projection matrix, x = PX.
We assume the world reference system and the mirror reference system are the same P = [I|0]. Second,
the 3D ray is projected onto the sphere passing through its center and intersecting in two points r±. These
points are then projected into an intermediate perspective plane with focal length equal to one, giving the
points x̄±, one of which is physically true. This step is encoded in the function ~ (1). The last step is
the projection of these points into the omnidirectional image, which is performed by a collineation Hc [18].
Matrix Hc is the combination of the intrinsic parameters of the perspective camera Kc, the rotation between
the camera and the mirror Rc assumed the identity I and the shape of the mirror Mc. This model considers
all central catadioptric cameras, encoded by ξ, which is the distance between the center of the perspective
projection and the center of the sphere. ξ = 0 for perspective, ξ = 1 for paracatadioptric and 0 < ξ < 1 for
hypercatadioptric.

~(x) =

 x
y

z + ξ
√
x2 + y2 + z2

 (1)

3



Hc =

 fx 0 u0
0 fy v0
0 0 1


︸ ︷︷ ︸

Kc

 ψ − ξ 0 0
0 ξ − ψ 0
0 0 1


︸ ︷︷ ︸

Mc

(2)

Let Π = (nx, ny, nz, 0)
T

be a plane defined by a 3D line and the effective view point in the sphere
camera model O (see Fig. 2). The projected line n associated to the 3D line by P can be represented as

n = (nx, ny, nz)
T
. Then, the points X lying in the 3D line are projected to points x. These points satisfy

nTx = 0 and x = ~−1(x̄), so nT~−1(x̄) = 0. As in [18], this equality can be written as

x̄TΩ̄x̄ = 0 (3)

where the image conic is

Ω̄ =

(
n2
x

(
1− ξ2

)
− n2

zξ
2 nxny

(
1− ξ2

)
nxnz

nxny
(
1− ξ2

)
n2
y

(
1− ξ2

)
− n2

zξ
2 nynz

nxnz nynz n2
z

)
(4)

and the image of the conic in the catadioptric image is

Ω̂ = H−T
c Ω̄H−1

c . (5)

Notice that Ω̄ is a degenerate conic when the 3D line is coplanar with the optical axis [18].

3. Computation of Hypercatadioptric Line Images

In this section we present the process used to extract HLIs contained in hypercatadioptric images. First
we show the analytical process, which requires only two image points and the mirror parameter. Then
we introduce the proposed point-to-conic metric used to decide if a point lies on a conic. Then the whole
extraction process is depicted as pseudo-code. Finally we show a comparison of the five-point algorithm
with our approach, which distinguishes between conics coming from straight lines and from other projected
conics.

3.1. Conic definition using two points

Here we explain the method used to extract the HLIs from two image points. As mentioned before, in
the case of uncalibrated systems we require five points to compute a conic. If these points are not well
distributed in the whole conic, the estimation is difficult and usually inaccurate. Another disadvantage
of a 5-point approach is the number of parameters. When a robust technique like RANSAC is used, this
is quite important, because the number of iterations required considerably increases with respect to the
number of parameters of the model. Our approach overcomes these problems requiring only two points and
the calibration parameters. First we transform the points to the normalized plane x̄ = (x̄ ȳ z̄)

T
using the

inverse of matrix Hc

x̄ = H−1
c x̂. (6)

Developing (3) and after some algebraic manipulation we obtain(
1− ξ2

)
(nxx̄+ ny ȳ)

2
+ 2nz z̄ (nxx̄+ ny ȳ) + n2z

(
z̄2 − ξ2

(
x̄2 + ȳ2

))
= 0 (7)

simplifying

(1− ξ2)α2 + 2α+
(
z̄2 − ξ2

(
x̄2 + ȳ2

))
= 0 (8)
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where a change of variable to α =
nxx̄+ ny ȳ

nz
is performed.

We can compute α by solving the quadratic equation

α = − z̄

1− ξ2
± ξ

1− ξ2

√
z̄2 + (x̄2 + ȳ2) (1− ξ2) (9)

Once we have solved this quadratic equation we can compute the normal n. Consider two points in the
normalized plane x̄1 = (x̄1, ȳ1, z̄1)

T
and x̄2 = (x̄2, ȳ2, z̄2)

T
lying on the conic we want to extract. From (9)

we compute the corresponding α1 and α2. Notice that there exist two solutions for α and just one has a
physical meaning1. Using these parameters we obtain the linear system

(
x̄1 ȳ1 −α1

x̄2 ȳ2 −α2

) nx
ny
nz

 =

(
0
0

)
(10)

Solving for nx, ny and nz we have

nx = ȳ1α2 − ȳ2α1 ny = x̄2α1 − x̄1α2 and nz = x̄2ȳ1 − x̄1ȳ2. (11)

Notice that we have analytically obtained the normal n that defines the projection plane of the 3D line,
therefore the conic Ω̄ described in (4).

3.2. Distance from a point to a conic

In contrast to previous works [6, 7, 8, 9] that deal with points in the unitary sphere, we work in the
image plane where conics are computed. In order to know if a point x lies on a conic Ω, represented as a
6-vector c = (c1, c2, c3, c4, c5, c6), we need to compute the distance from a point to a conic. Two distances
are commonly used to this purpose. An algebraic distance defined by (12) which just gives a value without
clear geometrical meaning

dalg = c1x
2 + c2xy + c3y

2 + c4x+ c5y + c6. (12)

The other gives the geometric distance from this point to the closest point on the conic. The geometric
distance is calculated by solving a 4th order polynomial. This is time consuming and does not allow analytical
derivation [19]. We propose an approximation to this distance replacing the point-to-conic distance by a
point-to-point distance.

Given a conic point xc lying on a conic described by the matrix Ω the tangent line to the conic passing
through xc is the polar line of the point xc with respect to the conic Ω.

s = Ωxc =

 c1
c2
2

c4
2

c2
2 c3

c5
2

c4
2

c5
2 c6

 xc
yc
1

 =

 c1xc +
c2
2 yc +

c4
2

c2
2 xc + c3yc +

c5
2

c4
2 xc +

c5
2 yc + c6

 (13)

The perpendicular line to the conic Ω passing through xc is defined as

l⊥ (xc) =

 s2
−s1

−s2xc + s1yc

 (14)

When a point xo does not lie on the conic we can compute an estimation to its corresponding perpen-
dicular line using the property that l⊥ (xc) = l⊥ (x0 +∆x) ≈ l⊥ (x0).

1We have observed that the positive solution is the correct one.
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(a) (b) (c) (d)

Figure 3: Region defined by a metric threshold of 20 pixels surrounding a conic. (a) Ellipse case using metric distance. (b)
Ellipse case using Sampson distance. (c) Hyperbola case using metric distance. (d) Hyperbola case using Sampson distance.

(a) (b) (c)

Figure 4: Extraction of image lines (HLIs). (a) Canny edge detector result, (b) connected components and (c) Extracted HLIs.

l⊥ (x0) =

 s2 (x0)
−s1 (x0)

−s2 (x0)x0 + s1 (x0) y0

 (15)

With the approximated perpendicular line we compute the intersection between the line and the conic
[14].

Is =

 0 0 −1
0 0 −1
1 1 0

 C∗ = det (C)C−1 l× =

 0 s2x0 − s1y0 −s1
s1y0 − s2x0 0 −s2

s1 s2 0


p± =

(
±
√

−l′⊥C∗l⊥I3x3 + l×C

)
Isl⊥ (16)

The approximated distance is the minor distance from both intersections.
Given a conic, a metric threshold with the proposed distance defines a uniform area surrounding the

conic (Fig. 3 (a) and Fig. 3 (c)). When using other approaches like Sampson’s distance this property is
not guaranteed. In Fig. 3 (b-d) we show the area defined by a threshold based on Sampson’s distance. We
observe that the area is uniform when the conic is an ellipse; however when the conic is a hyperbola the
thickness of the area using Sampson’s distance is not uniform.

3.3. Hypercatadioptric line images extraction

Our line extraction proposal can be explained as follows. First we detect the edges using the Canny
algorithm. Then the connected pixels are stored in components. For each component we perform a RANSAC
approach to detect the conics present into this component. Two points from the connected component are
selected randomly and the corresponding HLI is computed. The distances from the rest of the points to this
conic are computed. The points with a distance smaller than a threshold vote for this HLI. The process stops
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when the number of points that has not voted for any conic and the number of points in the component are
smaller than a threshold. In Fig. 4 we can observe the three main steps to extract HLIs. A pseudo-code
version is presented in Algorithm 1.

Algorithm 1 2-point HLI extraction algorithm

Require: Image
Ensure: Ωarray

edges = Canny(image)
boundaries = extractboundaries(edges)
for k = 1 to nBoundaries do

x = boundaries(k)
j = 0
while remaining points/total points > T do

xnplane = H−1
c x

for i = 1 to nAttemps do
xrandom = rand(xnPlane, 2)
Ωimg(i) = twoPoints2Conic(xrandom)
d = dist2conic(Ωimg(i),x)
xvote(i) = inliers(x, d, Threshold)
votes(i) = size(xinliers(i))

end for
indmax = MaximumV oted(Ωimg, votes)
Ω = Ωimg(indmax)
xinliers = xvote(indmax)
j = j + 1
Ωarray(j) = Ω
x = UpdateRemainingBoundary(x,xinliers)

end while

end for

Five points vs. Two points

For illustration purposes we show in Fig. 5 (a-b) the extraction of three conics corresponding to vertical
lines. We use conic fitting with five points and the extraction of the same HLIs using our 2-point approach.
We also show the VVP which is used as a measure of quality. All conics corresponding to vertical lines
must intersect this point. When the generic five point approach is used, the shape of the HLIs changes
depending on the points used to compute it. It can be either a hyperbola or an ellipse and it can easily
change from one to the other. The result is a conic which fits the five selected points but it does not describe
the projection of the 3D line. For example, using conics showed in Fig. 5(a) we can not compute the vertical
vanishing point by intersection. In the case of the proposed 2-point algorithm the HLI cover with accuracy
the points used to compute it, and describe the edge from which the points were extracted. Therefore the
three conics intersect in the vanishing point. Another advantage of the 2-point approach is the number of
iterations performed inside voting approach. For instance, using a probability p = 99% of not failing in
the random search and 50% of outliers (ε) just 17 iterations are needed to get a result using the proposed
approach (2-point) and 146 using the general five point approach. The number of iterations nr is given by

nr = log(1−p)
log(1−(1−ε)k)

.

Discrimination of HLIs from other conics

Since lines present in the scene become conics in hypercatadioptric images, one may think that these
conics may represent projections of circles or other conic shapes. Our approach is able to distinguish between
conics which are projections of 3D straight lines and the rest of the image conics. To illustrate this, we
show in Fig. 5 (c) the behavior of our approach extracting HLIs in hypercatadioptric images. We observe
a circular contour whose boundary points are given manually. We apply our extraction algorithm on this
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(a) (b) (c)

Figure 5: Computing a HLI with (a) using the five point approach. (b) using our approach with only two close points. The
central blue point corresponds to the vertical vanishing point. (c) Extraction of HLIs over a circular contour. Blue points
give the connected component. Red points correspond to the HLIs detected by RANSAC. The corresponding conics to each
segment HLI are shown in green.

connected component assuming the contour is composed of HLIs. We can observe how the algorithm is not
able to fit the whole circle with a single conic. With our approach we can directly test if a set of image
points corresponds to a HLI. The definition of a HLI presented in section 3.1 is not limited to two points.
From (10) we observe that each point gives a row of a linear homogeneous system. For n points we have

M =


x̄1 ȳ1 −α1

x̄2 ȳ2 −α2

...
...

...
x̄n ȳn −αn

 (17)

This situation allows fitting a HLI using more than two points. This is very useful in practice when we
have more than two pixels defining a conic. At the same time it permits to distinguish HLIs from other
conics. The rank of the homogeneous matrix M is two when it represents a HLI.

4. Influence of Calibration and Error Propagation in the Extraction of HLIs

In this section we present an exhaustive analysis of the influence of the calibration parameters of a
hypercatadioptric system on the extraction of HLIs. First, we present an analysis of the error propagation
from the calibration parameters and the two defining points of a HLI to the normal n describing the
projection plane of the 3D line. Then we show an empirical study of the influence of calibration parameters
on the extraction of HLIs. Finally we analyze the influence of the length of the observed conic segment.

4.1. Analytical study of errors propagation

We have performed an analytical study of the propagation errors in the calibration parameters to the
normal defining the projection of the line. We also propagate the error in pixels from a pair of defining
points of a HLI on the image to its normal in the space. To deal with this uncertainty we use a first order
approximation of the formulation.

We first analyze the uncertainty from the calibration parameters to the normal n. For this formulation
the calibration parameters of the system are represented in the vector κ = (u0, v0, fx, fy, sskew, ξ, ψ)

T
. The

corresponding Jacobian is

dn

dκ
= Ψ(ΛΥ+ Γ) (18)

with

8



0.46 0.48 0.5 0.52 0.54 0.56
−0.46

−0.44

−0.42

−0.4

−0.38

−0.36

−0.34

n
x

n
y

0.46 0.48 0.5 0.52 0.54 0.56
−0.8

−0.78

−0.76

−0.74

−0.72

n
x

n
z

−0.5 −0.45 −0.4 −0.35 −0.3
−0.8

−0.78

−0.76

−0.74

−0.72

n
y

n
z

(a)

0.2 0.3 0.4 0.5 0.6 0.7
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

n
x

n
y

0.2 0.3 0.4 0.5 0.6 0.7
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

n
x

n
z

−0.8 −0.6 −0.4 −0.2 0
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

n
y

n
z

(b)

Figure 6: Uncertainty from defining points to normal vector n. Gaussian randomized points around the defining points are
used to compute a cloud of normals (red points). The 95% confidence region of the normal is represented from this propagation
with an ellipse (in blue). (a) Standard Deviation of 2 pixels. (b) Standard Deviation of 15 pixels.

Ψ =
1(

n2x + n2y + n2z
) 3

2

 n2y + n2z −nxny −nxnz
−nxny n2x + n2z −nynz
−nxnz −nynz n2x + n2y

 , (19)

Γ =
1

(1− ξ2)
2

 03×5

−y2(λ1−ξz1)
λ1

+ y1(λ2−ξz2)
λ2

x2(λ1−ξz1)
λ1

− x1(λ2−ξz2)
λ2

0

03×1

 (20)

and

Υ =
1

(ξ − ψ)



ẑ1
fx

− sẑ1
fxfy

fy∆x1−s∆y1
fyf2x

− s∆y1
f2yfx

∆y1
fyfx

fy∆x1−s∆y1
fyfx(ξ−ψ)

−fy∆x1+s∆y1
fyfx(ξ−ψ)

0 − ẑ1
fy

0 ∆y1
f2y

0 − ∆y1
fy(ξ−ψ)

∆y1
fy(ξ−ψ)

0 0 0 0 0 0 0
ẑ2
fx

− sẑ2
fxfy

fy∆x2−s∆y2
fyf2x

− s∆y2
f2yfx

∆y2
fyfx

fy∆x2−s∆y2
fyfx(ξ−ψ)

−fy∆x2+s∆y2
fyfx(ξ−ψ)

0 − ẑ2
fy

0 −∆y2
f2y

0 − ∆y2
fy(ξ−ψ)

∆y2
fy(ξ−ψ)

0 0 0 0 0 0 0


, (21)

where ∆x1 = x̂1 − ẑ1u0, ∆x2 = x̂2 − ẑ2u0, ∆y1 = ŷ1 − ẑ1u0 and ∆y2 = ŷ2 − ẑ2u0.
We have also obtained the error propagation formulas from the two defining points on the image to the

normal n. Let be χ̂ = (x̂1, ŷ1, ẑ1, x̂2, ŷ2, ẑ2)
T
the corresponding Jacobian is described by the following matrix

product

dn

dχ̂
= ΨΛ

(
H−1

c 03×3

03×3 H−1
c

)
(22)

in which

Λ =


−ȳ2x̄1ξ

λ1

−ȳ2ȳ1ξ
λ1

+ α2
−ȳ2(−1+ξz̄1)

λ1(1−ξ2)
ȳ1x̄2ξ
λ2

ȳ2ȳ1ξ
λ2

− α1
ȳ1(−1+ξz̄2)
λ2(1−ξ2)

x̄2x̄1ξ
λ1

− α2
ȳ1x̄2ξ
λ1

x̄2(−1+ξz̄1)
λ1(1−ξ2)

−x̄2x̄1ξ
λ2

+ α1
−ȳ2x̄1ξ

λ2

−x̄2(−1+ξz̄2)
λ2(1−ξ2)

−ȳ2 x̄2 0 ȳ1 −x̄1 0

 , (23)

where λi =
√
z̄2i + (x̄2i + ȳ2i ) (1− ξ2).
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This approximation allows propagating the error from the two defining points in the image plane to the
normal n. To evaluate the expressions, in fig. 6 we show the uncertainties of two points defining the HLI.
We generated 5000 random values of χ̂ on the image adding a Gaussian variance of two pixels and fifteen
pixels (Fig. 6(a) and 6(b), respectively). These points have been mapped to normal vectors using (11). We
compare these points with the 95% confidence region we obtain propagating the covariance matrix of χ̂.

4.2. Empirical study of the influence of calibration

In this experiment we consider the following calibration parameters, focal lengths (fx, fy), principal point
(u0, v0) and mirror parameter ξ. We modify each parameter independently inside a certain range from which
we select 1000 samples. Then, we compute a specific HLI for each value using its two extreme points. We
perform this experiment for two different types of HLIs, one of which is nearly perpendicular to the optical
axis and the other which is nearly parallel. To illustrate the results two types of graphics are showed. The
first one represents the mean error in pixels of the conic fitting as a function of the calibration parameter. In
the second type the horizontal axis represent the variation of the calibration parameter and the vertical axis
the angle between the reference normal vector nref and the normal vector n computed with the modified
calibration.

• Focal length: In Fig. 7(a),(b) we show the corresponding conics when the focal lengths (fx, fy) are
modified. We observe that these parameters affect their corresponding coordinate of influence x and
y. The plot shows that the effect is the inverse for both axis. However, the magnitude is bigger in
the case of fy. Lines with a more horizontal component are more affected by the change on the focal
length.

• Principal point: In Fig. 7(c),(d) we observe the influence of the principal point (u0, v0) on the compu-
tation of the HLIs. When these two parameters are modified we observe a displacement proportional
to the distortion added to the corresponding parameter on the corresponding axis.

• Mirror parameter: In Fig. 7(e) we observe the effect of the mirror parameter ξ on the computation
of HLIs. We observe that both lines approximate a straight line when the value of ξ approximates
to zero. This is explained because ξ = 0 represents the pin-hole model which projects lines to lines.
Therefore, the closer a HLI is to a straight line, the less the mirror parameter ξ has an influence.

We observe that the fitting error is bigger for the perpendicular line than for the parallel line, except
for errors in v0. This is explained since the perpendicular lines are transformed in conics with a higher
curvature than the parallel ones, which are mapped to straighter lines.

4.3. Influence of observed length of the HLI

In the extraction process of the HLIs using RANSAC, two points in a connected component are randomly
selected and a HLI is computed. Then it is used to obtain all the points that belong to such HLI. In this
experiment we want to observe the influence of the distance between these two defining points on the
accuracy of the extracted HLI. As in previous experiment we observe that the influence of calibration errors
is stronger in perpendicular lines to the optical axis. In this experiment we perform simulations using this
type of line. We try different line lengths, from a few degrees to the longest theoretical line which has an
observed extension close to 180◦. We also modify the mirror parameter to observe its behavior. As we
expected, we observe that the longer the line is, the better the extraction of the HLI is. In Fig. 8(a) we
observe such behavior with a mirror parameter of ξ = 0.75. We also observe that when we approach the
maximum observed lenght of the line the error starts increasing, showing the limit of the longest line that
should be used to extract the corresponding HLI. In Fig. 8(b) we repeat the experiment, this time using a
mirror parameter of ξ = 0.95 close to a parabolic mirror (ξ = 1). We observe that the error increase a lot
when we are closer to both the longest line and the parabolic mirror. The para-catadioptric system case has
been studied in [18] and it is simpler than the hypercatadioptric analyzed here.

With the information obtained from this experiment we can infer that we should select the two more
distant points to extract their corresponding HLI. However, there exist a upper limit that depends on the
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Figure 7: Mean error in pixels of the conic fitting varying the calibration parameters. Angle between reference normal and
normal when varying the calibration parameters. (a,b) Focal length, fx, fy . (c,d) Principal point, u0, v0. (e) Mirror parameter
ξ.
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Figure 8: Maximum error in pixels as a function of the extension (in radians) of the observed HLI for mirror parameters (a)
ξ = 0.75 and (b) ξ = 0.95.

length of the HLI and the mirror parameter. In practice it is very unlikely to observe a line of such length.
Since we use a RANSAC approach, whose principle is to search in the space of solutions minimizing the
error, this problematic situation is automatically avoided in practice.

5. Vanishing Points and Image Rectification

The vanishing points indicate the intersection of image lines corresponding to parallel lines in the scene.
In vertical aligned catadioptric systems, vertical lines are radial lines in the catadioptric image. Their
intersection point, the vertical vanishing point (VVP), is located close to the image center. When the camera
is not vertically aligned, the vertical lines become conic curves as we explained before. One consequence is
that the VVP displaces from the image center. Its new location contains important information about the
orientation of the camera with respect to the scene.

5.1. Intersection of two HLIs using the common self-polar triangle

In a general configuration, two conics intersect in four points (Fig. 9). The union of couples of these
points define three distinct pair of lines. The intersection of these lines represent the vertices of the self-polar
triangle common to a pair of conics [14]. We have studied the particular case where two HLIs intersect,
which is a degenerate configuration, since they intersect in two points. As we observe in Fig. 10, there exist
a line l that intersects these two points and the origin of the normalized plane. Our goal is to compute this
line and from it to extract the two intersections of the conics that correspond to the two points P+ and P−.

Let n1 = (nx1 , ny1 , nz1)
T
and n2 = (nx2 , ny2 , nz2)

T
be two normal vectors representing the projection of

two lines in the scene and Ω̄1 and Ω̄2 two conics representing the image lines in the normalized plane. The
vertices of the self-polar triangle associated to the pencil Ω̄(λ) = Ω̄1 + λΩ̄2 satisfy the constraint

det(Ω̄1 + λΩ̄2) = 0. (24)

If we develop this constraint we obtain a third order polynomial where just one of the solutions is real
and it corresponds to λ1 = −n2

z1/n
2
z2. So, the null-space of Ω̄(λ1) = Ω̄1 + λ1Ω̄2 is the line l, expressed in a

parametric way as

l = µ · v = µ

(
vx
vy

)
= µ

(
n2z2ny1nz1 − n2z1ny2nz2
n2z1nx2nz2 − n2z2nx1nz1

)
. (25)

The intersection of this line to both Ω̄1 and Ω̄2 gives the two points P+ and P−. To obtain them we
solve for µ in the following equation

µ2(c1v
2
x + c2vxvy + c3v

2
y) + µ(c4vx + c5vy) + c6 = 0 (26)

and substitute in (25).
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5.2. Vertical vanishing point (VVP)

We use a classic algorithm to detect the VVP. Let m be the number of putative vertical HLIs detected
in the omnidirectional image and let ni their corresponding representation in the normalized plane. For
every pair of HLIs (there is a total of m(m− 1)/2 pairs), we compute their intersection as explained above.
Then for each line ni we compute the distance to these points. If the line is parallel to that pair of HLIs
the distance is smaller than a threshold and then that line votes that possible VVP. The most voted point
is considered the VVP. A refinement of the estimation can be performed using the p lines that voted for
the VVP. This refinement can be performed using singular value decomposition to solve a linear system,
followed by an optimization process to improve the accuracy. As these steps also increase the computational
cost, we decide to avoid them in our final implementation.

5.3. Horizontal vanishing point (HVP)

Once the VVP is extracted we can exploit several properties to compute the horizontal vanishing point
(HVP). The VVP x̄V V P =

(
x̄vx , x̄vy

)
defines a separation between vertical lines and potential horizontal

lines. The VVP defines the plane of the horizon,which is projected into the horizon conic, defined as:

Ωv =

 ζ2x̄2vx
(
1− ξ2

)
− (ζ − ξ)

2
ξ2 ζ2x̄vx x̄vy

(
1− ξ2

)
ζx̄vx (ζ − ξ)

ζ2x̄vx x̄vy

(
1− ξ2

)
ζ2x̄2vy

(
1− ξ2

)
− (ζ − ξ)

2
ξ2 ζx̄vy (ζ − ξ)

ζx̄vx (ζ − ξ) ζx̄vy (ζ − ξ) (ζ − ξ)
2

 , (27)

where ζ =
ξ+

√
1+(1−ξ2)

(
x̄2
vx

+x̄2
vy

)
x̄2
vx

+x̄2
vy

+1 . Therefore the HVP must lie on this conic.

By introducing these constraints we reduce the search space and we impose the main directions to be
perpendicular. Notice that using a single image without any assumptions it is impossible to distinguish
between the VVP and the HVP. However, some prior knowledge is easy to have in practice.

5.4. Image rectification

Here we explain the relation between the VVP computed in the normalized plane and the whole orien-
tation of the catadioptric system. Having an absolute reference system defined by the main directions, the
orientation of the camera with respect to this system is described by three angles (ϕ φ ω). Two of them

are obtained from the VVP. Writing the VVP in polar coordinates x̄vp = (ρv, θv)
T
(Fig. 11(a)) we observe

that there exist a relation between the angle θv and the angle φ representing the rotation of the catadiop-
tric system around the z-axis (28). The negative angle is produced by the mirror effect which inverts the
catadioptric image.

φ = −θv (28)
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Figure 11: (a) Camera Reference: The VVP location is related with orientation angles ϕ and φ. (b) Vertical Reference: After
rotating the camera around the x-axis an angle −ϕ the VVP is in the principal point. In this reference the HVP defines the
orientation angle ω. Each vertical 3D line is projected on a radial straight line.

We observe that the component ρv is intrinsically related to the angle ϕ and the mirror parameter ξ of
the catadioptric system. Since angles ϕ and φ are independent, we consider the case where φ = 0 (Fig.
11(b)). Using (25) and (26) with a pair of parallel HLIs in polar coordinates we compute the following
relationship

ρv = − sinϕ

cosϕ± ξ
, (29)

selecting geometrically compatible solutions, ϕ can be isolated resulting in:

ϕ = atan2 (1, ρv) + arccos

(
−ρvξ√
ρ2v + 1

)
. (30)

With ϕ and φ angles any image can be transformed to a vertical reference in which VVP lies on the image
center (Fig. 11(c)). We perform the vertical rectification in two steps. The first step undoes a horizontal
rotation according to angle φ (−θv in the image) to an arbitrary central reference (see Fig. 11(b)). The
second step consist of translating the VVP to the image center through a rotation around the vertical axis
by the angle ϕ, which is computed (30) from ρv (in the image) and the mirror parameter ξ (see Fig. 11(c)).
This procedure is performed by the following equation

x̄′
h = ~

(
rotz (φ) rotx (−ϕ) rotz (−φ) ~−1 (x̄h)

)
(31)

Once we have rectified the HVP to this reference we can compute the full orientation and perform the
full rectification of the catadioptric image. We compute its polar coordinates from which we only require
the angle component ω. With this angle we translate it to a central position. Since a horizontal rotation
was performed in the previous step, the position of the HVP has been modified and we have to undo such
transformation. From these angles we construct a rotation matrix R which relates the absolute reference
system with the camera reference system

Xcam = RXabs, where R = rotz(φ)rotx(ϕ)rotz(ω − φ) (32)

6. Experiments

In this section we present experiments focused on testing the accuracy of the proposed algorithm. We use
synthetic and real images as well as image sequences acquired with a hand-held hypercatadioptric system
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(a) (b) (c)

Figure 12: Orientation accuracy test with synthetic images: (a) Original Image, (b) VP extraction, (c) Rectified image using
the orientation.

Ref. 0o 5o 10o 15o 20o 25o 30o 35o 40o 45o 50o 55o 60o

Our Method 0.45 5.27 10.11 15.07 19.90 24.58 30.09 35.54 40.41 45.35 50.06 55.01 59.97
Bazin’s

0.12 5.10 9.80 14.56 19.77 24.76 29.79 34.73 39.77 45.02 49.71 54.74 59.75
Method [10]

Table 1: ϕ angle extraction accuracy test on simulated scenario.

and a hypercatadioptric system mounted on a helmet.

6.1. Orientation accuracy

This group of experiments is designed to evaluate the accuracy of the orientation of the camera computed
from vanishing points. Initially, we use synthetic images to avoid setting and calibration errors. We also use
real images which are acquired with a hypercatadioptric system. We accurately move this system with a
precision head composed of a goniometer, from which we obtain the ground truth orientation of the system.

Synthetic images

The goal of this experiment is to estimate the orientation errors with the proposed method avoiding
the calibration influence. We use a synthetic environment based on a real scenario composed of elements
like doors and columns which define main directions. The catadioptric system is modelled by a perspective
camera and a hyperbolic mirror. To test the proposed method thirteen images have been generated from 0o

to 60o using a ray-tracing software2 introducing a consecutive variation of five degrees in ϕ angle. In Table
1 we show the results obtained with the proposed method and the method presented by Bazin et al. in [10].
The obtained errors are in average smaller than 0.25 degrees. There is no significant difference between our
results and Bazin’s method. Fig. 12 shows an example of the vanishing points extraction and full image
rectification from a synthetic image generated from an angle ϕ = 40o.

Real images

In this experiment we test the accuracy of the algorithm in a real environment. The camera is attached
to a precision head3 which provides the ground truth. Images have been acquired with a hypercatadioptric
system4. To evaluate the influence of the lines density and quality, the experiment has been repeated in two
different scenarios. Scenario A is a corridor where main directions are well defined, the number of vertical

2http://www.povray.org
3UTR 80, Manufactured by Newport with goniometer of 1/60 o resolution
4http://neovision.cz
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(a) (b) (c)

Figure 13: Orientation accuracy test with real images in scenario A: (a) Original Image, (b) VP extraction, (c) Rectified image.

Reference 0o 5o 10o 15o 20o 25o 30o 35o 40o 45o 50o 55o 60o

Scenario A
0.63 4.76 10.87 15.30 20.15 25.21 30.06 34.88 39.97 44.93 49.93 54.42 59.22

Mean
Scenario A

0.153 0.227 0.417 0.200 0.038 0.021 0.045 0.043 0.132 0.083 0.031 0.036 0.008
Std. Dev.
Scenario B

-0.32 5.52 11.28 15.83 21.57 25.45 29.75 35.20 39.30 44.38 49.28 53.62 59.13
Mean

Scenario B
0.226 0.162 0.167 0.086 0.300 0.038 0.382 0.468 0.185 0.386 0.345 0.249 1.115

Std. Dev.

Table 2: ϕ angle extraction accuracy test on real stages.

lines is high, floor and walls have different colors and without reflections. Scenario B is a small hall in
which the number of vertical lines is low, the color of the constructive elements is uniform and there exist
reflections on the floor.

We also use thirteen images from 0o to 60o which have been acquired introducing an increment of five
degrees in ϕ angle and the algorithm has been executed five times for each image. In Table 2 we show the
result from the different two scenarios. The first row is the reference angle given by the goniometer. Next
rows are the mean and standard deviation of the orientation calculation for each scenario. Since we have
not a perfectly aligned system with respect to the vertical we assume an offset setup error for the complete
experiment.

Mean errors are 0.31 degrees for well-conditioned scenario A and 0.80 degrees for scenario B. Maximum
errors are 0.87 degrees and 1.57 degrees respectively. These results are better than maximum error of 2
degrees presented by Magnier et al. in [20]. Results obtained in scenario A, which have more and longer
lines, are considerably more accurate than results from scenario B. Therefore as expected, the number of
HLIs and their quality have influence in angle accuracy. Spurious HLIs extracted from non-line objects,
like people, also introduce uncertainty into the extraction process. We observe that the inclusion of one
parameter radial distortion in the projection model improve the accuracy. We observe the high influence of
radial distortion and principal point in angle ϕ accuracy. The relationship between angle ϕ and the distance
from principal point to the VVP, which can be seen in (29), explains this tendency. In Fig. 13 and 14
we show an example of the vanishing points extraction from two real images taken in the two considered
scenarios. The system has an inclination of 40o. Full orientation extracted from vertical and horizontal
vanishing point is used to rectify the original image.

6.2. Rectification of image sequences

In order to evaluate the system in real environments the proposed method has been tested with image
sequences. This application consist of a 3D orientation computation in which the extracted orientation is
used to rectify the image sequence. The result is an oriented image sequence.
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Figure 14: Orientation accuracy test with real images scenario B: (a) Original Image, (b) VP extraction, (c) Rectified image.

Figure 15: Elevation angle ϕ of the
catadioptric system. Frames 1-150.

Figure 16: Angular deviation of the
vertical lines after rectification, in de-
grees.

Figure 17: Number of vertical lines
present in each frame of sequence 1.

As commented in previous sections, it is necessary to introduce additional constraints to distinguish
between VVP and HVP. When we deal with image sequences it is possible to track the vanishing points.
The vanishing points detected in the first frame are defined as reference. The tracking is performed with
previous VPs inside a confidence region. This region is described as a covariance matrix which depends
on the hypothesized angular velocity. Three sequences have been acquired using two different catadioptric
systems. Sequences 1 and 2 have been acquired with a hand-held hypercatadioptric system5. Sequence 3
has been acquired with a hypercatadioptric system mounted on a helmet (see Fig. 20(a)).

Image sequence 1

In this experiment we only perform the vertical rectification of a sequence. In Fig.15 we show the ϕ angle
computed for the first 150 frames of sequence 1. To measure the accuracy of our approach we compute the
verticality of the lines present in every frame. This process consist of building the corresponding panoramic
image from the omnidirectional image. Then all points belonging to a vertical line are used to compute
the line equation. Finally we measure the angle deviation of this computed line with a true vertical line.
The average error computed was 0.72◦ with a maximum error of 1.63◦ and a standard deviation of 0.70◦.
In Fig.16 we show the average error of the angle deviation of all the vertical lines present in each frame of
sequence 1 after rectification. We observe that this error is related to the number of vertical HLIs present
in the catadioptric image (Fig. 17). The more the number of vertical HLIs present in the frame the better
the estimation of the vanishing points, and consequently a better rectification of the image.

5http://neovision.cz
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(a) (b) (c)

Figure 18: Example of full image rectification. (a) Frame 1 of the sequence 2. (b) Putative vertical and horizontal vanishing
points. The yellow circles represent the putative vertical vanishing points. The blue ones the putative horizontal vanishing
points and the green ones are the intersections points that cannot be consider either vertical or horizontal vanishing points.
The white square is the estimated HVP and the black one is the VVP. (c) Full-rectified image. The vertical HLIs are shown in
white and the horizontal ones in red.

Frame 107 Frame 242

Figure 19: Panoramic representation of several full-rectified frames. Vertical lines are shown in white and horizontal ones in
red. The horizontal vanishing point is aligned to the image center.

Image sequence 2

In this experiment we compute the full rectification of the second sequence. In Fig. 18 we can observe
how the two vanishing points are computed. Once the rectification is computed we align the images to the
reference system given by the vanishing points, i.e., the scene reference system. This allows to see how the
only movement present in the sequence is translation (Fig. 19).

Helmet camera and IMU comparison

In this experiment we measure the orientation of a head during a human walk. An inertial measurement
unit (IMU) has been coupled to the helmet to compare the computed angle with the angle given by the IMU.
In Fig. 20(b) we show an image of the sequence and many conics lying on the vanishing points. Fig. 20(c)
shows the comparison between the angle given by the IMU and the algorithm during the image sequence.

7. Conclusions

We have presented a new method for the extraction of conics which are projections of 3D lines in
omnidirectional images generated by a calibrated hypercatadioptric system. We propose an approach that
requires only two points and the calibration of the system to extract them and use it with a metric distance
from point to conic in an extraction algorithm. We analyze the uncertainty propagation using the proposed
approach showing the influence of each particular calibration parameter and the two defining points. We
develop the common self-polar triangle approach to the particular case of HLIs intersection. With a voting
approach we select the VPs from the intersections of the HLIs. Orientation of the hypercatadioptric system
is estimated relating the location of the vanishing points on the image with the orientation angles in an
man-made structured environment. To show the effectiveness of this method we perform experiments with
synthetic and real images comparing our proposal to similar approaches. In particular we test the accuracy
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Figure 20: Image sequence acquired with the omni-camera helmet: (a) Acquisition helmet, (b) Vanishing Point Extraction, (c)
Comparison between angle ϕ given by the accelerometer and the vision based algorithm.

of the orientation estimation by using static images, obtaining mean orientation errors of less than 1 degree.
We also show the behaviour of the method dealing with image sequences. We compare our algorithm with
the orientation data extracted from an IMU. Using the orientation we perform the vertical rectification of
the sequence in order to create images where applications that require the vertical constraint can be used.
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